1. Trang chủ
  2. » Cao đẳng - Đại học

Đề thi thử đại học có đáp án chi tiết môn toán năm 2018 lần 4 mã 6 | Toán học, Đề thi đại học - Ôn Luyện

16 34 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 4,21 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tính cạnh đáy của hình chóp, biết rằng mặt nón đỉnh S và đáy là đường tròn nội tiếp ABCD có diện tích xung quanh bằng 50π cm 2?. Trong các vectơ sau,A[r]

Trang 1

Đề 6 Câu 1. Cho hàm số f x  với tập xác định Da;c

có đồ thị cho bởi hình bên Trong các khẳng định

sau, khẳng định nào sai ?

A.Hàm số đồng biến trên khoảng a;b

, nghịch biến trên khoảng b;c.

B Hàm số nhận cả giá trị dương lẫn giá trị âm.

C.Hàm số có điểm cực đại.

D.Hàm số có giá trị lớn nhất và giá trị bé nhất.

Câu 2. Cho hàm số yf x 

xác định, liên tục trên ¡ và có bảng biến thiên sau

y

 

19

3



Đường nào trong các đường sau đây có thể là đồ thị của hàm số đã cho?

Câu 3. Trong các khoảng sau đây, hãy chọn một khoảng mà hàm số ylnx2 đồng biến trên đó

A.    ;B. ;0

C.0; . D.1 1;

Trang 2

Câu 4. Trong các đường cong cho sau đây, đường nào là đồ thị của hàm số

4 2

4

x

?

Câu 5. Tìm các điểm cực tiểu của hàm số ysin 2x x

A.

2π 2π 3

π π 6

C.

π π 6

π 2π 6

Câu 6. Tìm giá trị lớn nhất, nhỏ nhất của hàm số

1

x y x

 trên tập

3 3 2

D ; 

 

A.

13

13

C.maxD y5 min, D y 2 2 2

19 max 2 2 2 min

4

D

Câu 7. Biết rằng đồ thị hàm số yx13

và đồ thị hàm số yx32x22x cắt nhau tại một2 điểm duy nhất Tính tung độ y của giao điểm đó.0

A.

27

27

27 4

Câu 8. Tìm giá trị của tham số m để đồ thị hàm số y x 33x2m có hai điểm cực trị A, B sao cho

gốc toạ độ O cùng với A và B là ba đỉnh của một tam giác vuông tại O

A.Không có giá trị nào của m B.m  4

Trang 3

C.m0, m 4 D.m1, m 4

Câu 9. Đồ thị hàm số  2  2

1

x y

có bao nhiêu đường tiệm cận?

Câu 10.Kí hiệu M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số ycos4xsin2x 2

Tính tích Mm

A.

5

5 4

1

Câu 11.Tìm các các giá trị của tham số m sao cho đồ thị hàm số y x 3 3mx24m3 có hai điểm cực trị

đối xứng nhau qua đường thẳng y x

2 2

m 

2 2

m 

D.m 1

Câu 12.Tính tổng các nghiệm của phương trình

2

0 6

x x

,

Câu 13.Tính đạo hàm của hàm số

2

2 1 1

x y x

A.

2 1

2 1 2

1

x x

2 1 2

3 2 2 1

1 1

x x x

C  

2 1 2

1 1

x x x

2 2

3 1

x

Câu 14.Tìm tập xác định D của hàm số

3

2 1

x y x

A.D¡ \ 1

B.D¡ \ 2

C.D¡ \1 2;

D.D ¡

Câu 15.Giải bất phương trình 22x122x222x3 448

A.

9 2

x 

9 2

x 

Câu 16.Xét hàm số f x  ln x2 x12

Trong các khẳng định sau, khẳng định nào sai?

A.  5 11

36

B.  6 11

36

C.  5 9

16

12

Câu 17.Cho loga b3 log, a c Hãy tính 2

4 3 3

loga a b

Câu 18.Tính đạo hàm của hàm số

2

9x

Trang 4

 2 

9x

 2 

9x

C.

 

2

2

3x

 

2

2

3x

Câu 19.Cường độ một trận động đất M được cho bởi công thức M logA logA0, với A là biên độ

rung chấn tối đa và A là một biên độ chuẩn (hằng số) Đầu thế kỉ XX , một trận động đất ở San-0

Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, một trận động đất khác ở Nam Đại Tây Dương có cường độ 7,3 độ Richter Hỏi trận động đất ở San-Francisco có biên độ gấp bao nhiêu lần biên độ của trận động đất ở Nam Đại Tây Dương?

Câu 20.Xét phương trình ln2x 3ln x2  9 0  *

Trong các khẳng định sau, khẳng định nào

đúng?

A. *  lnx2 3ln x  9 0 B. *  ln2x 3ln x2  9 0

C. *  ln2x 6lnx  9 0 D. *  ln2x 6lnx  9 0

Câu 21.Tìm tất cả các giá trị của tham số m để phương trình logmx 2logx1

có nghiệm

Câu 22 Trong các khẳng định sau, khẳng định nào sai?

A.

1

ln

C.cos 2x dxsin 2x C . D. 2

1

tan cos x dxx C

Câu 23.Cho hàm số f x 

thoả mãn các điều kiện f x   2 cos 2x

π 2π 2

f  

  Trong các khẳng

định sau, khẳng định nào sai?

A.f  0  π B. f x  2x sin 2x π

C.

π 0 2

f  

2

Câu 24.Một bể nước bị rò, lượng nước thất thoát với tốc độ tính bằng cm3/phút, tại phút thứ t là

   2

μ t  t 1

Tính lượng nước thất thoát sau 2 giờ đầu

A.590 520, lít B.890 121, lít C.1590 520, lít D.11590 520, lít

Câu 25.Đặt

2 2 2 3

1

dx I

x x

tx21 Trong các khẳng định sau, khẳng định nào sai?

Trang 5

A.x dx t dtB.x2   t2 1 C.

2 2 2 3

1

dt I

t

1 2 1 3

1

dt I

t

Câu 26.Tính tích phân

2 2 1

ln 1 x

x



A.3ln 2 3ln 3 B.2ln 2 3ln 3 C.4ln 2 3ln 3 D.3ln 2

Câu 27.Tính diện tích hình phẳng giới hạn bởi các đường y0, y3, y x, y 2 2x

A.

3

19

1

4

3

Câu 28.Tính thể tích khối tròn xoay sinh ra khi quay quanh trục Ox hình phẳng giới hạn bởi các đường

3

2

3

x

A.

46π

486π

86π

3

Câu 29.Kí hiệu M là điểm biểu diễn số phức z , M  là điểm biểu diễn số phức z Trong các khẳng

định sau, khẳng định nào đúng?

A.M , M  đối xứng nhau qua trục tung.

B.M , M  đối xứng nhau qua trục hoành.

C.M , M  đối xứng nhau qua đường thẳng y x

D.M , M  đối xứng nhau qua đường thẳng y x

Câu 30.Cho hai số phức z1  3 2 i, z2  1 3i Tính số phức liên hợp của v z z 1 2 z z1 2

Câu 31.Khi số phức z thay đổi tuỳ ý, tập hợp các điểm biểu diễn số phức v z 2  z 2

là đường nào trong mặt phẳng phức?

A.Trục tung.

B.Đường phân giác góc phần tư   I , III

C.Trục hoành.

D.Đường phân giác góc phần tư   I , III và đường phân giác góc phần tư   II , IV.

Câu 32.Kí hiệu z , z , z , z là bốn nghiệm phức của phương trình 1 2 3 4 z47z212 0 Tính tổng

Câu 33.Kí hiệu i là đơn vị ảo Trong các khẳng định sau, khẳng định nào đúng?

A.1i1032i

B.1i1032

C.1i1032

D.1i1032i

Trang 6

Câu 34.Tìm tập hợp các điểm trên mặt phẳng toạ độ biểu diễn các số phức z thoả mãn điều kiện

2 z 1 2i 3 1 2i  z

A.Đường thẳng 2x14y 5 0 B.Đường thẳng 6x   1 0

C.Đường thẳng 3x4y  5 0 D Đường thẳng 3x 4y 5 0

Câu 35.Cho lăng trụ ABC.A B C  có đáy ABC là tam giác vuông cân tại C Gọi G là trọng tâm của

tam giác ABC Tính độ dài cạnh AB nếu biết hình lăng trụ đã cho có chiều cao gấp đôi cạnh đáy AC và khối tứ diện GA B C   có thể tích bằng 9cm 3

Câu 36.Cho khối hộp ABCD.A B C D    có đáy là hình thoi với góc nhọn 60 Chiều cao khối hộp bằng

cạnh đáy Gọi M ,N , P lần lượt là trung điểm của các cạnh AB, B C , C D    Tính thể tích V của

khối hộp đã cho biết rằng khối tứ diện C MNP có thể tích 5cm 3

A.120cm 3 B.20cm 3 C.30cm 3 D.40cm 3

Câu 37.Tính cạnh của hình lập phương ABCD.A B C D    biết rằng khối chóp D.ABC D  có thể tích bằng

3

9cm

Câu 38.Cho khối lăng trụ đứng ABC.A B C   có đáy là tam giác vuông với độ dài ba cạnh là

3cm, 4cm, 5cm Gọi A ,B ,C lần lượt là trung điểm ba cạnh bên AA , BB , CC0 0 0    và V , V ,V a b c

theo thứ tự là thể tích các khối chóp A BB C C, B CC A A, C AA B B0   0   0   Trong các khẳng định

sau, khẳng định nào đúng?

A.V aV bV c B.V aV bV c C.V aV cV b D.V bV cV a

Câu 39.Tính diện tích toàn phần của một khối trụ có diện tích xung quanh bằng 4π cm và thiết diện qua2

trục là một hình vuông

A.4π cm 2 B.6π cm 2 C.9π cm 2 D.12π cm 2

Câu 40.Một khối gỗ hình trụ có chiều cao bằng đường kính đáy và có thể tích 1m Người ta khoét khối3

gỗ bởi hai nửa hình cầu mà đường tròn đáy của khối gỗ là đường tròn lớn của mỗi nửa hình cầu thì phần còn lại có thể tích bao nhiêu?

A.

3

1

m

3

1 m

3

1 m

3

1 m

3 .

Câu 41.Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 6 cm và SAC là tam giác đều Tính thể

tích khối nón đỉnh S và đáy là đường tròn nội tiếp đáy ABCD của hình chóp

A.

3

cm

Trang 7

Câu 42.Cho hình chóp tứ giác đềuS.ABCD có các mặt bên nghiêng với đáy một góc 60 Tính cạnh

đáy của hình chóp, biết rằng mặt nón đỉnh S và đáy là đường tròn nội tiếp ABCD có diện tích xung quanh bằng 50π cm 2

Câu 43.Tính thể tích khối hộp ABCD.A B C D    nếu biết A ; ; , A ; ; ,B1 1 0 1 1 3 2 1 3; ; ,C ; ; 2 2 0

Câu 44.Trong không gian với hệ toạ độ Oxyz , cho đường thẳng

3 6 4

x

d : y

  

 Trong các vectơ sau, vectơ nào có giá song song với đường thẳng d?

A.u ; ;r0 0 3

C.ur3 6;; 4

D.u ; ;r0 6 1

Câu 45.Trong không gian với hệ toạ độ Oxyz , cho mặt phẳng  P : x3  4z1 0 Mặt cầu nào trong

các mặt cầu sau đây cắt mặt phẳng  P ?

A.  S : x12y 32z2  1 B.  S : x 32y12z2  1

C. S : x2y 32z12  1 D. S : x2y12z 32  1

Câu 46.Viết phương trình của đường thẳng d đi qua A ; ;1 2 3

và vuông góc với mặt phẳng

 P : x4 3y 7z  1 0

A.

1 2

2 3

3 4

 

 

  

3

1 3

10 7

 

 

  

C.

1 4

2 3

3 7

 

 

  

Câu 47.Tìm một vectơ chỉ phương của giao tuyến hai mặt phẳng  P : x3 2y z 1 0 và

 Q : x4y 3z  2 0

A.2; 4 5; 

B.0 4 5; ;

C.1 4 5;;

D.1 4 5;; 

Câu 48.Viết phương trình chính tắc của đường thẳng giao tuyến của hai mặt phẳng

 P : x y z2    3 0 và  P : x y z   1 0

A.

C.

Trang 8

Câu 49.Tính khoảng cách giữa hai đường thẳng

Câu 50.Cho mặt phẳng  P : x y z  1 0 và đường thẳng

Viết phương trình đường thẳng  qua A ; ;1 1 2

, vuông góc với d và song song với  P

A.

C.

Hết

Ngày đăng: 17/01/2021, 02:54

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w