1. Trang chủ
  2. » Văn bán pháp quy

Bộ đề kiểm tra Giải tích 12 - Chương 3

32 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 1,54 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

phần để trồng hoa có dạng của một cánh hoa hình parabol có đỉnh trùng với tâm nửa hình tròn và hai đầu mút của cánh hoa nằm trên nửa đường tròn (phần tô màu), cách nhau một khoảng bằng[r]

Trang 1

BỘ ĐỀ KIỂM TRA 1 TIẾT

100%TN

NHÓM TOÁN VD-VDC Kết Nối Thành Công - Nâng Tầm Tri Thức

LƯU HÀNH NỘI

GIẢI TÍCH CHƯƠNG III_LỚP 12

Trang 2

f x x 

 và  

0 9

g x x 

9 0

Trang 3

cos d

S   x x B

π 2 0

cos d

S   x x C

π 0

cos d

S   x x D

π 0

cos d

S  x x

Câu 10 Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường yx, trục Ox và hai đường

thẳng x 1; x 4 khi quay quanh trục hoành được tính bởi công thức nào

A

4 1

d

V x x B

4 1

d

V  x x C

4 2 1

d

V  x x D

4 1

d

V  x x

d1

x x x

Trang 4

Câu 24 Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v t1 2 m/st  Đi được 12 giây,

người lái xe gặp chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia

Câu 25 Cho  H là hình phẳng giới hạn bởi parabol yx2 và đường tròn x2y2  (phần tô đậm 2

trong hình bên) Tính thể tích V của khối tròn xoay tạo thành khi quay  H quanh trục hoành

O

Trang 5

O

Trang 6

11.C 12.C 13.A 14.B 15.A 16.C 18.A 19.B 20.A 21.C

22.C 23.B 24.A 25.A

Trang 7

NHÓM TOÁN VẬN DỤNG- VẬN DỤNG CAO

Đề kiểm tra: 45 phút Môn: Giải tích 12 – Chương III

Câu 2 Biết f x dx  sin 3x C Mệnh đề nào sau đây là mệnh đề đúng?

A f x  3cos 3x B f x 3cos 3x C   cos 3

1d3

f x x 

 và  

0 9

g x x 

9 0

Trang 8

Câu 9 Kí hiệu  H là hình phẳng giới hạn bởi đồ thị hàm số 2

2 –

yx xy  Tính thể tích vật 0thể tròn xoay được sinh ra bởi hình phẳng  H khi nó quay quanh trục Ox

Câu 10 Cho hàm số yf x  liên tục trên đoạn a b Gọi ;  D là hình phẳng giới hạn bởi đồ thị của

hàm số yf x , trục hoành và hai đường thẳng x  , x abab Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức

f x x 

3 5

f x x 

 ,  

3 2

f x x 

5 1

4d

Trang 9

C f a   5 3  5 D f a   3 53

4 0

f x x  

1 0

S   f x dx

4 -3

ln 2 2 dx

I f xfx  x

A I 1. B I 0. C I 2 D I  1.

phần để trồng hoa có dạng của một cánh hoa hình parabol có đỉnh trùng với tâm nửa hình tròn

và hai đầu mút của cánh hoa nằm trên nửa đường tròn (phần tô màu), cách nhau một khoảng bằng 4(m), phần còn lại của khuôn viên (phần không tô màu) dành để trồng cỏ Nhật Bản Biết

x

y

4

Trang 10

các kích thước cho như hình vẽ và kinh phí để trồng cỏ Nhật Bản là 100.000 đồng/m2 Hỏi cần bao nhiêu tiền để trồng cỏ Nhật Bản trên phần đất đó? (Số tiền được làm tròn đến hàng nghìn)

A 3.895.000 (đồng) B 1.948.000 (đồng) C 2.388.000 (đồng) D 1.194.000 (đồng)

HÊT

Trang 11

BẢNG ĐÁP ÁN

11.A 12.D 13.D 14.A 15.B 16.A 17.A 18.B 19.D 20.B 21.B 22.C 23.A 24.A 25.B

Trang 12

NHÓM TOÁN VẬN DỤNG- VẬN DỤNG CAO

Đề kiểm tra: 45 phút Môn: Giải tích 12 – Chương III

NĂM HỌC 2018 - 2019

Đề số 03

TỔ 1_NHÓM TOÁN VD_VDC

Câu 1: Cho hàm số f x xác định trên   K và F x là một nguyên hàm của   f x trên   K Khẳng

định nào dưới đây đúng?

C

3ln

1d

Trang 13

A 5 B 3 C 4 D 6

Câu 8: Cho f x ,   g x là hai hàm số liên tục trên đoạn   1;1 và f x là hàm số chẵn,   g x là  

hàm số lẻ Biết  

1 0

f x x 

1 0

x

52

2( )

x x x

 

2

11

x x x

 

2

11

x x x

1

1.d

2t tt B

4 1

Trang 14

d ln 3 ln 2

x

x a b x

Câu 19: Cho hàm số yf x( ) liên tục trên  và có đồ thị như hình vẽ Gọi S là diện tích hình phẳng

giới hạn bởi đồ thị hàm số yf x( ), trục hoành và trục tung Khẳng định nào sau đây đúng?

1 3cos

a

x x

Trang 15

Câu 23: Gọi Hlà hình phẳng giới hạn bởi parabol   2

Câu 25: Cho hàm số yx44x2m có đồ thị  C Gọi S là diện tích hình phẳng giới hạn bởi  C

với y 0 và trục hoành; gọi S là diện tích hình phẳng giới hạn bởi  C với y 0 và trục

hoành Với giá trị nào của m thì SS?

Trang 17

BẢNG ĐÁP ÁN

11.C 12.A 13.B 14.B 15.C 16.C 17.A 18.A 19.D 20.D 21.B 22.A 23.C 24.D 25.C

Trang 18

NHÓM TOÁN VẬN DỤNG- VẬN DỤNG CAO

Đề kiểm tra: 45 phút Môn: Giải tích 12 – Chương III

2d

dsin

x I

Trang 19

Câu 10: Goi  H là hình phẳng giới hạn bởi đồ thị hàm số ye x, trục Oxvà hai đường thẳng x 0, x 1

Thể tích của khối tròn xoay tạo thành khi quay  H xung quanh trụcOx

Trang 20

Câu 15: Cho số thực a 0, đặt

12

a

x a

b

a I e

1d3

x f x x 

1 3 0

d 2018

f x x 

3 2 2

Trang 21

Hỏi phương trình f x  có tất cả bao nhiêu nghiệm biết   0 f a  ?   0

Câu 25: Một khối cầu có bán kính là 5 dm , người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song

song cùng vuông góc đường kính và cách tâm một khoảng 3 dm  để làm một chiếc lu đựng nước

(như hình vẽ) Tính thể tích mà chiếc lu chứa được

Trang 22

BẢNG ĐÁP ÁN

13.A 14.C 15.C 17.D 18.C 19.D 20.B 21.B.C 22.B 23.D 25.D

Trang 23

NHÓM TOÁN VẬN DỤNG- VẬN DỤNG CAO

Đề kiểm tra: 45 phút Môn: Giải tích 12 – Chương III

x x

C x

x x

C x

Câu 3 Hàm số F x 2 sinx3cosx là một nguyên hàm của hàm số

A f x  2 cosx3sinx B f x  2 cosx3sinx

C f x 2 cosx3sinx D f x 2 cosx3sinx

3 x C

e 1

1d3

Trang 24

A 3 2

1

29

It B

2

1

2d3

I  t t C

2 2 1

2d3

1sin 2 sin 2 d2

π

0 0

1sin 2 2 sin 2 d2

1sin 2 2 sin 2 d2

π

0 0

1sin 2 sin 2 d2

d

V x x B

4 1

d

V  x x C

4 2 1

d

V  x x D

4 1

2 0

Trang 25

 với các trục tọa độ Tính giá trị biểu thức Fa b c ?

A F 34 B F  4 C F  7 D F 36

Câu 20 Một ô tô chuyển động nhanh dần đều với vận tốc v t1 7 m/st  Đi được 5 s , người lái xe  

phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc

Trang 26

A e 4 B e 2 C 3 D e 3

Câu 23 Thể tích của phần vật thể giới hạn bởi hai mặt phẳng x  và 0 x  , có thiết diện bị cắt bởi 3

mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x0 x3 là một hình chữ nhật có hai kích thước bằng x và 2

Người ta chia mảnh vườn bằng cách dùng hai đường parabol, mỗi đường parabol có đỉnh là trung điểm mỗi cạnh dài và đi qua hai mút của canh dài đối diện Tính tỉ số diện tích phần mảnh vườn nằm ở miền trong hai parabol với diện tích phần còn lại

Trang 27

BẢNG ĐÁP ÁN

21.A 22.A 23.A 24.A 25.A

Trang 28

NHÓM TOÁN VẬN DỤNG- VẬN DỤNG CAO

Đề kiểm tra: 45 phút Môn: Giải tích 12 – Chương III

Câu 4: Mệnh đề nào dưới đây sai?

A  f x dxf x C với mọi hàm f x  có đạo hàm trên 

B f x g x dx f x dxg x dx với mọi hàm f x , g x  có đạo hàm trên 

C kf x dxk f x  dx với mọi hằng số k và với mọi hàm số f x  có đạo hàm trên 

D f x g x dx f x dxg x dx với mọi hàm f x , g x  có đạo hàm trên 

I  f xg x  x

bằng

Trang 29

( )d

f x xb

2 0

Câu 9: Cho hàm số yf x  liên tục trên đoạn a b;  Gọi D là hình phẳng giới hạn bởi đồ thị của

hàm số yf x , trục hoành và hai đường thẳng x a, xba b  Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức

b a

V  f x x B 2 2 d

b a

V   f x x C 2  d

b a

V   f x x D 2 2 d

b a

,yg x 

và hai đường thẳng x a, xba b 

diện tích của D được theo công thức

x

x x

Trang 30

A a2b 0 B 2a b  0 C a b  0 D a b  0

Câu 16: Biết

e 1

d4

x I



Câu 19: Cho hình  H là hình phẳng giới hạn bởi parabol y x  2 4 x  4, đường cong yx3 và trục

hoành (phần tô đậm trong hình vẽ) Tính diện tích S của hình  H

e dx

V x x B

1 0

e dx

V x x C

1

2 2 0

e dx

V x x D

1 2 0

I x fx x

Trang 31

Câu 23: Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng 8 m , chiều cao

Câu 25: Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn 2 8 cm , trục nhỏ 2 5 cm

Biết cứ 1000cm3 dưa hấu sẽ làm được cốc sinh tố giá 20000 đồng Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể

A 183000 đồng B 180000 đồng C 185000 đồng D 190000 đồng

HẾT

Trang 32

BẢNG ĐÁP ÁN

11.C 12.D 13.A 14.C 15.D 16.D 17.D 18.C 19.B 20.C 21.D 22.D 23.D 24.A 25.A

Ngày đăng: 15/01/2021, 12:50

HÌNH ẢNH LIÊN QUAN

Câu 9. Diện tích hình phẳng giới hạn bởi hai đường thẳng x 0, π, đồ thị hàm số y cos x và trục Ox là - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 9. Diện tích hình phẳng giới hạn bởi hai đường thẳng x 0, π, đồ thị hàm số y cos x và trục Ox là (Trang 3)
BẢNG ĐÁP ÁN - Bộ đề kiểm tra Giải tích 12 - Chương 3
BẢNG ĐÁP ÁN (Trang 6)
Câu 9. Kí hiệu H là hình phẳng giới hạn bởi đồ thị hàm số 22 – - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 9. Kí hiệu H là hình phẳng giới hạn bởi đồ thị hàm số 22 – (Trang 8)
Câu 19. Cho đồ thị hàm số . Diện tích hình phẳng (phần có đánh dấu gạch trong hình) là: - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 19. Cho đồ thị hàm số . Diện tích hình phẳng (phần có đánh dấu gạch trong hình) là: (Trang 9)
BẢNG ĐÁP ÁN - Bộ đề kiểm tra Giải tích 12 - Chương 3
BẢNG ĐÁP ÁN (Trang 11)
Câu 9: Cho hàm số  liên tục trên  a b. Diện tích hình phẳng H giới hạn bởi đồ thị hàm số - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 9: Cho hàm số  liên tục trên  a b. Diện tích hình phẳng H giới hạn bởi đồ thị hàm số (Trang 13)
Câu 19: Cho hàm số () liên tục trên  và có đồ thị như hình vẽ. Gọi S là diện tích hình phẳng - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 19: Cho hàm số () liên tục trên  và có đồ thị như hình vẽ. Gọi S là diện tích hình phẳng (Trang 14)
Câu 20: Diện tích hình phẳng giới hạn bởi đôg thị hàm số y x 3 4 x, trục hoành và các đường thẳng - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 20: Diện tích hình phẳng giới hạn bởi đôg thị hàm số y x 3 4 x, trục hoành và các đường thẳng (Trang 14)
Câu 23: Gọi H là hình phẳng giới hạn bởi parabol 2 - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 23: Gọi H là hình phẳng giới hạn bởi parabol 2 (Trang 15)
BẢNG ĐÁP ÁN - Bộ đề kiểm tra Giải tích 12 - Chương 3
BẢNG ĐÁP ÁN (Trang 17)
Câu 10: Goi H là hình phẳng giới hạn bởi đồ thị hàm số y e x, trục Ox và hai đường thẳng x 0, x 1 - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 10: Goi H là hình phẳng giới hạn bởi đồ thị hàm số y e x, trục Ox và hai đường thẳng x 0, x 1 (Trang 19)
Câu 9: Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y x 2, trục hoành O x, các đường thẳng 1 - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 9: Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y x 2, trục hoành O x, các đường thẳng 1 (Trang 19)
a tt . Tính quãng đường ô tô đi được trong vòng 1h  kể từ khi tăng tốc.  - Bộ đề kiểm tra Giải tích 12 - Chương 3
a tt . Tính quãng đường ô tô đi được trong vòng 1h kể từ khi tăng tốc. (Trang 20)
Câu 19: Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 19: Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường (Trang 20)
BẢNG ĐÁP ÁN - Bộ đề kiểm tra Giải tích 12 - Chương 3
BẢNG ĐÁP ÁN (Trang 22)
Câu 9. Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y x 2, trục hoành O x, các đường - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 9. Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y x 2, trục hoành O x, các đường (Trang 24)
b là phân số tối giản) là diện tích hình phẳng giới hạn - Bộ đề kiểm tra Giải tích 12 - Chương 3
b là phân số tối giản) là diện tích hình phẳng giới hạn (Trang 25)
mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 3 là một hình chữ nhật có hai kích - Bộ đề kiểm tra Giải tích 12 - Chương 3
m ặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 3 là một hình chữ nhật có hai kích (Trang 26)
BẢNG ĐÁP ÁN - Bộ đề kiểm tra Giải tích 12 - Chương 3
BẢNG ĐÁP ÁN (Trang 27)
Câu 9: Cho hàm số  liên tục trên đoạn  ab . Gọi D là hình phẳng giới hạn bởi đồ thị của - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 9: Cho hàm số  liên tục trên đoạn  ab . Gọi D là hình phẳng giới hạn bởi đồ thị của (Trang 29)
hoành (phần tô đậm trong hình vẽ). Tính diện tích S của hình  H. - Bộ đề kiểm tra Giải tích 12 - Chương 3
ho ành (phần tô đậm trong hình vẽ). Tính diện tích S của hình  H (Trang 30)
Câu 19: Cho hình H là hình phẳng giới hạn bởi parabol y x 2 4 x 4, đường cong y x3 và trục - Bộ đề kiểm tra Giải tích 12 - Chương 3
u 19: Cho hình H là hình phẳng giới hạn bởi parabol y x 2 4 x 4, đường cong y x3 và trục (Trang 30)
BẢNG ĐÁP ÁN - Bộ đề kiểm tra Giải tích 12 - Chương 3
BẢNG ĐÁP ÁN (Trang 32)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w