Introduction to Fluid Mechanics 7th Edition
Fox, Pritchard, & McDonald Answers to Selected Problems, Chapter 13
13.1 m=3.18 kg/s
13.3 V = 781 m/s M = 1.35 m=3.18 kg/s
13.5 p2 = 6.52 psi
13.7 M2 = 1.20 Supersonic diffuser
13.9 M2 = 1.20 Supersonic diffuser
13.15 p t = 250 kPa V t = 252 m/s M t = 0.883
13.17 p t = 166 kPa
13.19 p = 150 kPa M = 0.60 A t = 0.0421 m2 m=18.9 kg/s
13.21 A t = 1.94 x 10–3 m2
13.23 p0 = 817 kPa p e = 432 kPa T e = 288 K (– 45.5oC) V e = 302 m/s
13.25 Δt = 374 s (6.23 min) Δs = 232 J/kg·K
13.27 p e = 687 kPa m=0.0921 kg/s a rfx = 1.62 m/s2
13.29 p0 = 9.87 kPa (abs) p e = 5.21 kPa (abs) T e = 332 K (58.7oC) V e = 365 m/s
a x = 1.25 m/s2
13.31 R x = 304 lbf (Tension)
13.33 A2 = 0.573 ft2 V2 = 667 ft/s
13.35 M e = 1 p e = 381 kPa Pressure and flow decrease asymptotically
T f = 228 K (– 45oC)
13.37 p0 = 115 psia m=1.53 lb/s A t = 0.593 in2
13.39 p e = 125 kPa (abs) m=0.401 kg/s
13.41 V1 = 1300 m/s m=87.4 kg/s
13.43 m=3.57 lbm/s Mass flow rate decreases by a factor of 2
13.45 R x = 950 N
13.47 p e = 88.3 kPa m=0.499 kg/s R x = – 1026 N (to left)
13.49 p0 = 44.6 MPa
13.53 M1 = 0.200 m=3.19 x 10–3 kg/s p2 = 47.9 kPa (abs)
13.55 pmin = 18.5 psia Vmax = 1040 ft/s
13.57 T e = 840oR (380oF) R x = 13.3 lbf (to right) Δs = 0.359 Btu/lbm·R
13.59 p0t = 56.6 psia T2 = 433oR p02 = 27.8 psia m=0.0316 lbm/s
13.61 T2 = 238 K p2 = 26.1 kPa (abs) Δs = 172 J/kg·K
13.63 L = 12.0 ft
13.65 L = 18.8 ft
13.69 T2 = 551oR m=5.33 slug/s
13.71 L = 15.5 ft
13.73 M2 = 0.233 Heat added
13.75 p2 = 198 psia (Isothermal) p2 = 153 psia (Adiabatic)
13.77 Q = 1.84 x 108 ft3/day
13.81 δQ/dm = 449 kJ/kg Δs = 0.892 kJ/kg·K
13.83 Note: ρ2 = 0.850 lbm/ft3 Q = 107 Btu/s Δp = 162 psi
With wrong ρ2 = 100 lbm/ft3: Q = 74 Btu/s Δp = – 1 psi
13.85 δQ/dm = 18 kJ/kg Δs = 0.0532 kJ/kg·K Δp0 = 2.0 kPa
13.87 δQ/dm = 1.12 MJ/kg Δp0 = – 13.5 kPa
Link download full:
http://testbankair.com/download/solutions-manual-for-introduction-to-fluid-mechanics-7th-edition/
Trang 213.89 M2 = 0.50 T02 = 1556 K T2 = 1480 K Q=1.86 MJ/s
13.91 δQ/dm = 447 kJ/kg Δs = 0.889 kJ/kg·K Δp0 = 22 kPa
13.93 δQ/dm = 364 kJ/kg Δp0 = – 182 kPa T02 = 1174 K p02 = 1.60 MPa
T2 = 978 K p2 = 0.844 MPa ρ2 = 3.01 kg/m3
13.95 M2 = 0.60 T02 = 966 K δQ/dm = 343 kJ/kg (61.6% of max) Q= 4010 kW 13.97 M2 = 1.74 p2 = 4.49 psia
13.99 V s = 5475 m/s V = 4545 m/s (Constant specific heats unrealistic) 13.101 V = 1666 ft/s
13.103 p1 = 1.28 psia ρ1 = 0.00653 lbm/ft3 V1 = 2260 ft/s
T01 = 954oR p01 = 10.0 psia T02 = 954oR p02 = 7.22 psia
13.105 T2 = 520 K p02 = 1.29 MPa (abs)
13.107 M2 = 0.486 V2 = 541 mph (793 ft/s) Δp0 = 89.2 psi
13.109 T01 = 426 K p01 = 207 kPa (abs) p02 = 130 kPa (abs)
13.111 M1 = 2.48 V1 = 2420 ft/s p02 = 29.1 psia p2 = 24.3 psia
13.113 M2d = 0.547 p2d = 512 kPa p02d = 628 kPa A*s = 0.111 m2
13.115 M1 = 2.20 p02 = 178 kPa V1 = 568 m/s (“Isentropic”)
13.117 T0 = 533 K p3 – p2 = 37.4 kPa s4 – s1 = – 30.5 J/kg·K
13.119 V2 = 268 m/s (Relative to wave), = – 276 m/s (Relative to ground)
13.121 M e = 1.452 m=0.808 lbm/s
13.123 M e = 2.94 p0 = 3.39 MPa pb1 = 3.35 MPa pb2 = 1.00 MPa pb3 = 101 kPa
13.125 pb = 301 kPa
13.127 M1 = 1.50
13.129 patm < p0 < 112 kPa (abs); p0 > 743 kPa (abs)
13.131 p3 = 66.6 psia
13.133 pb = 301 kPa
13.137 V2 = 2140 ft/s Δs = 0.0388 Btu/lbm·oR
13.139 M2 = 1.95 p2 = 179 kPa M2 = 0.513 (Normal shock) p2 = 570
kPa (Normal shock) βmin = 23.6o
13.141 β = 62.5o p2/p1 = 9.15
13.143 M1 = 1.42 V1 = 483 m/s β = 67.4o
13.145 α = 7.31o pmax = 931 kPa Tmax = 564oC
13.147 L/w = 183 kN/m
13.149 p = 690 kPa p = 517 kPa (Normal shock only)
13.151 p = 130 kPa (Note: The angle is 30o, NOT 50o; with 50o there is no second shock!)
13.153 M1 = 3.05 p1 = 38.1 kPa M = 2.36 p = 110 kPa
13.155 L/w = 64.7 kN/m
13.159 C L = 0.503 C D = 0.127