1. Trang chủ
  2. » Giáo án - Bài giảng

CHỦ đề 25 PT CHỨA GIÁ TRỊ TUYỆT đối

9 17 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 447,01 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

CHỦ ĐỀ 25: PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI.. Phương pháp giải: Bước 1: Đặt điều kiện để fx xác định nếu cần... Hướng dẫn Biến đổi tương đương phương trình:... Lưu ý: Khi vế ph

Trang 1

CHỦ ĐỀ 25: PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI

A/ CÁC DẠNG TOÁN CƠ BẢN

DẠNG 1: Giải phương trình: f(x) k, với k là hằng số không âm

Phương pháp giải:

Bước 1: Đặt điều kiện để f(x) xác định (nếu cần)

Bước 2: Khi đó f(x) k f(x) k

f(x) k

 

nghiệm x

Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình

Bài 1: Giải các phương trình sau:

a) 2x3 1

b) x 1

x

- 2 = 0

Hướng dẫn

Vậy phương trình có hai nghiệm x = 1 và x = 2

b) Điều kiện xác định của phương trình là x  0

x 1

x 1 2

x



Vậy phương trình có hai nghiệm x = 1

3

và x = 1

Bài 2: Giải các phương trình sau:

a, 2x 3  5

b, 2 x7  12

c, 0 , 5x  3

Trang 2

d,

4

1

2 

 x

DẠNG 2: Giải phương trình: f(x)  g(x)

Phương pháp giải:

Bước 1: Đặt điều kiện để f(x) và g(x) xác định (nếu cần)

Bước 2: Khi đó f(x)  g(x) f(x) g(x)

f(x) g(x)

 

nghiệm x

Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình

Bài 1: Giải các phương trình sau:

a, 2x3  x3

b,

2

x 0

x 1

 

 c,

Hướng dẫn

a, Biến đổi tương đương phương trình:

2x 3 x 3 2x x 3 3 x 6 2x 3 x 3

2x 3 x 3 2x x 3 3 x 0

        

       

Vậy phương trình có hai nghiệm x = -6 và x = 0

b, Điều kiện xác định của phương trình là x  0

Biến đổi tương đương phương trình:

2

2

2

x

2x 2

x x 2 x(x 1)

x 1

x 1 2x 2 v« nghiÖm

x

x 1

  

 

 

  Vậy phương trình có nghiệm x = 1

Bài 2: Giải phương trình: 2x 3m = x6 , với m là tham số

Hướng dẫn

Biến đổi tương đương phương trình:

Trang 3

2x 3m x 6 2x x 3m 6 x 3m 6  2x 3m x 6

  

Vậy phương trình có hai nghiệm x = 3m + 6 và x = m – 2

Bài 3: Giải các phương trình sau:

a, 2x 1  2x 3

b, x - 3,5 = 4,5 - x

c, x 6   5x 9

d,  2x  3 x

DẠNG 3: Giải phương trình: f(x) g(x)

Phương pháp giải:

Cách 1: (Phá dấu giá trị tuyệt đối) Thực hiện các bước:

Bước 1: Đặt điều kiện để f(x) và g(x) xác định (nếu cần)

Bước 2: Xét hai trường hợp:

-Trường hợp 1: Nếu f(x)  0 (1)

Phương trình có dạng: f(x) = g(x) => nghiệm x và kiểm tra điều kiện (1) -Trường hợp 2: Nếu f(x) < 0 (2)

Phương trình có dạng: -f(x) = g(x) => nghiệm x và kiểm tra điều kiện (2)

Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình

Cách 2: Thực hiện các bước:

Bước 1: Đặt điều kiện để f(x) và g(x) xác định (nếu cần) và g(x)  0

Bước 2: Khi đó: f(x) g(x) f(x) g(x)

f(x) g(x)

 

Nghiệm x

Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình

Bài 1: Giải phương trình: x4 3x5

Hướng dẫn

Cách 1: Xét hai trường hợp:

Trang 4

- Trường hợp 1: Nếu x + 4  0  x  -4 (1)

Phương trình có dạng: x + 4 + 3x = 5  4x = 1  x = 1

4 thoả mãn điều kiện (1)

- Trường hợp 2: Nếu x + 4 < 0  x < - 4 (2)

Phương trình có dạng: -x - 4 + 3x = 5  2x = 9  x = 9

2 không thoả mãn tra điều kiện (2)

Vậy phương trình có nghiệm x = 1

4 Cách 2: Viết lại phương trình dưới dạng x4  3x5

Với điều kiện - 3x + 5  0  - 3x  - 5  x  5

3 Khi đó phương trình được biến đổi:

x4  3x5

 

1 x

x kh«ng tho ¶ m·n * 2

   



Vậy phương trình có nghiệm x = 1

4

Lưu ý:

Khi vế phải là một biểu thức không là đa thức có bâc 1 ta nên sử dụng cách 1 vì khi sử dụng cách 2 thì việc tìm x thoả mãn điều kiện g(x) không âm phức tạp hơn

Khi biểu thức trong trị tuyệt đối ở dạng phức tạp thì không nên sử dung cách 1 vì sẽ gặp khó khăn trong việc đi giải bất phương trình f(x)  0 và f(x) < 0

Tuy nhiên học sinh có thể khắc phục bằng cách không di giải điều kiện mà cứ thực hiện các bước biến đổi phươnmg trình sau đó thử lại điều kiện mà không đối chiếu

Bài 2: Giải các bất phương trình:

a, x 1 x2 x

b, x2 2x 42x

Hướng dẫn

Trang 5

a) Xét hai trường hợp

- Trường hợp 1: Nếu x + 1  0  x  -1 (1)

Khi đó phương trình có dạng: x + 1 = x2 + x

 x2 = 1

 x =  1 (thoả mãn đk 1)

- Trường hợp 2: Nếu x + 1 < 0  x < -1 (2)

Khi đó phương trình có dạng: - x - 1 = x2 + x

 x = -1 ( không thoả mãn đk 2)

Vậy phương trình cób hai nghiệm x =  1 b) Viết lại phương trình dưới dạng:

x2 2x 2x với điều kiện 2x - 4  0  2x  4  x  2 (*) 4

Ta có:

2

x 2x 2x 4

 

(x 2) 0

x 2 kh«ng tho ¶ m·n *

 

 

Vậy phương trình có nghiệm x = 2

Lưu ý: Đối với một số dạng phương trình đặc biệt khác ta cũng sẽ có những cách giải

khác phù hợp chẳng hạn như phương pháp đặt ẩn phụ, sử dụng bất đẳng thức Côsi

Bài 3: Giải phương trình 2 x 1 x2 2x2

Hướng dẫn

PT  (x2 2x 1) 2 x 1  3 0

(x 1) 2 2 x 1  3 0 (1)

Đặt x 1 = t ( t  0)

Khi đó từ (1) ta có phương trình t2 - 2t - 3 = 0

 t2 + t - 3t - 3 = 0

 t(t + 1) - 3(t + 1) = 0

Trang 6

 (t + 1)(t - 3) = 0

 t = - 1 (loại) và t = 3 (t/m)

Với t = 3 ta được x 1 = 3

      

Vậy phương trình có hai nghiệm x = -2 và x = 4

Bài 4: Giải các phương trình:

a, x 7  2x 3

b, 4  2x   4x

) 3 (

3  

x

x

d, x2  3x 2  3xx2  2

e, 3 xx2  ( 4 x)x 0

Bài 5: Giải và biện luận phương trình sau

a) 3x  m  x 1 

b) 2

x  4x  2 x  m   2 m  0

DẠNG 4: Giải phương trình: f(x) + g(x) = a

Phương pháp giải: Bỏ dấu giá trị tuyệt đối

Ở dạng này phải lập bảng xét dấu để xét hết các trường hợp xảy ra (lưu ý học sinh số

trường hợp xảy ra bằng số biểu thức chứa đấu giá trị tuyệt đối cộng thêm 1)

Bài 1: Giải phương trình 3 x 1 2

Hướng dẫn

Điều kiện xác định của phương trình là x  -1

Ta có thể lựa chọn một trong hai cách sau:

Cách 1: Đặt t = x 1

3

 điều kiện t > 0

Khi đó (1)  1 t 2 t2 2t 1 0 t 1

t        

Trang 7

x 1 3 x 2

x 1

 Vậy phương trình có hai nghiệm x = -4 và x = 2

Cách 2: Áp dụng bất đẳng thức Côsi <nâng cao>

x 1 3

Ta thấy dấu bằng xảy ra (Tức là 3 x 1 2

Vậy phương trình có hai nghiệm x = -4 và x = 2

Đối với những phương trình có từ hai giá trị tuyệt đối trở lên ta nên giải theo cách đặt điều kiện để phá dấu giá trị tuyệt đối Mỗi trị tuyệt đối sẽ có một giá trị x làm mốc để xác định biểu thức trong trị tuyệt đối âm hay không âm Những giá trị x này sẽ chia trục số thành các khoảng có số khoảng lớn hơn số các trị tuyệt đối là 1 Khi đó ta xét giá trị x trong từng khoảng

để bỏ dấu giá trị tuyệt đối và giải phương trình tìm được

Bài 2: Giải phương trình x 1 + x3 = 2

Hướng dẫn

Ta thấy x - 1  0  x  1

x - 3  0  x  3

Khi đó để thực hiện việc bỏ dấu giá trị tuyệt đối ta cần phải xét ba trường hợp

+Trường hợp 1: Nếu x < 1

Khi đó phương trình có dạng:

- x + 1 - x + 3 = 2  -2x = - 2  x = 1 (không t/m đk)

+Trường hợp 2: Nếu 1  x < 3

Khi đó ta có phương trình:

x - 1 - x + 3 = 2  0x = 0 luôn đúng => 1  x < 3 là nghiệm

+Trường hợp 3: Nếu x  3

Trang 8

Khi đó phương trình có dạng:

x - 1 + x - 3 = 2  2x = 6  x = 3 (t/m đk)

Vậy nghiệm của phương trình là 1  x  3

Bài 3: Giải các phương trình sau:

1) 2x  1 2x 1  4

2).x 2  x 3  4

3) 2 x 2  2 x 1  5

4) x2  1  x  1

5) 4x 1  2x 3  x 2  0

6) x 2  xx 2  4

B/ BÀI TẬP TỰ LUYỆN

Bài 1: Giải các phương trình sau:

a)  4xx 2 b) 2 x  2 3  x c) 2x 3  5x 6

d) 2x 6x 7   x 8 e) 1 5x 6 5x

3

  f) x 2 x 1 1 x 3

ĐS: a) S 2 2;

5 3

   

  b) S 0 c) S 9

7

 

  

  d) S   e) S 19

20

 

  

  f) S 1

8

 

  

 

Bài 2: Giải các phương trình sau:

a) x2 2xx b) 2x2 5x 3   2x2 2

c) x2 4x 5 x2 1 d) 3x2 7x 2  x2 5x 6

ĐS: a) S0;1;3 b) S 1;1

4

 

  

  c) S  3;1 d) S 2

Bài 3: Giải các phương trình sau:

a) x x

x

3 6

2

1 2

 

x

2 8

3

 

  

x2

6 2 36

2

2

4 3

3

5 7 2

 

 

x

2

4

2 1

 

2 2

5 4

4

3 2

 

 

 

ĐS: a) S 2 b) S 4; 4

3

   

  c) S 13

2

   

  d) S 3;3

5

 

  

  e) S 4 f) S  4

Trang 9

Bài 4: Giải các phương trình sau:

a) 2x 1  x 1 b) 2 5  x  3x 1 c) 1 4  x  7x 2  0

d) 2x2 5x 10  2x2 1 e) x 3  4  6 f) x2 3xx2 1

ĐS: a) S  2; 0 b) S 1 3;

8 2

  

  c) S 1;1

11

  

  d) S 9;1;9

4 5

   

  e) S 1; 5 f) S 1;1

2

 

  

 

Bài 5: Giải các phương trình sau:

a) 2x  1 5x 2  3 b) 2xx 3 1 0   c) x 2  x 3  1

d) x  1 2x  1 x e) 2x 3  xx  1 0 f) x  1 x 1  0

ĐS: a) S   b) S 4 c)2 x 3 d) S 1 3;

2 2

  

  e) S 1

2

 

   

  f) S  

Ngày đăng: 08/12/2020, 21:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w