Mục tiêu của bài viết là nghiên cứu lý thuyết cơ sở dữ liệu (CSDL) quốc gia về dân cư và mô hình dữ liệu GIS 3D hiện có và đề xuất một mô hình dữ liệu mới cho hệ GIS quản lý dân cư. Mô hình mới này có khả năng quản lý các hoạt động của con người tại vị trí sinh sống, vị trí làm việc, vị trí diễn ra các mối quan hệ và các thông tin khác có sự thay đổi theo không gian và thời gian để hỗ trợ thông tin cho công tác bảo vệ an ninh và trật tự an toàn xã hội trên địa bàn. Mô hình mới này được cài đặt thực nghiệm trên hệ quản trị CSDL Oracle11g, dùng kiểu dữ liệu không gian của Oracle11g và kết hợp với ngôn ngữ lập trình C# để trình bày dữ liệu bằng các biểu mẫu thông qua một số câu truy vấn trên các mối quan hệ, nhân khẩu, hộ khẩu, tìm tổ tiên và con cháu.
Trang 1DOI: 10.15625/vap.2016.00071
PHÁT TRIỂN MÔ HÌNH DỮ LIỆU TPS TRONG GIS 3D
QUẢN LÝ DỮ LIỆU DÂN CƯ Phạm Văn Đăng 1 , Trần Vĩnh Phước 2
1Khoa Công nghệ thông tin, Trường Đại học Nguyễn Tất Thành, Hồ Chí Minh, Việt Nam
2Trường Đại học Thủ Dầu Một, Bình Dương, Việt Nam
pvdang@ntt.edu.vn, phuoc.gis@gmail.com
TÓM TẮT—Chúng ta biết rằng, sự gia tăng dân số sẽ dẫn đến việc gia tăng những mặt tích cực và tiêu cực trong cộng đồng dân
cư Vì thế, một thách thức lớn hiện nay cho các cấp chính quyền là cần phải nghiên cứu một hệ GIS quản lý dân cư có hiệu quả Nghĩa là phải quản lý những người sinh sống và làm việc trên địa bàn lãnh thổ theo không gian và thời gian Việc quản lý này các cấp chính quyền phải làm thường xuyên Họ phải quản lý những người đang sinh sống và làm việc trên địa bàn của mình, gắn liền với công tác quản lý nhân khẩu và hộ khẩu như nhân khẩu thường trú và tạm trú, các mối quan hệ bao gồm: quan hệ huyết thống, quan hệ xã hội, quan hệ luật, quan hệ tiền án, tiền sự và quan hệ sinh tử Tất cả các mối quan hệ này đều diễn ra theo không gian và thời gian xác định Để giải quyết những vấn đề trên, mục tiêu của bài báo là nghiên cứu lý thuyết cơ sở dữ liệu (CSDL) quốc qia về dân cư và mô hình dữ liệu GIS 3D hiện có và đề xuất một mô hình dữ liệu mới cho hệ GIS quản lý dân cư Mô hình mới này có khả năng quản lý các hoạt động của con người tại vị trí sinh sống, vị trí làm việc, vị trí diễn ra các mối quan hệ và các thông tin khác có
sự thay đổi theo không gian và thời gian để hỗ trợ thông tin cho công tác bảo vệ an ninh và trật tự an toàn xã hội trên địa bàn Mô hình mới này được cài đặt thực nghiệm trên hệ quản trị CSDL Oracle11g, dùng kiểu dữ liệu không gian của Oracle11g và kết hợp với ngôn ngữ lập trình C# để trình bày dữ liệu bằng các biểu mẫu thông qua một số câu truy vấn trên các mối quan hệ, nhân khẩu,
hộ khẩu, tìm tổ tiên và con cháu
Từ khóa—Mô hình dữ liệu, cơ sở dữ liệu không gian, cơ sở dữ liệu thời gian, 3D, GIS, và TPS
I GIỚI THIỆU
Cư trú là việc công dân sinh sống tại một địa điểm thuộc xã, phường, thị trấn dưới hình thức thường trú hoặc tạm trú [1] Khu dân cư là nơi tập hợp người dân, hộ gia đình cư trú tập trung trong phạm vi một khu vực nhất định, bao gồm: thôn, xóm, làng, bản, ấp, buôn, phum, sóc, khóm, tổ dân phố và đơn vị dân cư tương đương [2] Dân cư của một vùng là tập hợp những con người cùng cư trú trên một lãnh thổ nhất định (xã, huyện, tỉnh, quốc gia,…) [3] Ngày nay, một xã hội đang phát triển mạnh mẽ cả về chất và lượng, các vấn đề tích cực và tiêu cực trong cộng đồng dân cư biến động rất nhanh, dẫn đến tàng thư lưu trữ bằng giấy tờ, sổ sách ngày càng mở rộng Với tàng thư lưu trữ lớn, việc trích lục thông tin vô cùng khó khăn vì khó trích lục đúng và đủ Có thể mất rất nhiều thời gian để trích lục trong tàng thư mà cũng không trích lục đủ tư liệu để liên kết với các sự kiện, con người với sự kiện, con người với các ràng buộc của các mối quan hệ như: quan hệ huyết thống, quan hệ xã hội, quan hệ luật, quan hệ tiền án và tiền sự, quan
hệ sinh tử (Hình 1 và 2) [7] và còn quan tâm đến các thông tin cơ bản [4, 5] của con người luôn thay đổi theo thời gian
Sự khó khăn này đã hạn chế việc cung cấp dữ liệu, thông tin cần thiết cho các cấp chính quyền, cho các lĩnh vực ngành nghề khác nhau để cùng khai thác tất cả tiềm năng của con người để đề ra những chính sách phát triển cũng như những chính sách an sinh xã hội sát hợp với nhu cầu, khả năng của con người Những trở ngại này cũng ảnh hưởng đến việc cung cấp thông tin kịp thời cho công tác bảo vệ anh ninh quốc gia, quản lý trật tự an toàn xã hội trên địa bàn lãnh thổ
Hình 1 Quan hệ phi thời gian và không gian [7] Hình 2 Quan hệ phi thời gian, có yếu tố thời gian và không gian [7]
Nhận thức được tầm quan trọng và sự cần thiết của việc quản lý dân cư theo không gian và thời gian là quản lý con người sinh sống và làm việc trên địa bàn và yêu cầu cần phải tin học hóa công tác quản lý dân cư, quản lý con người để cung cấp kịp thời cho các cấp chính quyền ra quyết định và kịp thời hỗ trợ thông tin cho công tác bảo vệ an ninh, đảm bảo trật tự an toàn xã hội trên địa bàn lãnh thổ Bài báo này tập trung vào nghiên cứu lý thuyết CSDL quốc gia về dân cư và mô hình GIS 3D hiện có và đề xuất một mô hình dữ liệu mới phục vụ cho hệ GIS quản lý dân cư theo tinh thần và nội dung của Nghị định 90/2010/NĐ-CP và 137/2015/NĐ-CP [4, 5] Mô hình mới có khả năng quản lý các hoạt động của con người tại vị trí sinh sống, vị trí làm việc, vị trí diễn ra các mối quan hệ và các thông tin cơ bản [4, 5] của con người luôn thay đổi theo thời gian để hỗ trợ thông tin cho công tác bảo vệ an ninh và trật tự an toàn xã hội Hiện nay các cấp chính quyền quản lý dân cư dựa trên hộ khẩu Vậy, sổ hộ khẩu hay gọi tắt là hộ khẩu (HK) là tài liệu làm căn cứ để xác định việc đăng ký HK thường trú của từng gia đình hoặc từng đơn vị lập sổ HK là phương pháp quản lý nhân khẩu Trong phương thức này, đơn vị quản lý xã hội là hộ gia đình, tập thể do một chủ hộ chịu trách nhiệm HK do cơ quan công an cấp Khi sinh ra, con được nhập theo HK của cha mẹ [6], cũng từ đây việc quản lý gia phả, các mối quan hệ và các thông tin cơ bản của con người luôn thay đổi theo thời gian cũng được đề cập đến
Mỗi HK được xác định gồm một hoặc nhiều nhân khẩu, trong đó có một người là chủ hộ, với những thông tin
cơ bản của một cá nhân gồm [4, 5]: họ tên, năm sinh, nơi sinh, giới tính, dân tộc, ảnh chân dung, chứng minh nhân dân,
Trang 2quan hệ với chủ hộ, Mỗi HK đều phải gắn với một nhà và địa chỉ một nhà gọi là địa chỉ thường trú của những nhân khẩu trong HK đó Mỗi nhà có thể có một hoặc nhiều sổ HK Mỗi người khi sinh ra đều phải được xác nhận là một nhân khẩu trong một HK nào đó và ghi vào HK đó Một người khi chết được khai tử và xóa tên trong HK đang có Một người có thể xóa tên ở một HK và thêm tên vào một HK khác hoặc làm HK mới, gọi là chuyển HK Một người được sinh ra trong một gia đình (gia tộc) là phải có tổ tiên ông bà, cha mẹ, anh chị em ruột,… thì gọi là quan hệ huyết thống; một người D và các thành viên khác cùng tham gia một buổi họp, một buổi seminar,… thì gọi là quan hệ xã hội; người
A là cấp trên của người B, người B là cấp trên của người C, vậy người C là cấp dưới của người A thì được gọi là quan
hệ luật; một người được gọi là có quan hệ tiền sự khi có vi phạm pháp luật ở mức cảnh cáo, bị phạt hành chính, không
bị tòa án kết tội và đang nằm trong diện bị theo dõi của pháp luật; một người được gọi là có quan hệ tiền án khi có hành
vi vi phạm pháp luật và bị tòa án kết tội Các mối quan hệ vừa nêu đều diễn ra tại không gian và thời gian xác định
Về nguyên tắc một, một người phải có tên trong một HK, một người không thể không có tên trong một HK và không thể có tên trong hai hay nhiều HK khác nhau tại cùng một thời điểm, một người có thể có một tên trong một HK
và một tên trong một sổ tạm trú đồng thời tại một thời điểm nhưng không thể có tên trong hai hay nhiều sổ tạm trú tại cùng một thời điểm
Với nguyên tắc một này, quản lý HK là quản lý con người và khi gắn những HK này vào nhà của nó đăng ký thì chính là quản lý con người tại từng nhà trên một địa bàn lãnh thổ Quản lý nhân khẩu là quản lý con người, chính là quản lý dân cư Hiện nay, ngành công an chịu trách nhiệm quản lý HK và nhân khẩu
Về nguyên tắc hai, một người có thể có rất nhiều mối quan hệ khác nhau trong cuộc sống hàng ngày, một người
có thể có mặt tại một vị trí diễn ra mối quan hệ tại một thời điểm và không thể có mặt trong hai hay nhiều vị trí diễn ra mối quan hệ khác nhau tại cùng một thời điểm Quan hệ huyết thống (gia phả) là một trường hợp đặc biệt so với các quan hệ khác vì nó không có thời gian bắt đầu và kết thúc
Với nguyên tắc hai này, quản lý các mối quan hệ là quản lý sự giao lưu qua lại giữa những con người với nhau trong cộng đồng dân cư, chính vì vậy mà các mặt tích cực và tiêu cực trong cộng đồng dân cư cũng biến động rất nhanh Quản lý các mối quan hệ của con người là nhiệm vụ cực kỳ quan trọng đối với ngành công an, nhằm phục vụ bảo vệ an ninh và trật tự an toàn xã hội trên địa bàn lãnh thổ
Cấu trúc của bài báo gồm: Phần I, trình bày khái quát và tầm quan trọng về quản lý dữ liệu dân cư, quản lý nhân
hộ khẩu, quản lý các mối quan hệ, gia phả và các thông tin cơ bản [4, 5] của con người Phần II, xây dựng mô hình dữ liệu thời gian, dân cư và không gian phục vụ cho quản lý dữ liệu dân cư Mô tả chi tiết các lớp thời gian, lớp dân cư, lớp không gian, các truy vấn trên các mối quan hệ, tìm tổ tiên và tìm con cháu Phần III, cài đặt mô hình mới này trong
hệ quản trị CSDL Oracle11g, dùng kiểu dữ liệu không gian của Oracle11g và kết hợp với ngôn ngữ lập trình C# [7, 14,
15, 16, 17, 18] để trình bày dữ liệu bằng các biểu mẫu thông qua một số câu truy vấn trên các mối quan hệ, nhân khẩu,
hộ khẩu, tìm tổ tiên và tìm con cháu Phần IV, kết luận và đề xuất hướng mở rộng mô hình Phần V, tài liệu tham khảo
II MÔ HÌNH DỮ LIỆU TPS TÍCH HỢP LỚP THỜI GIAN – LỚP DÂN CƯ – LỚP KHÔNG GIAN
A Lớp thời gian
Thời gian là yếu tố cần thiết của hệ GIS quản lý dân cư Dữ liệu thời gian ghi lại thời điểm bắt đầu và kết thúc [7] của các mối quan hệ và các thông tin về sự thay đổi của con người Lớp thời gian đóng vai trò quan trọng trong việc lưu vết diễn tiến các mối quan hệ của con người Dựa vào yếu tố thời gian mà con người có thể can thiệp kịp thời để giải quyết các vấn đề cấp bách và nhìn nhận sự việc cũng trở nên rõ ràng hơn Yếu tố thời gian có thể biểu diễn các diễn tiến xảy ra các mối quan hệ của con người như quan hệ xã hội, quan hệ luật, quan hệ tiền sự, quan hệ tiền án và quan hệ sinh tử đem gắn vào vị trí diễn ra các mối quan hệ, vị trí sinh sống, vị trí làm việc và các thông tin cơ bản [4, 5] khác của con người luôn thay đổi tại một điểm thời gian hay trong một khoảng thời gian Các nhà nghiên cứu về thời gian đã phát biểu về thời gian gắn vào cơ sở dữ liệu không gian trong 3D GIS [7, 9, 10, 11, 12, 13] Bài báo này sử dụng ba loại dữ liệu thời gian [7] (Bảng 1) như sau:
Bảng 1 Mô tả các loại dữ liệu thời gian Quy ước Loại dữ liệu thời gian Ý nghĩa mô tả các loại dữ liệu thời gian
L1 Thời gian sự kiện Là thời gian bắt đầu xảy ra và kết thúc ở thế giới thực * ở thế giới thực; L2 Thời gian pháp lý Là thời gian có hiệu lực trên văn bản pháp quy * trên văn bản pháp quy; L3 Thời gian cơ sở dữ liệu Là thời gian ghi vào cơ sở dữ liệu * trong cơ sở dữ liệu
Chú thích: *là: Có ngày-tháng-năm-giờ:phút:giây bắt đầu và ngày-tháng-năm-giờ:phút: giây kết thúc
Yếu tố thời gian được gắn vào dữ liệu không gian và dân cư sẽ làm cho dữ liệu lưu trữ được phong phú và có nhiều ý nghĩa hơn mới đáp ứng được nhu cầu của người sử dụng Thời gian dùng để lưu vết lịch sử bắt đầu và kết thúc diễn ra các mối quan hệ và các thông tin khác về sự hoạt động của con người cũng trở nên tường minh hơn Đi kèm với
ba loại dữ liệu thời gian cụ thể có các đơn vị dữ liệu thời gian nằm trên trục thời gian (Hình 3) với các quy ước ở Bảng 2:
Bảng 2 Mô tả các đơn vị dữ liệu thời gian
Trang 3Quy
ước
Ý nghĩa
mô tả các đơn vị dữ liệu thời gian
Quy ước
Ý nghĩa
mô tả các đơn vị dữ liệu thời gian
T10 T BĐ diễn ra MQH xã hội * trong TGT T36 T BĐ ghi MQH tiền án * vào trong CSDL
T11 T KT diễn ra MQH xã hội * trong TGT T37 T KT MQH tiền án * vào trong CSDL
T12 T BĐ diễn ra MQH luật * trong TGT T38 T sinh ra đời * được ghi vào trong CSDL
T13 T KT diễn ra MQH luật * trong TGT T39 T tạ thế * được ghi vào trong CSDL
T14 T BĐ diễn ra MQH tiền sự * trong TGT T40 T BĐ chuyển đến thường trú * được ghi trên VBPQ T15 T KT diễn ra MQH tiền sự * trong TGT T41 T BĐ đăng ký thường trú * được ghi trên VBPQ T16 T BĐ diễn ra MQH tiền án * trong TGT T42 T BĐ xóa đăng ký thường trú * được ghi trên VBPQ T17 T KT diễn ra MQH tiền án * trong TGT T43 T BĐ điều chỉnh thường trú * được ghi trên VBPQ T18 T sinh ra đời * trong TGT T44 T BĐ chuyển đến tạm trú * được ghi trên VBPQ T19 T tạ thế * trong TGT T45 T BĐ đăng ký tạm trú * được ghi nhận trên VBPQ T20 T BĐ ghi MQH xã hội * lên VBPQ T46 T BĐ xóa đăng ký tạm trú * được ghi trên VBPQ T21 T KT MQH xã hội * trên VBPQ T47 T BĐ điềuchỉnh tạm trú * được ghi nhận trên VBPQ T22 T BĐ ghi MQH luật * trên VBPQ T50 T BĐ nghiện ma túy * được ghi nhận trên VBPQ T23 T KT MQH luật * trên VBPQ T51 T KT nghiện ma túy * được ghi nhận trên VBPQ T24 T BĐ ghi MQH tiền sự * trên VBPQ T52 T BĐ tái nghiện ma túy * được ghi nhận trên VBPQ T25 T KT MQH tiền sự * trên VBPQ T53 T BĐ đăng ký kết hôn *được ghi nhận trên VBPQ T26 T BĐ ghi MQH tiền án * trên VBPQ T54 T KT hôn nhân * được ghi nhận trên VBPQ
T27 T KT MQH tiền án * trên VBPQ T55 T BĐ tái hôn được * ghi nhận trên VBPQ
T28 T sinh ra đời * được ghi lên VBPQ T56 T BĐ thay đổi họ và tên * được ghi nhận trên VBPQ T29 T tạ thế * được ghi lên VBPQ T57 T BĐ thay đổi năm sinh * được ghi nhận trên VBPQ T30 T BĐ ghi MQH xã hội * vào trong CSDL T73 T BĐ chuyển đến thường trú * được ghi trong CSDL T31 T KT MQH xã hội * vào trong CSDL T74 T BĐ đăng ký thường trú * được ghi trong CSDL T32 T BĐ ghi MQH luật * vào trong CSDL T75 T BĐ xóa đăngký thường trú* được ghi trong CSDL T33 T KT MQH luật * vào trong CSDL T76 T BĐ điều chỉnh thường trú * được ghi trong CSDL T34 T BĐ ghi MQH tiền sự * vào trong CSDL T77 T BĐ chuyển đến tạm trú * được ghi trong CSDL T35 T KT MQH tiền sự * vào trong CSDL … …
Chú thích: T là: ―Năm-tháng-ngày giờ:phút:giây”; *là: ―của con người‖; MQH: ―mối quan hệ‖; VBPQ: ―văn bản
pháp quy‖; TGT: ―thế giới thực‖; CSDL: ―cơ sở dữ liệu‖; BD: ―bắt đầu‖; KT: ―kết thúc‖
Từ các đơn vị dữ liệu thời gian ở Bảng 2, bài báo phân loại các đơn vị dữ liệu thời gian này vào ba loại dữ liệu thời gian ở Bảng 1 và có được bảng phân loại (Bảng 3) như sau:
Bảng 3 Phân loại các đơn vị dữ liệu thời gian vào ba loại dữ liệu thời gian Loại dữ liệu thời gian Các đơn vị dữ liệu thời gian thuộc ba loại dữ liệu thời gian
L1 T10, T11, T12, T13, T14, T15, T16, T17, T18, T19
L2 T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T40, T41, T42, T43, T44, T45, T46,
T47, T50, T51, T52, T53, T54, T55, T56, T57 L3 T30, T31, T32, T33, T34, T35, T36, T37, T38, T39, T73, T74, T75, T76, T77
Từ các đơn vị dữ liệu thời gian ở bảng 2, bài báo hình thành nên các quan hệ topology thời gian(bảng 4 và hình 3) sau:
Bảng 4 Quan hệ topology của các đơn vị dữ liệu thời gian
T10<T11 T10 XRSH T11 T34<T35 T34 XRSH T35 T43<T41 T43 XRSH T41 T12<T13 T12 XRSH T13 T36<T37 T36 XRSH T37 T44<T45 T44 XRSH T45 T14<T15 T14 XRSH T15 T38<T39 T38 XRSH T39 T45<T46 T45 XRT T46 T16<T17 T16 XRSH T17 T40<T41 T40 XRSH T41 T46>T47 T46 XRS T47 T18<T19 T18 XRSH T19 T41<T56 T41 XRSH T56 T50<T51 T50 XRSH T51 T22<T23 T22 XRSH T23 T73<T74 T73 XRSH T74 T53<T54 T53 XRSH T54 T26<T27 T26 XRSH T27 T75<T76 T76 XRS T75 T40=T41 T40 XRTV T41 T28<T29 T28 XRSH T29 T76<T74 T76 XRSH T74 T44=T45 T44 XRTV T45 T30<T31 T30 XRSH T31 T42<T40 T42 XRSH T40 T73=T74 T73 XRTV T74 T32<T33 T32 XRSH T33 T42<T43 T43 XRS T42 T77=T78 T77 XRTV T78
Chú thích: XRSH: ―xảy ra sớm hơn‖; XRT: ―xảy ra trước‖; XRS: ―xảy ra sau‖; XRTV: ―xảy ra trùng với‖
Trang 4subsets topology
(YMD-HH:MM:SS)
T11
T75 T12
T77 T77
T74 T13
T75 T76
T78
T73 T73
T73
T75
T73 T74
T78 T77
T10
T78
Hình 3 Sơ đồ quan hệ topology của các đơn vị dữ liệu thời gian
B Lớp dân cư
Dữ liệu dân cư ghi lại các mối quan hệ, nhân khẩu thường trú, tạm trú, lưu trú và các thông tin cơ bản khác của con người Cho nên, lớp dân cư đóng vai trò rất quan trọng trong việc tổ chức các phân lớp lưu trữ dữ liệu về dân cư
Để trả lời mối quan hệ đó là gì? Người nào đã tham gia vào mối quan hệ đó, cùng đi kèm là vị trí diễn ra mối quan hệ
đó tại thời điểm nào? Để trả lời thời gian – con người – mối quan hệ – vị trí (Hình 4) Cũng từ lớp dân cư này có thể trả lời cho mối quan hệ huyết thống (gia phả) của một người nào đó bất kỳ
Hình 4 Một biểu diễn mối quan hệ: thời gian, con người,
mối quan hệ và không gian (vị trí + hình dạng nhà)
Hình 5 Một biểu diễn mối quan hệ: không gian
(hình dạng nhà), con người và thời gian
C Lớp không gian
Dữ liệu không gian ghi lại hình dạng, kích thước và vị trí của các đối tượng trong không gian [7] Cho nên, lớp không gian làm nhiệm vụ quan trọng trong hệ GIS quản lý dân cư Lớp không gian dùng để quản lý vị trí, hình dạng và kích thước của ngôi nhà [7], nơi diễn ra các mối quan hệ của con người tại vị trí sinh sống, vị trí làm việc và vị trí diễn
ra các mối quan hệ (Hình 5) Vị trí hiểu theo 2 khía cạnh: (1) Tọa độ của các đối tượng tọa lạc trong miền 3D (Oxyz); (2) Địa chỉ được gắn vào các đối tượng như ngôi nhà, căn hộ,… thì gọi là địa chỉ thường trú và tạm trú của nhân khẩu
D Mô hình UDM
1 Giới thiệu
Mô hình UDM do Coors đề xuất (Hình 6) [8], dựa trên 4 đối tượng cơ sở POINT, LINE, SURFACE, BODY
Mô hình UDM sử dụng 2 đối tượng nguyên tố NODE, FACE ARC không được đề nghị ở mô hình này Mỗi FACE định nghĩa bằng 3 NODE, nhờ vậy mô hình giản lược được một số quan hệ NODE-ARC, ARC-FACE Một số các quan hệ topology như NODE nằm trên FACE, NODE nằm trong BODY không được mô tả Thuận lợi rõ ràng trong
mô hình UDM là phương thức lưu trữ dữ liệu hiệu quả, phân tích theo phương pháp hướng đối tượng, được sử dụng trong các ứng dụng quản lý đô thị và biểu diễn các mặt và các khối dựa vào tam giác hóa Đây là các lí do chính để mô hình UDM được chọn làm nền cho bài báo này
NODEFACE
NODE FACE
LINENODE FACESUR
FACEBODY
MSF
Hình 6 Mô hình UDM
2 Mô hình UDM
Các phân tích và nghiên cứu trên mô hình UDM là phù hợp cho quản lý đô thị Vì mô hình UDM quản lý các đối tượng không gian 3D (nhà cấp 4, chung cư, căn hộ,…) nhưng không quản lý dữ liệu dân cư, không lưu vết lịch sử thay đổi của các mối quan hệ, không quản lý các thông tin cơ bản của con người [4, 5] thay đổi theo không gian và thời gian và gia phả của con người Do vậy, bài báo chọn mô hình UDM với những lý do sau: ngoài những lý do vừa nêu, đây là mô hình dữ liệu phục vụ trong lĩnh vực quản lý đô thị; mô hình này rất thích hợp cho việc quản lý dữ liệu dân cư
mà dữ liệu dân cư lại liên quan đến hai thuộc tính vốn có là không gian và thời gian Từ đây, bài báo nghiên cứu và phân tích để kết hợp các lớp thời gian, lớp dân cư và lớp không gian phục vụ cho quản lý dữ liệu dân cư được đầy đủ
về các mặt ngữ nghĩa, không gian và thời gian
Trang 5E Mô hình dữ liệu TPS
1 Thông tin dữ liệu dân cư cần quản lý
Sau khi nghiên cứu lý thuyết cơ sở dữ liệu (CSDL) quốc qia về dân cư [4, 5], các kết quả đạt được như sau:
- Các thông tin của công dân được thu thập, cập nhật trong Cơ sở dữ liệu quốc gia về dân cư bao gồm [4, 5]: họ tên, năm sinh, nơi sinh, giới tính, quê quán, quốc tịch, dân tộc, ảnh chân dung, chứng minh nhân dân, nghề nghiệp, quan
hệ với chủ hộ, Từ đây chúng ta nhận thấy, con người gồm có các thuộc tính không thay đổi theo thời gian và có các thuộc tính thay đổi theo thời gian:
Các thuộc tính không thay đổi theo thời gian: Số định danh cá nhân, nhóm máu, vân tay, nơi mất và ADN
Các thuộc tính có thay đổi theo thời gian: họ tên, năm sinh, nơi sinh, giới tính, quê quán, quốc tịch, dân tộc, ảnh chân dung, chứng minh nhân dân, nghề nghiệp, quan hệ với chủ hộ, Do vậy, chúng ta có các mô tả sau:
o Mô tả họ và tên gồm có các thuộc tính: mã số, số định danh cá nhân, họ và tên, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu
o Mô tả năm sinh gồm có các thuộc tính: mã số, số định danh cá nhân, năm sinh, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu
o Mô tả giới tính gồm có các thuộc tính: mã số, số định danh cá nhân, giới tính, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu
o Mô tả nơi sinh gồm có các thuộc tính: mã số, số định danh cá nhân, nơi sinh, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu
o …
- Các thông tin về nhân khẩu và hộ khẩu, gồm có nhân khẩu thường trú và nhân khẩu tạm trú Sổ hộ khẩu hay gọi tắt
là hộ khẩu là tài liệu làm căn cứ để xác định việc đăng ký hộ khẩu thường trú của từng gia đình hoặc từng đơn vị lập sổ Hộ khẩu là phương pháp quản lý nhân khẩu Trong phương thức này, đơn vị quản lý xã hội là hộ gia đình, tập thể do một chủ hộ chịu trách nhiệm Sổ hộ khẩu do cơ quan công an cấp Khi sinh ra, con được nhập theo hộ khẩu của cha mẹ [6]
Thường trú gồm có các thuộc tính: Số định danh cá nhân, mã số nhà, loại thời gian sự kiện, loại thời gian pháp
lý và loại thời gian cơ sở dữ liệu, số quyển, số tờ, sổ hộ khẩu, quan hệ với chủ hộ, lý do và nội dung điều chỉnh
Tạm trú gồm có các thuộc tính: Số định danh cá nhân, mã số nhà, loại thời gian sự kiện, loại thời gian pháp lý
và loại thời gian cơ sở dữ liệu, sổ tạm trú, quan hệ với chủ hộ
- Các mối quan hệ bao gồm [7]: quan hệ xã hội, quan hệ huyết thống, quan hệ luật, quan hệ tiền sự, quan hệ tiền án
và quan hệ sinh tử gồm các thông tin sau:
Quan hệ xã hội gồm có các thuộc tính: mã số nhà, số định danh cá nhân, mối quan hệ, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu
Quan hệ huyết thống gồm có các thuộc tính: số định danh cá nhân cha, số định danh cá nhân con, mối quan hệ
và thế hệ
Quan hệ luật gồm có các thuộc tính: mã số nhà, số định danh cá nhân, mối quan hệ, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu
Quan hệ tiền sự gồm có các thuộc tính: mã số nhà, số định danh cá nhân, mối quan hệ, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu, cơ quan xử lý, hành vi vi phạm và hình thức xử lý
Quan hệ tiền án gồm có các thuộc tính: mã số nhà, số định danh cá nhân, mối quan hệ, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu, tòa án xử phạt, tội danh, kết quả xử lý và thi hành án
Quan hệ sinh tử gồm có các thuộc tính: mã số nhà, số định danh cá nhân, loại thời gian sự kiện, loại thời gian pháp lý và loại thời gian cơ sở dữ liệu, số khai sinh, số khai tử, mô tả sinh và mô tả tử
2 Thông tin thời gian và ngữ nghĩa của thời gian cần quản lý
- Mô tả các loại dữ liệu thời gian có các thuộc tính: mã loại dữ liệu thời gian và ngữ nghĩa của loại dữ liệu thời gian
- Mô tả các đơn vị dữ liệu thời gian thuộc loại dữ liệu thời gian nào gồm có các thuộc tính: mã số đơn vị dữ liệu thời gian, mã số loại dữ liệu thời gian, tên và mô tả
- Mô tả các thể hiện của năm (year), tháng (month), ngày (day), giờ (hour), phút (minute) và giây (second) cho các đơn vị dữ liệu thời gian gồm có các thuộc tính: mã số thể hiện các đơn vị dữ liệu thời gian, mã số đơn vị dữ liệu thời gian, năm, tháng, ngày, giờ, phút và giây
- Mô tả các mốc thời gian, có thể là một điểm thời gian hay một khoảng thời gian, nếu “mã số thể hiện các đơn vị dữ liệu thời gian bắt đầu= mã số thể hiện các đơn vị dữ liệu thời gian kết thúc” thì mô tả một điểm thời gian, còn nếu
“mã số thể hiện các đơn vị dữ liệu thời gian bắt đầu! = mã số thể hiện các đơn vị dữ liệu thời gian kết thúc” thì mô
tả một khoảng thời gian
3 Thông tin các đối tượng không gian và ngữ nghĩa cần quản lý
Sau khi khảo sát thực tế tại phường Hiệp Tân, quận Tân Phú, Thành phố Hồ Chí Minh bằng phương pháp phỏng vấn và trả lời phiếu trắc nghiệm, các kết quả đạt được như sau:
- Đối tượng không gian:
Các đối tượng không gian cần quản lý phục vụ cho bài toán bao gồm: Tòa nhà (Building) và tòa nhà căn hộ (Apartment building or Block of flats) được chúng ta gọi chung là: Tòa nhà (Building)
Trang 6 Tòa nhà là nơi con người sinh sống và làm việc, và cũng là nơi diễn ra các mối quan hệ Tòa nhà là một khối 3D, được định nghĩa là một tập hợp các khối (Body) hợp thành, trong các khối này có thể chứa các khối con dạng phức tạp hơn như: dạng phức tạp (complex shape), dạng hình lăng trụ (prism shape),… Ngoài các khối này, tòa nhà còn có thể chứa các đối tượng hình học đặc biệt khác như: đường (line), điểm (point), mặt (surface),… Một tòa nhà có nhiều mức độ chi tiết được biểu diễn khác nhau gọi là các mức độ chi tiết không gian 3D trong hệ GIS 3D (LOD – Levels of Detail) [7, 13, 14, 15]
- Đối tượng ngữ nghĩa:
Tòa nhà gồm có các thuộc tính: Mã số nhà, số nhà, tên đường, phường/xã/thị trấn/ấp/thôn/bản, quận/huyện và tỉnh, cấp nhà, số tầng, diện tích xây dựng, diện tích sàn, mã số chủ sở hữu, chứng minh nhân dân/số định danh
cá nhân, họ và tên chủ sở hữu, ngày sinh, và giới tính
4 Kết hợp các lớp thời gian, lớp dân cư, và lớp không gian để trở thành mô hình dữ liệu TPS
Từ các phân tích ở trên, bài báo kết hợp ba lớp thời gian (Time), dân cư (Population) và không gian (Space) (Hình 7) và sau khi kết hợp ba lớp này lại với nhau nó trở thành mô hình dữ liệu thời gian, dân cư và không gian (Hình
9) có tên gọi là: TPS(Time – Population – Space Data Model) Mô hình dữ liệu TPS có khả năng (Hình 8) lưu trữ các
đối tượng không gian 3D như: buildings, apartments, roads, houses, light lamp, bridges, relations, generations, and people theo không gian và thời gian Ngoài ra, mô hình dữ liệu TPS còn có các khả năng truy vấn theo thời gian; có khả năng truy vấn theo dân cư; có khả năng truy vấn không gian theo thời gian; có khả năng tìm tổ tiên và tìm con cháu; có khả năng tìm các mối quan hệ của con người Dưới đây là bảng tóm lược những quan hệ của mô hình dữ liệu TPS và cho biết kích thước của một dòng dữ liệu (Bảng 5)
Hình 7 Kết hợp ba lớp Time, Population và Space
để trở thành mô hình dữ liệu TPS Hình 8 Mô hình TPS có khả năng lưu trữ các đối tượng không gian 3D, các mối quan hệ và gia phả
của con người
(1,1)
1 TYMDHMS
TIMEUNITS STYPETIMES
BEGINTIME
TUNIT TTIME
1
N 1 N
1
NHA QUANHEXAHOI
QUANHELUAT QUANHETIENSU
QUANHETIENAN QUANHESINHTU CONNGUOI
+N N+
QUANHEHUYETTHONG
+N
+N
+N
+N
+N (1,1)
(1,1)
+N
+N
+N
+N
+N
+N +3
THUONGTRU
TAMTRU LUURU
+3
+N
+N
+N +N
+N
+N
+N
+N +N +N +N +N +N +N +N +N +N (1,1)
+N +N +N +N +N +N +N +N +N +N
(1,1)
+N +N
(1,1)
+3
CMND ANHCHANDUNG TONGIAO DANTOC QUOCTICH QUEQUAN GIOITINH NOISINH NAMSINH HOTEN
TIMES
ENDTIME
T (
+N (1,1)
Hình 9 Mô hình dữ liệu TPS quản lý dữ liệu dân cư trong hệ GIS 3D
Trang 7Bảng 5 Mô tả tóm lược các quan hệ của mô hình dữ liệu TPS phục vụ cho ứng dụng GIS 3D quản lý dữ liệu dân cư
TT Tên các quan hệ Số
Byte
5 Xây dựng các truy vấn điển hình về mối quan hệ và gia phả phục vụ cho ứng dụng GIS 3D quản lý dữ liệu dân cư
Truy vấn 1: Tìm và hiển thị mối quan hệ xã hội là ―Họp phân chuyên ngành khoa CNTT 08/2015‖ vào điểm thời gian
―07/08/2015 09:00 AM‖ T10 và là thời gian bắt đầu sự kiện (L1), thông tin hiển thị gồm: Tên mối quan
hệ xã hội, không gian (vị trí và hình dạng nhà), điểm thời gian và thành phần con người tham dự
Truy vấn 2: Tìm và hiển thị mối quan hệ tiền sự là ―Sử dụng trái phép chất ma túy‖ vào điểm thời gian ―13/08/2015
11:55 AM‖ T14 và là thời gian bắt đầu sự kiện (L1), thông tin hiển thị gồm: Tên mối quan hệ tiền sự, không gian (vị trí và hình dạng nhà), điểm thời gian, và thành phần con người sử dụng
Truy vấn 3: Tìm và hiển thị các nhân khẩu thường trú trong nhà của chủ hộ có tên là ―Đặng Thị Vân‖, thông tin hiển
thị gồm: không gian (vị trí và hình dạng nhà), chủ hộ, các nhân khẩu và kèm theo mối quan hệ với chủ hộ
Truy vấn 4: Tìm và hiển thị con cháu các đời của một người có số định danh cá nhân là ―11‖ và có tên là ―VĨNH‖ (từ
Hình 10 và kết quả Bảng 6), thông tin hiển thị gồm: con cháu các đời và thế hệ (Áp dụng kỹ thuật truy vấn
đệ qui của hệ quản trị cơ sở dữ liệu Oracle 11g ở mục II.E.6)
Minh họa dữ liệu cây gia phả gồm tổ tiên và con cháu
CHUYÊN
Thế hệ 1 Thế hệ 2
Thế hệ 3
Thế hệ 4
Thế hệ 5
TÂN
KHOA
Hình 10 Cây gia phả gồm có tổ tiên và con cháu Bảng 6 Liệt kê thứ tự các đời theo từng thế hệ của người tên ―VĨNH‖
Dữ liệu
đầu vào (Kết quả tìm được là các con cháu của người có tên là “VĨNH”) Dữ liệu đầu ra
“VĨNH”
(Ở thế
hệ 1)
Con cháuđời 2(thế hệ 2) TÂN, NHÂM và CHUYÊN
Con cháuđời 3(thế hệ 3) SAO, KHOA, HẠNH, NHI, HINH, DUY, ÁNH, BỒN, HUYỀN, TÁ và CHƯ Con cháuđời 4(thế hệ 4) HÀ, HỌC, HOA, HẰNG, HÙNG, MẾM, HẢI, ĐĂNG, THIỆN, LIÊN và THẮNG Con cháuđời 5(thế hệ 5) YẾN, DUY, NGUYÊN và KHÔI
Truy vấn 5: Tìm và hiển thị tổ tiên các đời của một người có số định danh cá nhân là ―53‖ và có tên là ―NGUYÊN‖
(từ hình 10 và kết quả bảng 7), thông tin hiển thị gồm: tổ tiên các đời và thế hệ (Áp dụng kỹ thuật truy vấn
đệ qui của hệ quản trị cơ sở dữ liệu Oracle 11g ở mục II.E.6)
Bảng 7 Liệt kê thứ tự các đời theo từng thế hệ của người tên ―NGUYÊN‖
Dữ liệu đầu vào (Kết quả tìm được là tổ tiên của người có tên là “NGUYÊN”) Dữ liệu đầu ra
“NGUYÊN”
(Ở thế hệ 5)
Tổ tiênđời 4(thế hệ 4) ĐĂNG và THẢO
Tổ tiênđời 3(thế hệ 3) HẠNH và VÂN
Tổ tiênđời 2(thế hệ 2) TÂN và KHUYÊN
Tổ tiênđời 1(thế hệ 1) VĨNH và ÍCH
Truy vấn 6: Tìm và hiển thị những người con của một người tên là ―Đăng‖, thông tin hiển thị gồm: cha mẹ và các con
Trang 8Truy vấn 7: Tìm và hiển thị cha và mẹ của một người có tên là ―Khôi‖, thông tin hiển thị gồm: cha mẹ và con Truy vấn 8: Tìm và hiển thị các nhân khẩu tạm trú trong một nhà của chủ hộ có tên là ―Trần Anh Minh‖, thông tin
hiển thị gồm: không gian (vị trí và hình dạng nhà), chủ hộ, các nhân khẩu và kèm theo mối quan hệ với chủ hộ
Truy vấn 9: Tìm và hiển thị nơi Nguyễn Văn A sinh ra, thông tin hiển thị: nơi sinh (vị trí và hình dạng nhà) và họ tên Truy vấn 10: Tìm và hiển thị nơi mà Trần Thị B mất, thông tin hiển thị: nơi sinh (vị trí và hình dạng nhà) và họ tên
6 Áp dụng kỹ thuật truy vấn đệ quy của hệ quản trị CSDL Oracle để giải câu truy vấn 4 và câu truy vấn 5 tìm gia phả
Truy
vấn
Dữ liệu
4
Số định
danh cá
nhân: 11
của
người có
tên là
“VĨNH”
(Ở thế
hệ 1)
SELECT SYS_CONNECT_BY_PATH
( HOTEN, '->' ) AS CAYGIAPHA,
LPAD(' ',6*level-1,'-')||HOTEN as CONCHAU,
LEVEL + 1 AS THE_HE
CONNGUOI cn, tblHOTEN ht
WHERE qhht.IDCON = cn.IDSDDCN And
cn.IDSDDCN = ht.IDSDDCN
CONNECT BY IDCHA = PRIOR IDCON START WITH IDCHA = '11'
ORDER SIBLINGS BY HOTEN DESC;
Con cháu
(Đời 2, thế hệ 2)
TÂN, NHÂM và CHUYÊN
Con cháu
(Đời 3, thế hệ 3)
SAO, KHOA, HẠNH, NHI, HINH, DUY, ÁNH, BỒN, HUYỀN, TÁ và CHƯ Con
cháu
(Đời 4, thế hệ 4)
HÀ, HỌC, HOA, HẰNG, HÙNG, MẾM, HẢI, ĐĂNG, THIỆN, LIÊN và THẮNG
Con cháu
(Đời 5, thế hệ 5)
YẾN, DUY, NGUYÊN và KHÔI
5
Số định
danh cá
nhân: 54
của
người có
tên là
“KHÔI”
(Ở thế
hệ 5)
SELECT SYS_CONNECT_BY_PATH
( HOTEN, '->' ) AS CAYGIAPHA,
LPAD(' ',2*level-1,'-')|| HOTEN as TOTIEN,
LEVEL + 1 AS THE_HE
CONNGUOI cn, tblHOTEN ht
WHERE qhht.IDCHA = cn.IDSDDCN And
cn.IDSDDCN = ht.IDSDDCN
CONNECT BY PRIOR IDCHA = IDCON START WITH IDCON = '54'
ORDER SIBLINGS BY HOTEN DESC;
Tổ tiên
(Đời 4, thế hệ 4)
ĐĂNG và THẢO
Tổ tiên
(Đời 3, thế hệ 3) HẠNH và VÂN
Tổ tiên
(Đời 2, thế hệ 2)
TÂN và KHUYÊN
Tổ tiên
(Đời 1, thế hệ 1) VĨNH và ÍCH
III THỰC NGHIỆM
Trong phần II, bài báo đã trình bày chi tiết ba lớp thời gian, lớp dân cư, và lớp không gian và kết hợp ba lớp này lại với nhau để xây dựng được mô hình dữ liệu TPS (Hình 9) Trong phần III này, bài báo sử dụng hệ quản trị cơ sở dữ liệu Oracle 11g để cài đặt mô hình dữ liệu TPS và dùng kiểu dữ liệu không gian của Oracle 11g để lưu trữ dữ liệu không gian Kiểu dữ liệu không gian này làm cho thời gian hiển thị dữ liệu các tòa nhà 3D trong GIS 3D trở nên nhanh hơn và cùng kết hợp ngôn ngữ lập trình C# [7, 14, 15, 16, 17, 18] để trình bày dữ liệu bằng 5 biểu mẫu điển hình thông
qua 5 câu truy vấn ở trên (mục II.E.5) để tìm và hiển thị các mối quan hệ, nhân khẩu, hộ khẩu, tìm tổ tiên và con cháu
Trong đó mỗi biểu mẫu được mô tả bởi hai tham số: tham số đầu vào và tham số đầu ra
Biểu mẫu 1: Tìm và hiển thị mối quan hệ xã hội theo mối quan hệ vào điểm thời gian, sử dụng truy vấn 1 (Hình 11)
Đầu vào : Mối quan hệ ―Họp phân chuyên ngành KCNTT 08/2015‖ vào thời gian ―07/08/2015 09:00 AM‖ T10
Đầu ra: Thông tin thể hiện Mối quan hệ xã hội – Không gian – Thời gian – Con người tham gia
Biểu mẫu 2: Tìm và hiển thị mối quan hệ tiền sự theo tên tiền sự và điểm thời gian, sử dụng truy vấn 2 (Hình 12)
Đầu vào : Mối quan hệ tiền sự ―Sử dụng trái phép chất ma túy‖ vào điểm thời gian ―13/08/2015 11:55 AM‖ T14
Đầu ra: Thông tin thể hiện: Mối quan hệ tiền sự - Không gian (vị trí và hình dạng nhà) – Thời gian – Con người
Biểu mẫu 3: Tìm và hiển thị các nhân khẩu theo số định danh cá nhân và tên chủ hộ, sử dụng truy vấn 3 (Hình 13)
Đầu vào : Chủ hộ gồm Số định danh cá nhân và họ tên ―Đặng Thị Vân‖
Đầu ra: Thông tin thể hiện: Mối quan hệ với chủ hộ - Không gian (vị trí và hình dạng nhà) – Con người
Biểu mẫu 4: Tìm và hiển thị tổ tiên các đời người có Số định danh cá nhân và họ tên, sử dụng truy vấn 5 (Hình 14)
Đầu vào : Số định danh cá nhân ―53‖ và họ tên ―Nguyên‖
Đầu ra: Thông tin hiển thị gồm tổ tiên các đời của người có tên là ―Nguyên‖ (hình 14)
Trang 9Biểu mẫu 5: Tìm và hiển thị con cháu các đời người có Số định danh cá nhân và họ tên, sử dụng truy vấn 4 (Hình 15)
Đầu vào : Số định danh cá nhân ―11‖ và họ tên là ―VĨNH‖
Đầu ra: Thông tin thể hiện con cháu các đời của một người có tên là ―VĨNH‖ (Hình 15)
Hình 11 Thể hiện: Mối quan hệ xã hội - Không gian
(vị trí và hình dạng nhà) – Thời gian – Con người
Hình 12 Thể hiện: Mối quan hệ tiền sự - Không gian
(vị trí và hình dạng nhà) – Thời gian – Con người
Hình 13 Thể hiện: Mối quan hệ với chủ hộ - Không gian
(vị trí và hình dạng nhà) – Con người
Hình 14 Thể hiện tổ tiên các đời của người tên là ―Nguyên‖
Hình 15 Thể hiện con cháu các đời của một người có tên là ―VĨNH‖
IV KẾT LUẬN
Trong bài báo này đã trình bày chi tiết cách phát triển ba lớp thời gian, dân cư và không gian để trở thành mô hình mới TPS Mô hình TPS đã cho thấy tính khả dụng của nó trong quản lý dữ liệu dân cư theo không gian và thời gian Mô hình TPS đã mở ra hướng mới trong việc hỗ trợ phương pháp lưu trữ dữ liệu dân cư theo không gian và thời gian Mô hình TPS không chỉ có khả năng truy vấn các mối quan hệ, truy vấn nhân khẩu thường trú và tạm trú, truy vấn không gian và truy vấn quá trình thay đổi các thông tin cơ bản của con người theo thời gian mà còn có khả năng tìm tổ tiên và tìm con cháu Cuối cùng, bài báo cũng đã minh họa một số biểu mẫu điển hình mà những kết quả của nó
có được từ các truy vấn trên, trong các truy vấn này có các thể hiện của điểm thời gian và ngữ nghĩa về dân cư Ngoài
Trang 10ra, mô hình TPS (Hình 9) còn có thể phát triển mở rộng thêm các phân lớp kế thừa ngữ nghĩa cả về không gian 3D lẫn dân cư cư trú và các phân lớp khác như hoa văn, kiểu dáng, màu sắc cho các đối tượng không gian nhà 3D nhằm phục
vụ cho các mục đích lưu trữ mở rộng khác mà không ảnh hưởng đến cấu trúc của mô hình này
TÀI LIỆU THAM KHẢO
[1] Trích điều 1, Luật Cư trú số 03/VBHN-VPQH, ngày 11/07/2013
[2] Trích điều 3, Thông tư số 23/2012/TT-BCA, ngày 27/04/2012
[3] Nguyễn Thị Thiềng, Lưu Bích Ngọc (2011), Giáo trình dân số học
[4] Trích điều 6, NĐ: 90/2010/NĐ-CP, Quy định về cơ sở dữ liệu quốc gia về dân cư, ngày 18/08/2010
[5] Trích điều 14, NĐ: 137/2015/NĐ-CP, QĐCT một số điều và biện pháp thi hành Luật CCCD, 15/02/2016
[6] Lê Văn Sua, Cổng thông tin điện tử Bộ tư pháp, Nghiên cứu trao đổi ―Một số bất cập từ quy định của Luật cư trú và văn bản hướng dẫn - kiến nghị hoàn thiện‖, ngày 23/11/2015
[7] Phạm Văn Đăng, Phan Công Vinh, ―Đề xuất mở rộng hai lớp thời gian và ngữ nghĩa vào mô hình UDM‖, Hội nghị khoa học quốc gia lần thứ VIII(FAIR’8), 09-10/07/2015, ISBN: 978-604-913-397-8, DOI: 10.15625/vap.2015 000150, Nhà xuất bản Khoa học tự nhiên và Công nghệ, pp.171-188
[8] Coor, 3D-GIS in networking environments, Computers, Environment and Urban Systems, pp345-357, 27-4-2003
[9] Peuquet D.J It’s About Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems Annals of the Association of American Geographers, Vol 84, No 3 (Sep., 1994), pp 441-461 Published by: Taylor & Francis (1994)
[10] Thomas Ott, Frank Swiaczny(2000), Time-Integrative GIS, Springer, printlength: 234 pages
[11] Alias Abdul-Radman, Morakot Pilouk Spatial Data Modeling For 3D GIS, pp 24-43, 2007
[12] Nguyen Gia Tuan Anh (2010), ―Integrated time and semantic classes in the buildings model‖, Proceeding of XVII International Conference on Systems Science, Wrocław University of Technology Poland, Academic Publishing
[13] Nguyen Gia Tuan Anh, ―Adding time and levels of detail in the buildings model‖, The Journal of Science and Technology– Vietnamese Academy of Science and Technology ISSN 0866 708X, Can Tho, Vietnam, 2010
[14] Pham Van Dang, Nguyen Gia Tuan Anh, Tran Vinh Phuoc, ―Levels of detail for Surface in Urban Data Model‖, International Conference on Future Information Technology - ICFIT, Singapore, Vol.13 2011, ISBN: 978-981-08-9916-5, pp.460-464, 2011 [15] Nguyen Gia Tuan Anh, Tran Vinh Phuoc, Phan Thanh Vu, Pham Van Dang, Tran Anh Sy, ―Representing Multiple Levels for Objects in Three-Dimensional GIS Model‖, The 13th International Conference on Information Integration and Web-based Applications & Service (iiWAS2011), ACM Press ISBN: 978-1-4503-0784-0, Vietnam, 2011, pp.495-498, 2011
[16] A Tool for Visualiz-ing 3D Geometry Models, 11/2014, Url: http://www.codeproject.com/Articles/42992/A-Tool-for-Visualizing-D-Geometry-Models-Part
[17] Oracle Spatial User's Guide and Reference, Release 9.0.1, 11/2012, Part Number A88805-01, June 2001
[18] Elem_Info_Arraying: An alternative to SDO_UTI-L.GetNumRings and querying SDO_ELEM_INFO_it self, 05-01-2013, Url: http://www.spatialdbadvisor.com/oracle_spatial_tips_tricks/89/sdo_utilget_numrings-an-alternative
DEVELOPING TPS DATA MODEL IN 3D GIS FOR MANAGEMENT THE POPULATION DATA
Pham Van Dang, Tran Vinh Phuoc
ABSTRACT—We know that the increase in population will lead to increase the positive and the negative sides in the residential
community Therefore, a present major challenge for all levels of government is the need to study a geographic information system (GIS) of effective population management It means to manage the people who live and work in the territory according to the space and time This management is a regular employment of the authorities They have to manage the people living and working on their territories associated with the management of households and registrations includes residential households and temporary households, relations including: blood relations, social relations, law relations, previous conviction relations, previous offence relations and vital relations All of these relations to households and registrations take place in defining space and time To solve the above problems, the objective of the paper is to study the theory of national database of the population and existing 3D GIS data model, and propose a new data model for GIS system of the population management This new model has the ability to manage human activities in their living locations, working locations, happening locations of the relations and the other information had changing over space and time to assist in the protection of security and social order and safety on their territories This new model was installed on database management system Oracle11g, used type of spatial data of Oracle11g and combined with the C# programming language to present data in the forms via query statements in the relations, households, registrations, searching ancestors and descendants
Keywords — Data Model, spatial database, temporal database, 3D, GIS, and TPS