1. Trang chủ
  2. » Trung học cơ sở - phổ thông

BT math4 english

14 38 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 234,97 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bui Xuan DieuMath4 Exercises 1.1 Double Integrals 1.1.1 Double Integrals in Cartesian coordinate Exercise 1.1.. 1.1.4 Double Integrals in polar coordinate Exercise 1.12... 1.3 Triple Int

Trang 1

Hanoi University of Science and Technology Dr Bui Xuan Dieu

Math4 Exercises

1.1 Double Integrals

1.1.1 Double Integrals in Cartesian coordinate

Exercise 1.1 Evaluate

a) RR

D

x sin(x + y)dxdy, where D =(x, y) ∈ R2: 0 ≤ y ≤ π2, 0 ≤ x ≤ π2

b) RR

D

x2(y − x) dxdy where D is the region bounded by y = x2 and x = y2

c) RR

D

|x + y|dxdy, D :=(x, y) ∈ R2||x ≤ 1| , |y| ≤ 1

d) RR

D

p|y − x2|dxdy, D :=(x, y) ∈ R2||x| ≤ 1, 0 ≤ y ≤ 1

e) RR

[0,1]×[0,1]

ydxdy (1+x 2 +y 2 )3

f) RR

D

x2

y 2dxdy, where D is bounded by the lines x = 2, y = x and the hyperbola xy = 1

1.1.2 Change the order of integration

Exercise 1.2 Change the order of integration

a)

1

R

−1

dx

1−x2

R

−√1−x 2

f (x, y) dy

b)

1

R

0

dy

1+√

1−y 2

R

2−y

f (x, y) dx

c)

2

R

0

dx

√ 2x

R

√ 2x−x 2

f (x, y) dx

d)

√ 2

R

0

dy

y

R

0

f (x, y) dx+

2

R

√ 2

dy

4−y 2

R

0

f (x, y) dx

1.1.3 Change of variables

Exercise 1.3 Evaluate I =RR

D

4x2− 2y2 dxdy, where D :

1 ≤ xy ≤ 4

x ≤ y ≤ 4x

Exercise 1.4 Evaluate

I =

Z Z

D

x2sin xy

y dxdy, where D is bounded by parabolas

x2= ay, x2= by, y2= px, y2= qx, (0 < a < b, 0 < p < q)

Trang 2

Exercise 1.5 Evaluate I =

D

xydxdy, where D is bounded by the curves

y = ax3, y = bx3, y2= px, y2= qx, (0 < b < a, 0 < p < q)

Hint: Change of variables u = x3

y , v = yx2 Exercise 1.6 Prove that

1

Z

0

dx

1−x

Z

0

ex+yy dy = e − 1

2 . Hint: Change of variables u = x + y, v = y

Exercise 1.7 Find the area of the domain bounded by xy = 4, xy = 8, xy3= 5, xy3= 15

Hint: Change of variables u = xy, v = xy3, (S = 2 ln 3)

Exercise 1.8 Find the area of the domain bounded by y2= x, y2= 8x, x2= y, x2= 8y

Hint: Change of variables u = yx2, v = xy2, (S = 279π2 )

Exercise 1.9 Hint: Change of variables y = x3, y = 4x3, x = y3, x = 4y3

Exercise 1.10 Prove that

Z Z

x+y≤1,x≥0,y≥0

cos x − y

x + y

 dxdy = sin 1

2 . Hint: Change of variables u = x − y, v = x + y

Exercise 1.11 Evaluate

I =

Z Z

D

r x

a+

r y b

 dxdy,

where D is bounded by the axes and the parabolapx

a +py

b = 1

1.1.4 Double Integrals in polar coordinate

Exercise 1.12 Express the double integral I =RR

D

f (x, y) dxdy in terms of polar coordinates, where D

is given by x2+ y2≥ 4x, x2+ y2≤ 8x, y ≥ x, y ≤√3x

Exercise 1.13 EvaluateRR

D

xy2dxdym where D is bounded by

x2+ (y − 1)2= 1

x2+ y2− 4y = 0

Exercise 1.14 Evaluate

a) RR

D

D

|x − y|dxdy,

where D : x2+ y2≤ 1

Exercise 1.15 EvaluateRR

D

dxdy (x 2 +y 2 ) 2, where D :

4y ≤ x2+ y2≤ 8y

x ≤ y ≤ x√

3

Exercise 1.16 EvaluateRR

D

xy

x 2 +y 2dxdy, where D :

x2+ y2≤ 12, x2+ y2≥ 2x

x2+ y2≥ 2√3y, x ≥ 0, y ≥ 0

Trang 3

1.2 Applications of Double Integrals

Exercise 1.17 Compute the area of the domain D bounded by

a)

y = 2x, y = 2−x,

y = 4

b)

y2= x, y2= 2x

x2= y, x2= 2y

c)

y = 0, y2= 4ax

x + y = 3a, (a > 0)

d)

x2+ y2= 2x, x2+ y2= 4x

x = y, y = 0

e) r = 1, r = √2

3cos ϕ

f) x2+ y22

= 2a2xy (a > 0)

g) x3+ y3= axy (a > 0) (Descartes leaf) h) r = a (1 + cos ϕ) (a > 0) (Cardioids)

Exercise 1.18 Compute the volume of the object given by

a)

3x + y ≥ 1, y ≥ 0

3x + 2y ≤ 2,

0 ≤ z ≤ 1 − x − y

b) V :

0 ≤ z ≤ 1 − x2− y2

y ≥ x, y ≤√

3x

c) V :

x2+ y2+ z2≤ 4a2

x2+ y2− 2ay ≤ 0

Exercise 1.19 Compute the volume of the object bounded by the surfaces

a)

z = 4 − x2− y2

2z = 2 + x2+ y2

b)

z = x

2

a2 +y

2

b2, z = 0

x2

a2 +y

2

b2 =2x a

c)

az = x2+ y2

z =px2+ y2

Exercise 1.20 Find the area of the part of the paraboloid x = y2+ z2 that satisfies x ≤ 1

1.3 Triple Integrals

1.3.1 Triple Integrals in Cartesian coordinate

Exercise 1.21 EvaluateRRR

V

x2+ y2 dxdydz, where V is bounded by the sphere x2+ y2+ z2= 1 and the cone x2+ y2− z2= 0

1.3.2 Change of variables

Exercise 1.22 Evaluate

a) RRR

V

(x + y + z)dxdydz, where V is bounded by

x + y + z = ±3

x + 2y − z = ±1

x + 4y + z = ±2

b) RRR

V

(3x2+ 2y + z)dxdydz, where V : |x − y| ≤ 1, |y − z| ≤ 1, |z + x| ≤ 1

c) RRR

V

dxdydz, where V : |x − y| + |x + 3y| + |x + y + z| ≤ 1

Trang 4

1.3.3 Triple Integrals in Cylindrical Coordinates

Exercise 1.23 EvaluateRRR

V

x2+ y2 dxdydz, where V :

x2+ y2≤ 1

1 ≤ z ≤ 2 Exercise 1.24 EvaluateRRR

V

zpx2+ y2dxdydz, where:

a) V is bounded by: x2+ y2= 2x and z = 0, z = a (a > 0)

b) V is a half of the sphere x2+ y2+ z2≤ a2, z ≥ 0 (a > 0)

Exercise 1.25 Evaluate I =RRR

V

p

x2+ y2dxdydz where V is bounded by:

x2+ y2= z2

z = 1

Exercise 1.26 EvaluateRRR

V

dxdydz

x 2 +y 2 +(z−2) 2, where V :

x2+ y2≤ 1

|z| ≤ 1

1.3.4 Triple Integrals in Spherical Coordinates

Exercise 1.27 EvaluateRRR

V

x2+ y2+ z2 dxdydz, where V :

1 ≤ x2+ y2+ z2≤ 4

x2+ y2≤ z2 Exercise 1.28 EvaluateRRR

V

p

x2+ y2+ z2dxdydz, where V : x2+ y2+ z2≤ z

Exercise 1.29 Evaluate RRR

V

zpx2+ y2dxdydz, where V is a half of the ellipsoid x2a+y2 2 +zb22 ≤ 1, z ≥

0, (a, b > 0)

Exercise 1.30 EvaluateRRR

V



x2

a 2 +yb22 +z2

c 2

 dxdydz , where V : x2

a 2 +yb22 +z2

c 2 ≤ 1, (a, b, c > 0)

Exercise 1.31 EvaluateRRR

V

p

z − x2− y2− z2dxdydz, where V : x2+ y2+ z2≤ z

Exercise 1.32 EvaluateRRR

V

(4z − x2− y2− z2)dxdydz, where V is the sphere x2+ y2+ z2≤ 4z

Exercise 1.33 EvaluateRRR

V

xzdxdydz, where V is the domain x2+ y2+ z2− 2x − 2y − 2z ≤ −2 Exercise 1.34 Evaluate

I =

Z Z Z

V

dxdydz (1 + x + y + z)3, where V is bounded by x = 0, y = 0, z = 0 và x + y + z = 1

Exercise 1.35 Evaluate

Z Z Z

V

zdxdydz,

where V is a half of the ellipsoid

x2

a2 +y

2

b2 +z

2

a2 ≤ 1, (z ≥ 0)

Exercise 1.36 Evaluate

a) I1=RRR

B



x 2

a 2 +yb22 +zc22

 , where B is the ellipsoid xa22 +yb22 +zc22 ≤ 1

Trang 5

b) I2 =

C

zdxdydz, where C is the domain bounded by the cone z2 = Rh2(x2+ y2) and the plane

z = h

c) I3=RRR

D

z2dxdydz, where D is bounded by the sphere x2+y2+z2≤ R2and the sphere x2+y2+z2≤ 2Rz

d) I4 =RRR

V

(x + y + z)2dxdydz, where V is bounded by the paraboloid x2+ y2 ≤ 2az and the sphere

x2+ y2+ z2≤ 3a2

Exercise 1.37 Find the volume of the object bounded by the planes 0xy, x = 0, x = a, y = 0, y = b, and the paraboloid elliptic

z = x

2

2p +

y2

2y, (p > 0, q > 0).

Exercise 1.38 Evaluate

I =

Z Z Z

V

p

x2+ y2+ z2dxdydz,

where V is the domain bounged by x2+ y2+ z2= z

Exercise 1.39 Evaluate

I =

Z Z Z

V

zdxdydz,

where V is the domain bounded by the surfaces z = x2+ y2 and x2+ y2+ z2= 6

Exercise 1.40 Evaluate

I =

Z Z Z

V

xyz

x2+ y2dxdydz, where V is the domain bounded by the surface (x2+ y2+ z2)2= a2xy and the plane z = 0

2.1 Definite Integrals depending on a parameter

Exercise 2.1 Compute

a) lim

y→0

1+y

R

y

dx

y→0

2

R

0

x2cos xydx

Exercise 2.2 Evaluate

a) I (y) =

1

R

0

arctanx

ydx b) J (y) =

1

R

0

ln x2+ y2 dx c) K =

1

R

0

xb−x a

ln x , (0 < a < b)

2.2 Improper Integrals depending on a parameter

Exercise 2.3 Show that the integral

a) I(y) =

R

1

sin(yx)dx is convergent if y = 0 and is divergent if y 6= 0

Trang 6

b) I(y) = R

0

cos αx

x 2 +1 is uniformly convergent on R

c) I(y) =

1

R

0

x−ydx =

R

1

ty−2dt is convergent if y < 1 and divergent if y ≥ 1

d) I(y) =

+∞

R

0

e−yx sin xx is uniformly convergent on [0, +∞)

e) I(y) =

R

0

cos αx

x 2 +1 is uniformly convergent on R

Exercise 2.4 a) Evaluate I(y) =

+∞

R

0

ye−yxdx (y > 0)

b) Prove that I(y) converges to 1 uniformly on [y0, +∞) for all y0> 0

c) Explain why I(y) is not uniformly convergent on (0, +∞)

Exercise 2.5 Prove that

a)

R

0

e−x2dx =

√ π

2 b)

R

0

sin x

x dx = π2

c)

R

0

sin(x2)dx =

R

0

cos(x2)dx = 12pπ

2

d)

+∞

R

0

e−yx sin xx = π2 − arctan y

e)

R

0

sin yx

x(1+x 2 )dx = π2(1 − e−y), y ≥ 0

f)

R

0

1−cos yx

x 2 =π2|y|

g)

R

0

x sin yx

a 2 +x 2dx = π2e−ay, a, y ≥ 0

h)

R

0

e−yx2dx =

√ π

2 √

y, y > 0

i)

+∞

R

0



e−x2a − e−x2b



dx =√

πb −√

πa, (a, b > 0)

j)

+∞

R

0

arctan x −arctan x

b

x dx = π2lnab, (a, b > 0)

k) lim

y→0 +

+∞

R

0

ye−yxdx

 6=

+∞

R

0

 lim

y→0 +ye−yx



dx and explain why?

Exercise 2.6 Evaluate (a, b, α, β > 0):

a)

+∞

R

0

e−αx−e−βx

b)

+∞

R

0

e−αx2−e−βx2

c)

+∞

R

0

dx

(x 2 +y)n+1

d)

+∞

R

0

e−ax sin bx−sin cxx

e)

+∞

R

0

e−ax cos bx−cos cxx , (a > 0)

f)

+∞

R

0

e−axcos yx

g)

+∞

R

0

e−x2cos (yx) dx

h)

+∞

R

−∞

arctan(x+y) 1+x 2 dx

i)

+∞

R

0

e−ax2−e −bx2

x dx, where a, b > 0

+∞

R

0

e−ax3−e−bx3

x dx, where a, b > 0

j)

R

0

e−ax2−cos bx

x 2 dx, (a > 0) k)

π

R

0

ln(1 + y cos x)dx,

l)

R

0

e−x2sin axdx,

m)

R

0 sin xy

x dx, y ≥ 0,

Trang 7

n) R

0

e−ax2cos bxdx (a > 0),

o)

R

0

x2ne−x2cos bxdx, n ∈ N

p) R

0

sin ax cos bx

q)

R

0

sin ax sin bx

2.3 Euler Integral

Exercise 2.7 Evaluate

a)

π

2

R

0

sin6x cos4xdx

b)

a

R

0

x2n√

a2− x2dx (a > 0)

c)

+∞

R

0

x10e−x2dx

d)

+∞

R

0

x

(1+x 2 )2dx

e)

+∞

R

0

1 1+x 3dx

f)

+∞

R

0

x n+1

(1+x n )dx, (2 < n ∈ N)

g)

1

R

0

1

n

√ 1−x ndx, n ∈ N∗ h)

+∞

R

0

x4

(1 + x3)2dx,

3.1 Line Integrals of scalar Fields

Exercise 3.1 Evaluate

a) R

C

(x − y) ds, where C is the circle x2+ y2= 2x

b) R

C

y2ds, where C is the curve

x = a (t − sin t)

y = a (1 − cos t)

, 0 ≤ t ≤ 2π, a > 0

c) R

C

p

x2+ y2ds, where C is the curve

x = (cos t + t sin t)

y = (sin t − t cos t)

, 0 ≤ t ≤ 2π

d) R

C

(x + y)ds, where C is the circle x2+ y2= 2y

e) R

L

xyds, where L is the part of the ellipse xa22 +yb22 = 1, x ≥ 0, y ≥ 0

f) I =R

L

|y|ds, where L is the Cardioid curve r = a(1 + cos ϕ) (a > 0)

g) I =R

L

|y|ds, where L is the Lemniscate curve (x2+ y2)2= a2(x2− y2)

3.2 Line Integrals of vector Fields

Exercise 3.2 Evaluate R

ABCA

2 x2+ y2 dx + x (4y + 3) dy, where ABCA is the quadrangular curve, A(0, 0), B(1, 1), C(0, 2)

Exercise 3.3 Evaluate R

ABCDA

dx+dy

|x|+|y|, where ABCDA is the triangular curve, A(1, 0), B(0, 1), C(−1, 0), D(0, −1)

Trang 8

3.2.1 Green’s Theorem

Exercise 3.4 Evaluate the integral R

C

(xy + x + y) dx + (xy + x − y) dy, where C is the positively ori-ented circle x2+ y2= R2 by

i) computing it directly and

ii) Green’s Theorem, then compare the results,

Exercise 3.5 Evaluate the following integrals, where C is a half the circle x2+ y2 = 2x, traced from

O(0, 0) to A(2, 0)

a) R

C

(xy + x + y) dx + (xy + x − y) dy

b) R

C

x2 y +x4 dy − y2 x +y4 dx

c) R

C

(xy + exsin x + x + y) dx − (xy − e−y+ x − sin y) dy

Exercise 3.6 Evaluate H

OABO

ex[(1 − cos y) dx − (y − sin y) dy], where OABO is the triangle, O(0, 0), A(1, 1), B(0, 2)

3.2.2 Applications of Line Integrals

Exercise 3.7 Find the area of the domain bounded by an arch of the cycloid

x = a(θ − sin θ)

y = a(1 − cos θ)

and

Ox (a > 0)

3.2.3 Independence of Path

Exercise 3.8 Evaluate

(3,0)

R

(−2,1)

x4+ 4xy3 dx + 6x2y2− 5y4 dy

Exercise 3.9 Evaluate

(2,π)

R

(1,π)



1 −yx22cosxydx + sinyx+yxcosyx dy

4.1 Surface Integrals of scalar Fields

Exercise 4.1 EvaluateRR

S

z + 2x +4y3 dS, where S = (x, y, z) |x

2+y3 +z4 = 1, x, y, z ≥ 0

Exercise 4.2 EvaluateRR

S

x2+ y2 dS, where S = (x, y, z) |z = x2+ y2, 0 ≤ z ≤ 1

Exercise 4.3 EvaluateRR

S

x2y2zdS, where S is the part of the cone z =px2+ y2 lies below the plane

z = 1

Exercise 4.4 EvaluateRR

S

dS (2 + x + y + z)2, where S is the boundary of the triangular pyramid

x + y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

Trang 9

4.2 Surface Integrals of vector Fields

Exercise 4.5 EvaluateRR

S

z x2+ y2 dxdy, where S is a half of the sphere x2+ y2+ z2= 1, z ≥ 0, with the outward normal vector

Exercise 4.6 EvaluateRR

S

ydxdz + z2dxdy, where S is the surface x2+y42+ z2= 1, x ≥ 0, y ≥ 0, z ≥ 0, and is oriented downward

Exercise 4.7 EvaluateRR

S

x2y2zdxdy, where S is the surface x2+ y2+ z2 = R2, z ≤ 0 and is oriented upward

4.2.1 The Divergence Theorem

Exercise 4.8 Evaluate the following integrals, where S is the surface x2+ y2+ z2 = a2 with outward orientation

a RR

S

S

x3dydz + y3dzdx + z3dxdy

Exercise 4.9 Evaluate RR

S

y2zdxdy + xzdydz + x2ydxdz, where S is the boundary of the domain x ≥

0, y ≥ 0, x2+ y2≤ 1, 0 ≤ z ≤ x2+ y2 which is outward oriented

Exercise 4.10 Evaluate RR

S

xdydz + ydzdx + zdxdy, where S the boundary of the domain (z − 1)2 ≤

x2+ y2, a ≤ z ≤ 1, a > 0 which is outward oriented

4.2.2 Stokes’ Theorem

Exercise 4.11 Use Stokes’ Theorem to evaluate R

C

F · dr = R

C

P dx + Qdy + Rdz In each case C is oriented counterclockwise as viewed from above

1 F (x, y, z) = (x + y2)i + (y + z2)j + (z + x2)k, C is the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1)

2 F (x, y, z) = i + (x + yz)k + (xy −√

z)k, C is the boundary of the part of the plane 3x + 2y + z = 1

in the first octant

3 F (x, y, z) = yzi + 2xzj + exyk, C is the circle x2+ y2= 16, z = 5

4 F (x, y, z) = xyi + 2zj + 3yk, C is the curve of intersection of the plane x + z = 5 and the cylinder

y2+ y2= 9

5.1 Scalar Fields

Exercise 5.1 Find the directional derivative of the function f (x, y, z) = x2y3z4 at the point M (1, 1, 1)

in the direction of the vector ~l = (1, 1, 1)

Trang 10

Exercise 5.2 FindOu, where u = r +r + ln r and r = x2+ y2+ z2.

Exercise 5.3 In what direction from O(0, 0, 0) does f = x sin z − y cos z have the maximum rate of change

5.2 Vector Fields

Exercise 5.4 Let F = xz2−→

i + yx2−→

j + zy2−→

k Find the flux of F across the surface S : x2+ y2+ z2= 1 with the outward direction

Exercise 5.5 Let F = x(y + z)−→

i + y(z + x)−→

j + z(x + y)−→

k and L is the intersection between the quatity

x2+ y2+ y = 0 and a half of the sphere x2+ y2+ z2= 2, z ≥ 0 Prove that the circulation of F across L

is equal to 0

Exercise 5.6 Prove that F is a conservative vector field on Ω if and only if curl F (M ) = 0 ∀M ∈ Ω Exercise 5.7 Which of the following fields are conservative and find their potential functions

a F = 5(x2− 4xy)−→i + (3x2− 2y)−→j +−→

k

b G = yz−→

i + xz−→

j + xy−→

k

c H = (x + y)−→

i + (x + z)−→

j + (z + y)−→

k

6.1 Infinite series

Exercise 6.1 Show that the harmonic series

P

n=1

1

n is divergent

Exercise 6.2 Find the sum of the series

P

n=1



3 n(n+1) +21n

 Exercise 6.3 Test for convergence or divergence of the series

a)

P

n=1

P

n=1

P

n=1



n n+1

n

6.1.1 The Integral Test

Exercise 6.4 Show that the series

P

n=2

1 n(ln n) p is convergent iff p > 1

Exercise 6.5 Test for convergence or divergence of the series

a)

P

n=1

ln 1

n

(n+2) 2

b)

P

n=1

n2e−n3

c)

P

n=1

ln n

n 3

d)

P

n=1

ln(1+n) (n+3) 2

e)

P

n=1

e1/n

n 2

f)

P

n=1

n2

e n

g)

P

n=1

ln n

n p

h)

P

n=1

ln n 3n 2

i)

P

n=1

1 ln(2n+1)

j)

P

n=2

1 ln(2n−1)

k)

P

n=1

cos n

n 3 +1

l)

P

n=1

sin n

n 3 +1

Trang 11

6.1.2 The Comparison Test

Exercise 6.6 Test for convergence or divergence of the series

1)

P

n=1

n3

(n+2) 4

2)

P

n=1

2016n

2015 n +2017 n

3)

P

n=1

n sin 2 n

1+n 3

4)

P

n=1

3

n

n+3

5)

P

n=1

sin(√

n + 1 −√

n)

6)

P

n=1

n+sin n

3

n 7 +1

7)

P

n=1

sinn3n+1+n+1

8)

P

n=1

ln1 + 1

3n 2



9)

P

n=1

1

ln(2n+1)

10)

P

n=1

cos n

n 3 +1

11)

P

n=1

1

n − sin1 n



12)

P

n=1

1 − cos1n

13)

P

n=1

n

e − 1 −n1

14)

P

n=1

arcsinn2n−1−n+1

15)

P

n=2

1 [ln(ln(n+1))] ln n

16)

P

n=1

nen1 − 12,

17)

P

n=2

(−1) n +1 n−ln n , 18)

P

n=1

arcsin(e−n),

19)

P

n=1

sin(π√

n2+ a2),

20)

P

n=1

(2n−1)!!

3 n n! , 21)

P

n=1

cosann

3

,

22)

P

n=1

n n2 2 n

(n+1) n2, 23)

P

n=3

1

n α (ln n) β, (α, β > 0), 24)

P

n=3

(−1)n+2 cos nα n(ln n)3 , 25)

P

n=1

na (1−a 2 ) n, 0 < |a| 6= 1 26)

P

n=1

(n!) 2

4 n2 , 27)

P

n=1

 cos 1 n+1− cos1

n



6.1.3 Alternating Series

Exercise 6.7 Test for convergence or divergence of the following series

a)

P

n=1

(−1)n−1

n+1

b)

P

n=1

(−1)n−1 n2

n 3 +1 c)

P

n=1

(−1)n 2n+1

3n+2n,

d)

P

n=1

(−1)nnn3 +42 ,

e)

P

n=1

(−1) n (n 2 +n+1)

2 n (n+1) , f)

P

n=1

(−1)nsin πn,

g)

P

n=1

(−1)nn2

π n , h)

P

n=1

(−1) n

3 n n!, i)

P

n=1

(−1)nn+1

n+2

n

,

j)

P

n=1

(−1)nsinn√1

n, k)

P

n=1

(−1)n ln n

n

6.1.4 The ratio (d’Alambert) Test

Exercise 6.8 Test for convergence or divergence of the series

a)

P

n=1

2n

n!

b)

P

n=1

2nn!

n n

c)

P

n=1

5 n (n!) 2

n 2n

d)

P

n=1

(2n+1)!!

n n

e)

P

n=1

(n 2 +n+1)

2 n (n+1)

f)

P

n=1

(2n)!!

n n

g)

P

n=1

22n+1

5 n ln(n+1)

h)

P

n=1

lnh1 + 2n+1n +1

i

6.1.5 The root (Cauchy) Test

Exercise 6.9 Test for convergence or divergence of the series

Ngày đăng: 05/11/2020, 22:25

TỪ KHÓA LIÊN QUAN

w