1. Trang chủ
  2. » Luận Văn - Báo Cáo

An analysis of housing credit program for urban hoausehold case study in HCMC housing development bank(HDBANK)

108 21 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 108
Dung lượng 506,42 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

VIETNAM-NETHERLANDSPROGRAMMEF O R M.AINDEVELOPMENTECONOMICSANANALYSISOFHOUSINGCREDITPROGRAMFOR URBANHOUSEHOLD CASESTUDYINHCMCHOUSINGDEVELOPMENTB ANKHDBANK ATHESISPRESENTEDBYDOHONGNGOC IN

Trang 1

VIETNAM-NETHERLANDSPROGRAMMEF O R M.AINDEVELOPMENTECONOMICS

ANANALYSISOFHOUSINGCREDITPROGRAMFOR

URBANHOUSEHOLD CASESTUDYINHCMCHOUSINGDEVELOPMENTB

ANK(HDBANK)

ATHESISPRESENTEDBYDOHONGNGOC

INPARTIALFULFILMENTOFTHEREQUIREMENTFOR THE

DEGREEOFMASTEROFARTSINDEVELOPMENTECONOMICS

SUPERVISOR

Trang 2

“Icertifythatthesubstanceo f thisstudyhasnotalreadyb een s u b mi t t ed f o r anydegreeandisnotbeingcurrentlysubmittedforanyotherdegree

Icertifythattothebestofmyknowledgeanyhelpreceivedinpreparingthisthesis,andallsourcesused,havebeenacknowledgedinthisdissertation.”

HoChiMinhCity,February2009

DoHongNgoc

Trang 4

VietNami s goingo nth e wayo f modernization,i n d u s t r i a l i z a t i o n a n d esp eci

al ly o f globalizationwiththepurposeofeconomicdevelopmentandenhancingthelifestandardoftheresident.ThisimpliestoincreasefurtherwithariseintheurbanizationlevelsandinthepopulationalongwithincreasingthedemandforhousinginurbanofVietNam.Tosolvethedemandofurbanhousehold,thegovernmenthasmanypoliciestosupporttheresidentsuchashousingfinancesystemfrombankorotherfinancialinstitution,housingprogramforlowincome Thisstudyonlyconcentratestoanalysishousingcreditprogramf r o m b a n k f o r u r b a n h o u s e h o l d o n t w o m a j o r a s p e c t s T h

e f i r s t i s t h e determinantsofprobabilitytogetahousingloan.Andthesecondisthedeterminantsofhousingloanamount.Sothehouseholdshouldimprovetheircharacterandcapacitytobeableto‘borrowhousingloa

havesuitablecreditpolicyandconditionforthecustomertospeedupeffectiveandsustainablecreditdevelopment

Trang 5

TABLESO FCONTENTS

Certification , i

Acknowledgement , ii

Abstract iii

Contents i

Listoftablesandfigures viii

Abbreviation ix

CHAPTER‘ I : I N T R O D U C T I O N 1

1.1Problemstatement I 1.2Objectivesofthestudy 1

1.2.1Generalobjective 2

1.2.2Specificobjective 2

1.3Researchq u e s t i o n 1.4 Summaryonresearchmethodology a n d data 2

1.5Theorganizationofthethesis 3

CHAPTERII:LITERATUREREVIEW 4

2.1Theorybac 2.1.1Majorconcepts 4

HouseholdCredit Borrowing Householdc r e d i t market 2.1.2Banking theory ‘ 4

Creditmanagement CreditanalysisandloandecisionIssuesincredit market 2.2ExperiencesofhousingdevelopmentinsomeAsiancountries 7

2.2.1InSingapore 8

Trang 6

2.3Theoreticalmodelsandempiricalstudiesforhousedemand 12

2.3.1Generalob servations 12

2.3.2Determinantsofhousingloan 13

23.3Determinantsofloanamount 15

2.3.4Theoreticalm od e ls 16

Thebasicmodels 16

Theextendedmodels 16

2.3.5Empiricalmodelsappliedinpreviousstudies 17

CHAPTERIII:RESEARCHMETHODOLOGY 20

3.1Analyticalframework 20

3.1.1Hypotheses 20

3.1.2Determinantso f theprobability 20

3.1.3Determinantsofloanamount 21

3.1.4Specificempiricalmode ls 22

Model1 22

DescriptionofthemodelI 22

Definitionandexplanationofvariablesofthemodel1 22

Expectedsignsofthevariables’coefficients 23

Model2 24

Descriptionofthemodel2 , 24

Definitionandexplanationofvariablesofthemodel2 24

Expectedsignsofthevariables’coefficients 25

3.2 Datasource 3.2.1 Datasource 26

Whereisdatasource? 26

Whatisitsva1idip? 26

Whenaretheycollected? 26

Population 26

3.2.2Sampling 27

Trang 7

Samplingmethod 27

3.3 Analysism e t h o d s 29

3.3.1 Stat isticaltestsfordescriptiveanalysis 29

3.3.2 Correlationanalysis 29

3.3.3 Statisticaltestsforvalidityofspecificmodels 30

3.4Analysistool 30

CHAPTERIV:RESULTSAND DISCUSSION , 31

4.1 SituationofhousingcreditprogramforurbanhouseholdinHeChiMinhCity 31

4.1.1Housingdemandofurbanhousehold 31

4.1.2Nationalstrategyonhousinguptotheyear2010 31

4.1.3 Theoverviewofurbanfinancialsystem,borrowingbyurbanhouseholdsand housingf i n a n c e project 32

FinancialsystemandsourceofcredittourbanhouseholdsinVietNam 32

Overviewofborrowingby urbanhouseholds 32

4.1.4 HCMCHousingdevelopmentprogram 35

4.2HCMCHousingDevelopmentBank 35

4.2.1OverviewofHDBank 35

4.2.2 HousingcreditprogramofHDBank 38

4.3HCMCHousingDevelopmentBank 40

4.3.1 Analysis o f borrower’c h a r a c t e r i s t i c s 40

4.3.2 Correlationa n a l y s i s 44

4.3.3 Statisticaltestsforvalidityofspecificmodels 47

4.3.4Descriptioncollectingdataandchoosingsuitablemethod 48

4.4Resultsofmodelstestingandexplanation 49

4.4.1Empiricalresult—ModelI ‘ 49

Trang 8

4.4.1.3 Analysisthefactoraffecttotheprobabilitytogethousingloanforhousehold.

50

4.4:2Empiricalre‘sult—Model2 54

4.4.2.1Entermethod 54

4.4.2.2 BackwardLRmethod 54

4.4.2.3 Analysisthefactoraffecttotheprobabilitytogethousingloanforhousehold 54

CHAPTERV:CONCLUSIONA N D IMPLICATION 58

5.1Conclusionontheappliedmethodologyandlimitation 58

5.2 Co nclusiononthestudiedresults 58

5.3Policyimplicationinmacrolevel 59

5.4PolicyimplicationforHDBankaswellashousingcreditprogram 59

ReferencesAnne

x

Trang 10

DLH:DepartmentofLandandHouse

Trang 11

CHAPTERI : INTRODUCTION

1.1Problems t a t e m e n t

Theworldisflatonallfieldsbyglobalization,informationtechnologydevelopmentespeciallyintheeconomicfield.VietNamalso followsthistendencyb y joiningeconomicorganizationsinareaaswellasintheworldsuchasAFTA,WTO

Economicdevelopmentandreformsinthesectorhasbroughtincreasedurbanization.Urbanpopulationisexpectedtoincreasefurtherwithariseintheurbanization

levelsandinthepopulation.InaresearchofJBIC(1999)statedthatVietNamhasbeenexperiencingr a p i d u r b a n i z a t i o n o w i n g toeconomic d e v e l o p m e n t a f t e r theDoiMoipolicy,a n d urbanpopulation i s predictedt o increaseto46millioni n 2025f r o

m 1 5millionin1995

Urbandevelopmentand housingsector, especiallyi n HanoiandHCMC,is urgentlychallengedb y s w e l l i n g m i g r a t i o n f r o m r u r a l a r e a s , e x p a n d i n g i n f o r m a

l s e t t l e m e n t ,

emergingrelocationneedsbyinner-cityredevelopment,accelerating reformofSOEsthatprovidedt h e i r employees

w it h houses.Thisimpliesdemandf o r housingw o u l d increaseatafasterpaceinurbanVietNamintheshorttermtomediumterm

Tos o l v e u r b a n developmentandh o u s i n g p r o b l e m fort h e r e s i d e n t , V i e t

N a m islearningvaluablelessonsf r o m o t h e r c o u n t r y ’ s differentmodelsofh o u

s i n g development.Vietnameseauthoritiesclearlyorganizedandexposedaparticularplansuchasurband e v e l o p m e n t po li cy , r e a l e s t a t e institution, h o u s i n g d e v

e l o p m e n t a n d housingfinance Withhousingfinance,

theauthorityspecifiestwoaspectsaremunicipalhousingfunda n d h o u s i n g f i n a n

c e f a c i l i t y I n m u n i c i p a l housingf u n d , respective“Housingfund”wasestablishintheearly1990’s

in HCMCandin1998inHanoi.Thesefundsmobilizedcapitalsprimarilyfromthesalesrevenueoftheformerstate-

ownedhouses,andareusedforhousingfinance.AnotherfacilitynamedHIFUwassetupinHCMCin1997.HIFUmobilizescapitalsfrombankloans,equityandtrustfundentrustedbythe

Trang 12

Another furtherissueconcernsthisstudyisthehousingfinanceproject willsetupafacilitytoprovidemortgagesandloansforurbanlow-

incomeandpoorpeopletoimprovetheirpropertyorbuildorbuynewhomes.ItwillalsopromoteinstitutionalstrengtheningandcapacitybuildingtodevelopVietNam'shousingfinancesystem

Trang 13

1.4 Summaryonresearchm e t h o d o l o g y a n d data

Themethodisused,includingstatisticalanddescriptiveanalysis,reviewofhistoricaltrends,andcomparativemethods.Apartform,quantitativemethodisextensivelyused

Trang 14

Creditisthetradeofmoney,goodsorservicesatthepresenttimeforapaymentinthefuture.Creditcanbeprovidedinmanydifferentformsandunderawidevarietyofarrangements( K i n n o n Sc

o t t , 2000)

Borrowingisonesideofcredit.Ingeneral,borrowingisdefinedasthattobetransferredpropertyrightonagivenobject(e.g.sumofmoney)inexchangeforimplementingobligationofaclaimonspecifiedobject(e.g.acertainsumofmoney)atspecifiedpointoft i m e i n t h e f u t u r e I n e x t e n s i o n o f t h i s d e f i n i

t i o n , b o r r o w i n g b y h o u s e h o l d s , particularlyurbanhouseholdisdefinedasactivitiesofhouseholdstoobtainexternalresourcestosupportotherhouseholdactivitieswithobligationtorepayinfuture.Inotherway,borrowingismadebyhouseholdtofinancehousehold'sbudgetdeficit

Housingcreditmarketthepresenceofheterogeneityamongdifferenthouseholdinducestosituationwherebyhouseholdsfallintobudgetdeficitwhilesomeothersareinbudgetsurplus.Therefore,thedeficithouseholdsdesiretoborrowinordertocovertheirdeficitwhilesurplushouseholdsa l

s o desiretolendoutfortheiri n t e r e s t Consequently, householdcreditmarketisestablishedtofacilitateborrowingandlendingofhouseholds.Creditmarketfunctionistotransferpurchasingpowerfromsurplushouseholdstodeficitonesbyissuingandacquiringofmoney-denominateddebt

2.1.2Bankingtheory

Creditmanagement:howtodeterminethecreditworthiness?

4

Trang 15

termloandecision.Creditanalysisisanimportantstepwiththepurposeusingtomakeloandecision:acceptorrejectissuingcredit.Inordertomakecreditdecisionbanksmustdothreestepsfollowing:

- Collectingsu ffi cie nt &accurateinformation

- Analyzingandprocessingdatacollected

- Predictingabilityofrepayingseedandinterestofhousehold

Bycreditanalysis,bankscanreplacetheirexperiencesabouthouseholdandtheirprojectappliedforloanwithscientificallyargumentandevidencesrelyoninformationanddataprocessing.Therefore,creditanalysishelpbanksavoidingtwotypesofmistake:(1)givecreditforbadclient,(2)andrejectingthegoodone

InformationusingforcFeditanalysis

Trang 16

-Analysiscontents:analysisshouldbetargetedevaluationofcapacityrepayingloanthatmean,itevaluatewhethercustomercanrepayseedmoneyandinterestornot.Toappreciaterepaymentcapacityofcompany,wehavetodeterminedfactorseffectingtocustomer’srepaying-

debtcapacity.Inotherhand,creditanalysiscontentsshouldbeconcentratedintoanalyzefactorseffectingtoabilitytomeetobligation.Basically,abilityofrepayingloanisinfluencedby:

Therearetwomajorwaystoexplorecausesofcreditrationing.Firstly,traditionalviewsconsidercreditrationingresultedfromgovernmentinterventionsoncreditmarketbyimposinginterestrateceilingonlendinginstitutions.Interestrateisexogenouslyheldundermarketclearinglevel.Withinterestratekeepartificiallylow,somepotentialborrowerswhowant

distributedasymmetiicallya m o n g marketparticipants

Fragmentationofcreditmarketstronglyaffectstheborrowingbehaviorsofurbanhouseholds.Fragmentationofcreditmarket,firstly,isthoughtasaconsequenceoftherepressiveg o v e r n m e n t p o l i c y C e i l i n g r a te ondepositan d loanrateimposedbycentralbankinducestoseverecreditrationinginformalfinancialsector.Resultingfrominter-

linkagebetweenformalandinformalfinancialmarketstheunsatisfieddemandofhouseholdsforformalloanflowsintoinformalfinancialsectorandputdemandforinformalloanstoriseup.Secondly, it isviewedthatfragmentationofhouseholdcreditmarketiscausedbystructuralandinstitutionalf e a t u r e s ofcreditmarketi n developingcountries I n addition, fragmentationofcreditmarketmayalsoresultfromweaknessintheinfrastructure

6

Trang 17

sectorsareparalleldevelopedbecausetheyservedifferentsegmentsofcreditmarket

-I n conclusion,underperfectcreditmarket,borrowing,alongwithsaving,allowsurbanhouseholdstomaximizetheirutilityovertime.Resourcesorendowments,incomes,andactivitiesofhouseholdsdeterminethedemand

forloan.Theeffectsofthosefactorsonthedemandofurban

householdsforcreditarecalled"demandsideeffects".Ontheotherhand,c r e d i t marketc o n d i t i o n s a n d relationship betweenurbanhouseholdsandfinancialintermediariesaffectborrowingbyurbanhouseholds.Ifcreditmarketisinefficient,someofpotentialhouseholdborrowersfailtoaccesstocreditmarket.T h e r e f o r e , s e v e r i t y of creditrationingi s anexplanationforcreditconstraintofurban households;andhighfragmentationofcreditm a r k e t i s anexplanation f o r va r i o u s b o r r o w i n g

b e h a v i o r s o f ur ba n households.Borrowingbyurbanhouseholdsissubstantiallydeterminedbyconditionofcreditmarketsocalled"supplysideeffects".Thus,borrowingbyurbanhouseholdsisjointlyaffectedbybothdemandandsupplysidefactors

2.2 ExperiencesofhousingdevelopmentinsomeAsiancountries:

AswithLatinAmericaandAfrica,thenumberofurbanresidentsisfastexpandinginAsia.A s i a i s alsohometothel a r g e s t concentration o f poorpe o p l e i n theworld(Chapmaneta1,1999;Montgomeryeta1,2001).Aboutaquarter

ofthetotalurbanpopulationinAsiaislivingbelowthepovertylinealthoughtheproportionmaybehigherinsomecountries.IndiaandChinaeachholdsaboutathirdoftheregion’surbanpopulationwithmanylivinginrelativepoverty(Jacquemin,1999).Ofthe12millionpeopleinMumbai,forexample,about50percentlivesinslums,dilapidatedhousesandonpavements.Intheextreme,theyjointhenumberofhomelesspeople,estimatedtobeinexcessof100millionintheworld(UNCHS,1999).Inonerecentestimate,AsiaalonewillneedtoinvestasumofUS$280billionayearoverthenext30yearstomeetthebasicneedso f thepopulationi n housinga n d otherurbans e c t o r s (BrockmanandWilliams,1 9 9 8 )

ThelackofhousingaccessisoneofthemostseriousandwidespreadconsequencesandcausesofpovertyinAsiancities.Theimprovementsinhousingthatareimportanttoimprovingthequalityoflifeamongthepooroftendoesnotreceivetheattentiontheydeservefrompolicymakers(Da

niere,1 9 9 6 )

T o makeanyappreciableimprovement,substantialgovernmentspendingisneeded,bothinthephysicalexpansionofthecity’sinfrastructurea ndimplementationo f povertya lleviationprograms.Buttressedbytheheritageofliteraturethatarguestheimportanceofa

ffordableandimprovedhousingin

Trang 18

analysisoftheperformanceo f housingdevelopment.

FollowbyGlobalurbandevelopmentmagazineinSingapore(GUDS,1 1 / 2 0 0 7 ), inafundamentalperspective,withoutparalleleconomicdevelopment,the

housingimprovementswould nothaveadvancedsodramatically.DeliberateactionwastakentodiversifytheeconomyandprovideemploymentinSingapore.Witheconomicgrowth,thenominalhouseholdincomehadincreased.RealGDPhadgrownatanaverageof8.6%peryearoverthe30-

yearperiodfrom1965to1999.ThishadfuelledgrowthinrealpercapitaGDPfromS$4000in1965toS$32,000in1999(whileinflationremainedlow,around2to3%peryear).Atthehouseholdlevel,theaveragemonthlyhouseholdincomeincreased.AsNgandYap(2001)illustrated,from1988to1998,averagemonthlyhouseholdincomehadincreasedby6.7%peryear,leadingtohigherassetownership.Theproportionofhomeownershippublicflatsexpandedfrom26percentin1970to92percentofthehousingstockby1999

Althoughthefinancingofpublichousingdrawsfromthegeneral

generationpotentialofthissector.By2000,theHDB(HousingDevelopmentBoardofSingaporewasestablishedinthebeginningofyear1960)inprovidingatotalhousingenvironmentforallwholackhasinitiatedtheconstructionofmorethan850,000dwellingunits,1‘ 9,500commercialpremises,12,800industrialpremises,morethan1460schoolsandcommunityfacilities,45parks,17,347markets/

backgroundofthecountry’seconomicprogress,Singapore’sexperiencealsodemonstratestheemployment-hawkercenters,andnumerouscarparks.Theconstructionofthesefacilitieswhileprovidingimprovedhousingandbetterqualityoflifeforthepoorhascreatedconstructionjobsandhasahighmultipliereffect.Reflectingontheeconomicimpact,somehousingscholarssuchasSandilands(1992)havedescribedtheconstructionsectorasaleadingsectorsinceitsgrowthratesareabovetherateofgrowthofoverallGDP.Othershavewrittenaboutthepumpprimingeffectofpublicsectorhousingconstruction(seeKrauseetal,1987)

Aswithmanyothercities,Singapore’squesttoprovidei t s poorresidentswith go

odlivingenvironmentcisnotnew.Adequateshelterwiththepromiseofadecentlifeofdignity,goodhealth,safety,happinessandhopeisonethemethathasbeenrepeatedinternationallyandenshrinedinsuccessiveUnitedNationsdeclarations(see,forexample,

Trang 19

UNCHS,1 9 9 8 ; 1 9 9 9 ; WorldB a n k , 1 9 9 3 ) TheS i n g a p o r e d ev e l o p me n t e x p

e r i e n c e ,

however,showsthatpublichousing(evenhigh-rise)forthelowerincomefamiliesneednotdegenerateintopolarizedandmarginalenvironments.Nonetheless,thereemergenceofthehomelessunderscorestheurgency

forfurtherresearch.Inparticular,thetrendtowardstallerhousingpresentschallengesThepoorofSingaporedonothavethealternativetooptoutofthishousing.Inthisregard,weareremindedofMitlin’s(2001,p5l2)exhortationtounderstandandfollowtherealitiesofthepoorinthecontinuingefforttocreateaffordablehousingthatseektoaddresstheirdiverseneeds

Insummary,Singapore’ssystemofhousingdevelopmentwithasingleempoweredauthorityresponsibleforhousingdeliverymaynotbethemodelforallcountries,buteffectivepragmaticmanagementprinciples(suchasinclusivehousingandwideninghomeownershipopportunityforlower-

families,directedassistanceforlow-incomerenterhouseholdsa n d continualre vie w ofhousingaccess) apply inmostcontexts.Thereisagrowingliteraturethatemphasizesacomprehensiveapproachtohousing.SimilartosituationofChinaandThailandorotherAsiancountries,VietNamcangetthemostsuitablelessonsforhousingmarketandpolicyinthewayofeconomicdevelopment,

2.2.2InChina

China’shousingmarketandpolicycontextarerelativelyunique,differingfromthoseoftheuropeandtheUS,includingthepost-

Communistcountries (WangandMurie1999,Naughton1994).ThissectionthereforereviewChina

’shomeownership-orientedhousingpolices.Inthissectionandthroughoutthepaperthediscussionfocusesonurbanhousingpolicyonlybe.causeofthedifferentrulesandinstitutionalarrangementgoverninghousinginruralandurbanareas

Privatization

Aseconomic‘reformsdeepenedinthe1990sChina’spolicymakerssoughttoprivatizemuchofthepublicly-ownedhousingstockthathadbeenpreviouslyrentedfromthestateorstate-

ownedenterprises(SOEs).Indoingsothegovernmentwasmotivatedbyanumberoffactors,foremostofwhichwasthefactthatmaintenancecostlevelsranwellabovethenominalrentspaidbytenants.Zhang(2003)citesfiguresindicatingthatasof1991rentongovernment-ownedhousingaveraged0.13Y/

m2oflivingspace(enterprise-ownedhousingwasevencheaper)whileupkeepexpensesaveraged2.31

Y/m2.Undertheseconditionshousingcostsaccountedforonly

Trang 20

reformsdesigned t o encouraget h e development o f housingm a r k e t s L i u , Park,a n dZheng’s(2002)analysisoftherelationshipbetweenhousinginvestmentandeconomicgrowthfoundsignificantpositiverelationshipsoverboththeshortandlongruns:anotherimportantpolicymotivationforspurringdevelopmentofhousingmarkets.

HousingProvidentFund

TheHousingProvidentFund(HPF)wasdesignedin1992tohelpweanemployeesfromworkplacehousingprovision.Assuch,itwaspairedwithreformofthesalarysystem.Insteadofprovidinghousingdirectlyandpayingemployeesacorrespondinglylowersalary,theprogram’sgoalwastoenlistpublicsectoremployeesinthedevelopmentofthecommercialhousingmarketbyraisingtheirincomes

kindhousingbenefit,therebyencouragingthemtofindhousinginthemarketplace(Wang2001).Thereformwaspartofamoregeneralefforttohaveindividualsandmarketsreplacegovernmentandworkunitsastheentitiesresponsibleforhousing

butsiphoningtheincreaseintosavingsaccountsdedicatedtohousing,whilereducingtheirin-finance(Lee2000).Becauseemployerparticipationisnotmandatoryintheprivatesector,theprimaryHPFbeneficiariesaregovernment,party,SOE,andotherpublicsectorworkers,althoughsomeprivatefirmsandforeignjointventuresalsomatchemployeecontributions

InarecentoverviewofChina’shousingpolicy,Sun(2004)criticizesthetargetingoftheHPFsystem.Thisisreinforcedb y thefactthatevenmostworkingl o we r -

Trang 21

Declaration”affirmingthatsound,sanitaryandaffordablehousingforeveryoneiscentraltothewell-beingofnations.Italsoreaffirmedthathousingismorethanshelter;itisapowerfulenginethatcreatesopportunityandeconomicgrowth.Severalotherprincipleswerealsopromulgated:

(a)Housingasasustainednationalpriority:Housingisalong-termprocessthatrequiresastablepolicyframeworkandnational priorityattention

(b)Housinga s a n e n g i n e o f s o c i a l a n d e c o n o m i c d e v e l o p m e n t : H o u s i

n g b r i n g ssignificantbenefitsintermsofemploymentcreation,domesticcapitalmobilizationandsocialwellbeinginthefaceofthemajorchallengesposedbypopulationgrowthandurbanization.(SeeseminardetailsandBellagioHousingDeclarationinGHBNewsletter,41stedition,2005)Theconclusionsfrom

thismostimportantconferenceindicatedthatmanycountriesrecognizedthathousingismorethanshelter.Itisoneoflife’sessentialsandaprocessorengineofeconomicandsocialdevelopment.TheGovernmentshouldgiveahigh-priorityforestablishingalong-termhousingpolicyandstrategy

2.2.4 InKorea

In1962,KoreaNationHousingCorporation(KNHC)wasestablishedwiththemissionofimprovingthepubliclivingstandardsandwelfarethroughhousingconstructionandurbanredevelopment

KNHCi s a 1 0 0 percents t a t e

-o w n e d c -o m p a n y D u e t -o i t s s t r -o n g l i n k s w i t h t h egovernment,ithasbeenprovideddirectfundingassistancebythegovernmentintheformofequitycontributionsandloansfromtheNationalHousingFund

KNHC'sorganizationconsistsofMainOfficewith20Divisionsunder4HeadDivisionsand1 ResearchI n s t i t u t e , 2RegionalH e a d D i v i s i o n s i n SeoulandGyeonggi,and 1 0BranchOfficesinothermajorcities

However,theliabilities,theaccruedinterestofwhichshouldbepaidbyKNHC,areonly2,254billionwonoftotal9,301billionwon

Tenantsand.housingbuyerswillpaytheinterestexpensesoftherest(7,047billionwon)

whichchieflycomesfrom NationalHousingFunds

Trang 22

KNHCwillb ereborna s

Anyfuturechangesinratingwouldoccurifthecountry'ssovereignratingischanged,itsaid.Downwardpressuremay occurifthegovernment'sfiscalconditionweakens,orifthecorporationisprivatized.RivalratingsagencyStandard& Poors(S&P)alsogavethecorporationa foreign-currencycreditratingof"Aminus"andadomestic-

currencyratingof"A."S&P'soutlookforthecorporation'screditratingis"stable."

Thecreditratingreflectsthecorporation'sfirmstatusintheSouthKoreanhousingmarketanditshousingprojectsforthecountry'slow-incomepeople

2.3 Theoreticalmodelsandempiricalliteratureforhousingdemand

2.3.1Generalobservations

Housingloanforhouseholdseemtobeavailableinmanycountries,includingatleastFinland,UK,Japan,Spain,Portugal,Italy,France,Norway,Sweden,US,Australia,Germany,Belgium,Thailand,Philippines Thisappliesespeciallywelltocontributionsthatconsiderindebtednessasaproblem.Itseemstobe

particularlydifficulttofindsimulationbasedanalysesonhouseholddebt.Instead,descriptiveanalysesseemtobemorecommonplace.Thereareafewtheoreticalcontributionsonhouseholddebt.Thepermanentincomehypothesis,presentedbyMiltonFriedmanin1957,statesthatpeoplebaseconsumptiono

n whattheyconsidertheir‘normal’incomeeventhoughtheirincomesmayvaryconsiderablyintheshortterm.Thismaycreateoccasionalneedstoincurloan.Thelifecycleapproachissomewhatsimilartothepermanenti n c o m e hypothesis,butitemphasizestheimpactofchangesinwealthonconsumption.Neitheroftheseapproachesfocusesonproblemsrelatedtoindebtednessofhousehold.Thispartfocuseso n d e t e r m i n a n t o f h o u s i n g l o a n a n d l o a n a m o u n t c

a u s e d b y h o u s e h o l d ‘indebtedness

Beforegoingtotheliteratureofhousingloanandloanamount,reviewingsomeliteratureofhousingdemandandhousingcreditinsomecountrieshelpknowdeeplybelowliteratures

12

Trang 23

rij——r H j , t j , x,Yi,;ri,zj„i;-)

wherePisthepriceofaunitofhousingservicesincommunity/

tenurechoicej,IisthestatutoryHjjpropertytaxrate,Pisthepriceofthecompositegoodthatisthenumeric,Yisincome,Xisavector ofhouseholdcharacteristicsthatareindependentofthechoiceofcommunity/tenure,Zi s a j

vectoro f l o c a l p u b l i c g o o d s a n d o t h e r c o m m u n i t y characteristics,andcontains unobservableijcharacteristicsthatvaryacrosshouseholdsandcommunities

Householdincomeandthepriceofthecompositecommodityareexogenous.Thepriceofhousingreflectsthesupplypriceofhousingandanycapitalizationofthecommunitymixofpublicservicesandtaxlevels.Pisconstantacrossallinanygivenj,butdiffersacrossHjjurisdictionsandacrosstenurestatus

ClusandRalph(2007)alsohadresearchofhousingdemand Beyondmoney,monetarypolicyandfinancialdevelopmentshousingmarketsarecertainlyalsoinfluencedbyotherfactors,suchastaxes,demographicsandotherdevelopmentsdeterminingthedemandforhousing.Thisresearchalsostatedtherelationsbetweenhousingloanandhousingdemand.MarcoSalvi(2007)alsopresentedthemodelforthedemandofhousingintheGreaterZuricharea.Besidesthat,therearejustfewempiricalofhousingdemandsuchasBajariandKahn(2002);Ferreira(2004);Bayer,McMillan,Ruben(2002).Allthesepapersexposeanalysisconcernedtohousingdemand.Theseliteraturesofhousingdemandprovethathousingdemandisalwaysburningissueinmanycountriesintheworld

2.3.2Determinantsofhousingloan

Thereseemtobehardlyanytheoriesondeterminantsofhousingloanforhousehold.Instead,therearenumerousempiricalanalysesonhouseholds’debtservicingdifficulties

Maya n d T u d e l a ( 2 0 0 5 ) u s e d Britishd a t a t o s t u d y w h i c h factorsd e t e r

m i n e d thelikelihoodofh a v i n g d e b t s e r v i c i n g d i f f i c u l t i e s U n e m p l

o y m e n t , highl e v e l s o f indebtednessandahighproportionofnon-collateral

debtincreasedthelikelihoodofproblems.Difficultiesseemedtobeofpermanentnature;pastproblemswereagoodpredictoroffutureproblems.Therewasalmostnoevidenceofhousingwealthpreventingdifficulties.Thismightbedue

Trang 24

difficulties,eventhoughcollateralcertainlyreducesbanks’creditrisks

MayandTudelaintroduceanewconcept,namely‘debt-at-risk’,anindicatorofcreditrisk.Itissimplythesumofhouseholdlevelhousingdebtmultipliedbythehouseholdlevellikelihoodoffinancialdistress.Ifitispossibletoidentifythedeterminantsofthelikelihoodofdistress,andifmicroleveldataareavailable,itispossibletocalculatetheaggregateamountof‘debtatrisk’andhowitwouldreacttochangesintheparameters,suchasincome,age,housevalue,housesize,etc.Thesectionsafterofthispaperapplythisconcept

LiuandLee(1997)usedv ar i o u s methodstostudythedeterminantso f housinglo

an

defaultsinTaiwan.Severalfactors,includingtheloan-to-valueratioandthelevelofeducation,s e e m e d t o c o n t r i b u t e t o t h e o c c u r r e n c e o

f p r o b l e m s P r o b l e m s w e r e particularlyc o m m o n p l a c e a m o n g theyoungest.Bowie-

CairnsandPryce(2005)foundwithBritishdatathathouseholddebtservicingabilitywasanincreasingfunctioninthelevelofeducation,ageandmarriedstatus.Familieswithmanychildrenweremorelikelytohaveproblems.Geographicfactorsseemedtoplaysomerole.Partially,Bowie-

CairnsandPrycementionsomemajorcharacterseffecttotheloanpaymentasfollow:

NumberofchildF£!ninahouseholdandpaymentdifficulties

Anincreaseinthenumberofchildreninahouseholdisassociatedwithhigheroutgoingsandlessavailablefinancestorepaydebt.Itisworthexploringtheirexperienceofmaintainingpayments.However,withineachyearcomparisonbetweenhouseholdswithdifferentnumbersofchildrenconfirmsthat,inmostcases,asthenumberofchildrenincreasestherateofrepaymentdifficultyandarrearsincreases

SimilartothecaseinHDBank,theexpectedresult CairnsandPryce.TheresultofregressionofthisresearchwillbeshowndetailsinchapterIV

likesresultofBowie-

Astoloanswithnocollateral,Del-RioandYoung(2005b)concludedthathighlevelsofdebtandfactorsrelatedtomarriedstatusandethnicitywererelevanttotheoccurrenceofproblemsamongBritishhouseholds

14

Trang 25

Intheseresearches,majorvariablesstronglyeffecttotheprobabilityofhousingloanwhicha r e i n c

o m e , a g e , s e x , h o u s e v a l u e , h o u s e s i z e , p r i n c i p a l , r e s i d e n t i a l status,occupation,interest,maritalstatus,credittype,etc.InrealconditionofVietNamandabilitytogetthedata,theauthorwillchoosesomevariablesinthemodelassex,age,education,income,size,housevalue,maturity,collateralsandloanamountfortheprobabilitytogetahousingloan.BanksinVietNamusuallyhavehousingcreditwithcommonconditionsasprincipal,income,interest,maturity.Butinsituationofeconomicdevelopingandpressureofjoiningtheworldeconomic,commercialbankinVietNamshouldhasmorecreditprogramespeciallyhousingcreditasmentioningwithflexibleanddiversifiedconditionformanyobjectives.This

researchbuildsamodelwithmanyvariablest o g e t m e a n i n g v a r i a b l e s a n d m a i n

v a r i a b l e s h a v e d e e p l y e f f e c t t o t he probabilitytogetahousingloan.Fromtheresultofthisresearch,commercialbankwillhasmorehousingcreditprogrambasedoncharacteristic

Brown,Garino,TaylorandPrice(2003)found

thatoptimismseemedtostrengthenthedemandfornon-collateralloans,eventhoughafteracertainlevelthedegreeofoptimismhadnoimpact.Factorssuchasspouseincomeandsavingsseemedtohavenoimpact

RiiserandVatne(2006)presentedobservationsonNorwegiandata from198G—

2003.Householddebthadbeenonincrease,especiallyamongtheyoungesthouseholdsandthosewithlowincome.Thegrowthoffinancialwealthhad takenplaceaboveallinhouseholdswithnodebt

Magri(2002)studiedtheoccurrenceofdebtamongItalianhouseholds.Higherincomestrengthenboththe‘demandforloansandtheavailabilityofcredit,whereasbeinganentrepreneur

strengthenedthedemandforcreditbutmadeitmoredifficulttoobtainloans

BrownandTaylor(2005)studiedthedeterminationofhouseholdfinancialwealthanddebtintheUK,GermanyandtheUS.Therewasaclearcorrelationbetweenfinancialwealthanddebt.Ifhouseholdswithnodebtwereexcluded,thecorrelationvanished

Trang 26

propertyincomeofpensioners.Thiscouldbethoughtofasarisingfromacutinthestatepensionoraworseninginpayoutsfromcompanypensions.Itismodeledas20%pointdeclineintheagepremiuminoldagethatisassumedtobepermanentandoccursunexpectedlyinthe2026—

30period(itreducesthenon-propertyincomeof

thoseover60by20%).Whentheshockoccurs,allcohortsreducetheirconsumptionofgoodsandhousing,butthosewhowillhavejust

retiredreducetheirconsumptionthemostastheyexperiencethelargestproportionatedeclineintheirlifetimeincome.Thedeclineofaround12%(forthoseaged61

65)intheirimmediatespendingissmallerthanthedeclineintheirnon-propertyincomebecausetheirspendingisalsodependentonwealthwhichisnotaffectedbythechangeinincome.ThisresultisthesimilartothisresearchandinVietNam.Whentheoldofhouseholderincreasesorthehouseholderisonretire,theprobabilityofhousingcreditdecreases

Crook(2001)analyzedthe1995USSurveyofConsumerFinancesdata;thedemandforhouseholdloansseemedtobeanincreasingfunctioninincomeandfamilysize

DavydoffandNaacke(2005)presentedapurelydescriptivereportonthedistributionofhousingandconsumer

loansinFrance,Britain,GermanyandItaly.HousingloanswereparticularlycommonplaceintheUKbutremarkablyexceptionalinItaly,eventhoughowner-

occupiedhousingisparticularlycommonplaceinItaly.Inallthecountriesthedeterminantsofhousingloanamountwererathersimilar

Lendingornotandhowmuchforlendingareoneofthemostimportantaspectsofboththelenderandtheborrower.Therearealsoresearchesconcernedloanamount.Similartothemodelofhousingloan,themodelofhousingloanamountisbuiltwithvariablesassex,age,education,income,size,housevalue,maturity.Inreal,thismodelhasdetailanalysisofhousingcreditforthehousehold

2.3.4Theoreticalm o d e l

s Thebasicmodel

ThebasicmodelofChung(2000)basedonassumptionsthatthereisahouseholdlivesintwoperiodswithinaperfectmarket.Thehouseholdhasainter-temporalutilityfunctionandbehavesrationally

Thehouseholdchoosetoconsumeatthelevelsthatmaximizeitsutilityovertime.Ifitscurrentincomeislessthanitscurrentconsumption,thehouseholdmustborrowtoobtainhigherlevelofutility

Generally,thebasicmodelindicatesthefactorsaffectinghouseholddemandforloanarecurrentconsu

mptionlevel,incomeandasset.Itimpliesthatthedemandofhouseholdfor

16

Trang 27

WhereAs isinitialamountofassets;YiIsthecurrentincome;Yisfutureincome;andrismarketrateofinterest.Theequationexplicitlyindicatesthatthedemandofhouseholdsforloan

risesifpreferenceforcurrentconsumptionbeinghighorexpectedincomeincreasingo r amountofinitialassetsandcurrentincomeaswellasinterestratesdropping.Thus,thebasicmodelshowsthatborrowing,alongwithsaving,allowsthehouseholdto

smoothitsconsumptionpathandtomaximizeitsutilityovertime

Theextendedmodel

Inextensionofthebasicmodel,suchfactorsashouseholdresources,activitiesandflowsofresourcesareincludedtoidentifydeterminantsofthedemandofhouseholdsforloan;andsomeassumptions a r

e changed T h e models h o w s thatt h e de ma nd o f urbanhouseholdsforloanincreaseswithitsliquidityrequirementsforactivities.Chung(2000)writethatlevelofhouseholdbudgetdeficitdeterminesthelevelofborrowing:B=dR- ;wwhheerreeBBisthelevelofborrowing;dRisthechangeinassets;Yj isincomejthofthehousehold;andFgistheoutflowofexpendituretofinanceactivitygg.Increasesinsuchhousehold‘activitiesasconsumption,productionandinvestmentcreateincreasingo u t f l o w

s o f household r e s o u r c e s I f i n f l o w o f resources f r o m i n c o m e generatingactivitiesandassetswouldnotmeetoutflows,demandforloanmayrise.Theaboveequationshowsthatthedemandofthehouseholdforcreditappearswhenflowsofincomeandchangesinhousehold'sresourcesdonotmeetdemandforfundingthehouseholdactivities

Hence,thedemandforloanappearsand riseswhenhouseholddeficitgap appearsandbroadens.Thedemandofthehouseholdforloanisdeterminedbyhouseholdresourcesandactivities.2.3.5Empiricalmodelsappliedinpreviousstudies

ModelappliedbyEgertandMihaljek(2007).

Egerta n d Mih al jek ( 2 0 0 7 ) h av e b o t h s h o w n thath o u s e p r i c e d y n a m i c s a r e usuallymodeledintermsofchangesinhousingdemandandsupply(seeexHMTreasury,2003).Onthedemandside,keyfactorsaretypicallytakentobeexpectedchangeinhouseprices(PH),householdincome(Y),therealrateonhousingloans(r),financialwealth(WE),demographicandlabormarketfactors(D),theexpectedrateofreturnonhousing(e)andavectorofotherdemandshifters(X).Thelattermayinclude3proxiesforthelocation,a

geandstateofhousing,orinstitutionalfactorsthatfacilitateorhinderhouseholds’

Trang 28

OzlemOzdemir(2004)constructeda

conceptualmodeltoexplaintherelationshipbetweenconsumercreditclients’paymentperformanceandcreditcategory,interestrate,sex,age,maritalstatus,income,loansize,maturity,residentialstatusandoccupation.Theequationofthemodelisasfollows:

A=o+§collateral+yjcreditriskorborrowervariables+‹ptrelationshipfactors+(rother+c

Where

Collateralisthecollateralvirtueaspercentageofloanvolume,

Creditriskorborrowercharacteristicsvariablesincludeavectorofjvariablesthatshowthedirectandindirectcreditoftheborrowersuchasassetsize,age,liabilities-to-assetsratio,currentratio,interestcoverageratio,andthelike,

Relationshipfactorsrepresentavectoroftvariablesthatshowtherelationshipbetweentheborrowerandfirmsuchashousebankstatus,relationduration,andnumber

ofbanksthattheborrowerhasrelationshipswith

Otherrepresentsavectorofrvariablesthatcapturestheyearsoflending,banktypeofthelendingbanks,sectorclassification,etc

Trang 29

ModelappliedbyL.Ellis,J.LawsonandL.Roberts-Thomson( 2 0 0 3 )

Fromt h e r esul t o f ane c o n o m e t r i c m o d e l , t h r e e k e y v a r i a b l e s e f f e c t t o t h eh

o us in gleverageforhouseholdasageofthenhouseholdhead,householdincomeandhouseholdhousingwealth

ModelappliedbyI.BalkirFatmaHassanIsmailandS.Al-Segini( 2 0 0 6 )

TomeasurethepossiblerelationbetweenvariablesandtheamountofloanorgrantallocatedtotheUAEnationals,threeregressionmodelsareused.Thegeneralspecificationofthemodelsisasfollows:

withvariableswhichcanbegottenthedataandinformation.ThedetailofthemodelforthisresearchwillbeshowninthenextchapterIII

Trang 30

3.1 Analyticalframework

3.1.1 Hypotheses

The

aboveanalyticalgroundproposesthatcharacteristics,endowmentsofhouseholdsandloancharacteristicswoulddeterminetheprobabilityofgettingahousingloanofaborrower.Therefore,thefollowinghypothesesareraised

3.1.2 Determinantsoftheprobabilitytogetahousingloan

Thismodelshowsthedeterminantsoftheprobabilitytogethousingloan.Thetesteddeterminantsoftheprobabilitytogetahousingloanaresex,age,educationlevel,incomeofborrowerandHowdothevariablesaffecttotheprobabilitytoborrowofurbanhouseholdsandwhichvariable

isstronglyaffectstheprobabilitytoborrowofurbanhouseholds.Thevariabledefinitionofthismodelasfollow:

20

Trang 31

Educationofhouseholdleader:levelofeducationaffectsrobustlytheiroccupationandincome.Thestabilityofoccupationandhighincomeensurethecapacitytopaybackthehousingloan

Incomeo f household:t h e l e v e l a n d the s t a b i l i t y of incomea r e important f a c t o r

s i n

evaluatingthecapacityofrepaymentfromhousehold

Sizeofhousehold:thisfactoraffectsstronglysavingsandexpendituresofhousehold.Becauseanincreaseinthenumberofchildreninahouseholdisassociatedwithhigheroutgoingsandlessavailablefinancestorepaydebt,itisworthexploringtheirexperienceofmaintainingpayments

Numberofincomeearnersinhousehold:thisfactorvigorouslyimpacttosavingsandincomeofhousehold.Themoreincomeearners,themoresavingsare

Valuesofhouse:housevalueisvaluated

asacollateralsecurityincasewithoutcollateralforhousingSloan.Besideshousevalueshowthesavingsofhouseholdatthetimewherethehouseholdgettheloanandtheloanamountwhichthehouseholdwanttoget.Maturity:intuitively,probabilityofcreditforhousingincreaseswhenmaturityincreasesbecause

themoreprobabilityofperiodicrepaymentfromhousehold.Itmeansthatthelongerterm,thesmallerperiodicprincipalandinterestofhousehold

Collateral:Assetpledgeincaseofdefault.Ifloanwasguaranteedbymortgageorpledgeasset,itwillcementresponsibilityandobligationofborrower.In

caseofinsolvent,collateralturntobesecondreceivableofbanks,however,mortgageorsecurityassethasaccommodatetorealisticc o n d i t i o n s

Loanamountorloansize:effecttoprobabilityofcreditdelinquencyincreases

whentheloansizeincreases.Sothisfactorwilldefineapositiverelationshipbetweenloansizeandhousehold’paybackperformance,assumingthereisnoinflation.Thelendersgenerallyprefergivingthiskindofcreditforlowerloansizeinordertodecreasetheirrisk

3.1.3Determinantsofloanamount

Thesecondmodelattemptstoprovethatcharacteristicsandendowmentsofhousehold,andloancharacteristicsdetermineloanamountsborrowed.Thetesteddeterminantsofloana m o u n t a r e a g e o f households, h o

u s e h o l dsize,house o f value,householdexpenditure,occupationsofhouseholdmembersand

numbersofdependants Which

Trang 32

amount.Thevariabledefinitionofthismodelasfollow:

• Dependentvariable

Theloanamountofhousingloan forhousehold:thisvariableismeasuredb a s i n g onprivatecharacteristicsofborrowersandstatusofborrowers’household

Trang 33

B- + a ; S E X + a AGE+ a EDU+ I NCOME +a5SIZE+HHNO+

a7HOUSEVAL+ agMATUR+a9COLL+aieLA

• Definitionandexplanationofvariablesofthemodel1:

+Dependentv a r i a b l e :

Bistheprobabilitytogetahousingloan.It’sabinaryvariablehavingtwovalues(0;1).Value[TJmeansacasethatborrowergotahousingloanwhilevalue[0]indicatesacasethatborrowerwasrefused

2 AGE - More agei s l e s s p r o b ab i l i t y to getloan,

Trang 34

3 EDU + Ifthehouseholdheadhashighereducationlevel,theprobab

ilitytogethousingloanwouldbehigher.Inthiscase,theexpectedsignis(+);incontrary,theexpectedsignis(-)

4 INCOME + Moreincomeismoreabilitytogethousingloan

becausehighincomeguaranteehighpayment

5 SIZE - Bigsizeofhouseholdistoincreaseexpendituretogetherwith

decreasingincomeaswellasdecreasingpayment

householdnumbercanearnmoreincomealongwithincreasingpaymentcapacity

hashousevalueasmuchaspossiblebecauseh o u s e v

a l u e i s t h e c o l l a t e r a l o f t h e housingl oa nandhousevalueis highwhichmeansthatloa

islowandriskfromthehouseholdalsoislow

8 MATUR + Longtermofloanmaturityissynonymouswithincrea

singpaymentformhousehold.Thelongermaturityofhousingloan,thesmallertheperiodicprinciplewhichtheymusttopay.Itmeans

thattheirincomeensurerepaymentfromhousehold

9 COL + Ift h e h o u s e h o l d headhascollateral,t h epr

behigher.Inthiscase,theexpectedsignis(+);incontrary,theexpectedsignis(-)

theh i g h e rprobabilitytogetthehousingloanis

Model 2

24

Trang 35

+ Moreageislessloanamount.

3 EDU + Ift h e h o u s e h o l d h e a d h a s h i g h e r e d u c a

t i o nlevel,t h e h o u s i n g l o a n a m o u n t w o u l

Trang 36

4 INCOME + Morei n c o m e i s more h o u s i n g l o a n a m o

u n t becausehighincomeguaranteeshighpayment

5 SIZE - Bigs i z e o f h o u s e h o l d ist o i n c r e a s eexpe

ndituretogetherwithd e c r e a s i n g incomeaswellasdecreasingpayment.Itmeansthatbiggersizeislessloanamount

increasingpaymentcapacity.Somorehouseholdnumbercanearnismoreloanamount

HOUSEVAL

+ Householdha s housevalueasmuchaspossi

blebecausehousevalueisthecollateralofthehousin

gl o a n and h o u s e v a l u e i s highwhichmeansthatloanamount

frombankislowandriskfromthehouseholdalsoislow

8 MATUR + Longt e r m o f l o a n m a t u r i t y i s s y n o n y

m o u swithincreasingpaymentformhousehold.Thelongermaturityofhousing

loan,thesmallertheperiodicprinciplewhichtheymusttopay.Itmeansthattheirincomeensurerepaymentfromhousehold.S o morematurityismoreloanamount

2isthesimilartothemodel1.Butthesignofagevariableisdifferentfromthemodel2.Theagevariableinthemodel2willbepositivesign.Inlaborage,themoreageisthehigherworkingpositionandincome

3.2 Datasourceandsampling

3.2.1Datasource

DataisusedinthisthesiscollectedfromdatabasesystemofHDBank

Dataincludes bothindividualinformationandhouseholdinformationoftheborrower.Theborrowersarethepersonswhocangethousingloan(inmodel1&2)andcannotgethousingloan(inmodel1)

26

Trang 37

authorwanttoapplytheresultofthisresearchtorealityofVietnameseeconomyespeciallyHDBankcase.NowVietNamhasmanydifficultiestofacethehighinflation,economic

crisisallindustries,tighteningmoneypolicyofSBV OncemoreimportantthingistheviolentcompetitioninbankingfieldatthetimeofundertakingtoparticipateinW T O T h i s r e s e a r c h w i l l h a v e

m a n y m e a n i n g f o r ban kt o f i n d o u t t h e s t a b l e developingstrategyparticularinc

hasafortunatechangetojoinmodemprojectofbankinallmodule(kernel,generalledger,customerlending,branchteller ).That’scorebankingproject.Almostofdataforthisthesiscanbeextractedfromthecorebankingsystem.AnotherfortuneissupportandpermissionofHDBankgeneraldirectortoallowandtosignadecisionfortheauthortogetthedata

Theconditionsforgettingthedataforthisthesisare:

- Loaninformationandcustomerinformationfromheadofficeandbrancheso

fHDBankinHCMC.Becauseofgeographicconditions,it’sdifficulttogetdataofsomevariablessuchassizeofhousehold,thenumberofhouseholdcan

earnincome fromarchivesofbranchesareoutHCMC

- Loaninformationandcustomerinformationmusthasenoughforallvariablesofthesissuchas:sex,age,education,incomeofhousehold,sizeofhousehold,housevalue,maturityloan,collateral,loanamount

DataisusedintheanalysisfromthecorebankingofHCMCHousingDevelopmentBank.Theanalyzeddataareoftheyear2005,2006and2007.Thereasonwhychoosetheseyearare:

- Theinflationrateislowsononeedtochangesomevariablevalueinfixedlevel;

-R e a l estatemarketisstableandhasgoodgrowth;

-RegulationandpolicyofHDBankareconsistent,stable,nosignificantchangescomparewiththeyear2008

Population(totalcasesofborrowersandloansthatyouareabletoaccess)

Totalcasesofborrowerscangetthehousingloansare1408casesinHCMCbranches.Icannotdefineexactcasesofborrowersbecausemanycasesarenotkeptinarchives

3.2.2Sampling

Samplesize

Thesamplesizeconsistsof306observedcases.Ofwhich,thereare198casesgettingahousingloanfromtheHDBankand108casesrefusedtogettheloan.ComparedtothetotalborrowingcasesoftheHCMCbranchoftheHDBank,thesampleoccupies21.7%

Samplingmethod

Trang 38

-Bythepossibilitytogetaloan:thepopulationisdividedintotwostratums:thecasesthatw e r e a c c e p t e d a n d r e f u s e d t o getthehousing l o a n ( 6 5 % a n d 3 5 % ofcasesaskingloanfromtheHDBank—figure2.1)

- Bytheobservedyearsincombinationtothegrowthrateinbusiness( f i g u r e 2.2):thesamplesaredrawnbyyearfollowingthepercentageo f eachyearbusinessi n c

Figure2.1sho ws thest ru ct ur e ofthepossibilityt o gethousingloanornot.Totally,

Blmprobabllltyt o

g e t loan

28

Trang 39

Figure2 2 s h o w s thestructureofs a m p l e s in

everyyearbyprobabilityandimprobability.Theobservationwillbepickedfollowbygrowthratepercentageoftotalhousingloanamount.Totalhousingloanamountinyear2005,2006,2007are413,591,2268billionVNDwithinturnpercentageare43%

ThecasesacceptedforahousingloanThecaserefusedtogetahousingloan

Oyear2005

■ year2006 Oyear2007

3.3 Analysism e t h o d s

3.3.1Statisticaltestsfordescriptiveanalysis

Descriptiveanalysiswillbeappliedinthestudytounderstandthecentraltendency,thedispersionandthedistributionofthesamples.DetailofstatisticaltestfordescriptiveanalysiswillbepresentedinchapterIV(item4.3)

Trang 40

- Multico-linearitytest:Multico-linearitytestslinearrelationshipsbetweentwoormoreexplanatoryvariables.

- Autocorrelationtest:Durbin-Watson(DW)testwillbeusedforautocorrelationofvariables

3.4Analytictool

AlldataofthisthesiswillberunbySPSSsoftwareincludesanalysessuchas:statisticaltestsfordescriptiveanalysis,correlationanalysis,testsforvalidityofspecificmodels

Ngày đăng: 28/10/2020, 22:25

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w