VIETNAM-NETHERLANDSPROGRAMMEF O R M.AINDEVELOPMENTECONOMICSANANALYSISOFHOUSINGCREDITPROGRAMFOR URBANHOUSEHOLD CASESTUDYINHCMCHOUSINGDEVELOPMENTB ANKHDBANK ATHESISPRESENTEDBYDOHONGNGOC IN
Trang 1VIETNAM-NETHERLANDSPROGRAMMEF O R M.AINDEVELOPMENTECONOMICS
ANANALYSISOFHOUSINGCREDITPROGRAMFOR
URBANHOUSEHOLD CASESTUDYINHCMCHOUSINGDEVELOPMENTB
ANK(HDBANK)
ATHESISPRESENTEDBYDOHONGNGOC
INPARTIALFULFILMENTOFTHEREQUIREMENTFOR THE
DEGREEOFMASTEROFARTSINDEVELOPMENTECONOMICS
SUPERVISOR
Trang 2“Icertifythatthesubstanceo f thisstudyhasnotalreadyb een s u b mi t t ed f o r anydegreeandisnotbeingcurrentlysubmittedforanyotherdegree
Icertifythattothebestofmyknowledgeanyhelpreceivedinpreparingthisthesis,andallsourcesused,havebeenacknowledgedinthisdissertation.”
HoChiMinhCity,February2009
DoHongNgoc
Trang 4VietNami s goingo nth e wayo f modernization,i n d u s t r i a l i z a t i o n a n d esp eci
al ly o f globalizationwiththepurposeofeconomicdevelopmentandenhancingthelifestandardoftheresident.ThisimpliestoincreasefurtherwithariseintheurbanizationlevelsandinthepopulationalongwithincreasingthedemandforhousinginurbanofVietNam.Tosolvethedemandofurbanhousehold,thegovernmenthasmanypoliciestosupporttheresidentsuchashousingfinancesystemfrombankorotherfinancialinstitution,housingprogramforlowincome Thisstudyonlyconcentratestoanalysishousingcreditprogramf r o m b a n k f o r u r b a n h o u s e h o l d o n t w o m a j o r a s p e c t s T h
e f i r s t i s t h e determinantsofprobabilitytogetahousingloan.Andthesecondisthedeterminantsofhousingloanamount.Sothehouseholdshouldimprovetheircharacterandcapacitytobeableto‘borrowhousingloa
havesuitablecreditpolicyandconditionforthecustomertospeedupeffectiveandsustainablecreditdevelopment
Trang 5TABLESO FCONTENTS
Certification , i
Acknowledgement , ii
Abstract iii
Contents i
Listoftablesandfigures viii
Abbreviation ix
CHAPTER‘ I : I N T R O D U C T I O N 1
1.1Problemstatement I 1.2Objectivesofthestudy 1
1.2.1Generalobjective 2
1.2.2Specificobjective 2
1.3Researchq u e s t i o n 1.4 Summaryonresearchmethodology a n d data 2
1.5Theorganizationofthethesis 3
CHAPTERII:LITERATUREREVIEW 4
2.1Theorybac 2.1.1Majorconcepts 4
HouseholdCredit Borrowing Householdc r e d i t market 2.1.2Banking theory ‘ 4
Creditmanagement CreditanalysisandloandecisionIssuesincredit market 2.2ExperiencesofhousingdevelopmentinsomeAsiancountries 7
2.2.1InSingapore 8
Trang 62.3Theoreticalmodelsandempiricalstudiesforhousedemand 12
2.3.1Generalob servations 12
2.3.2Determinantsofhousingloan 13
23.3Determinantsofloanamount 15
2.3.4Theoreticalm od e ls 16
Thebasicmodels 16
Theextendedmodels 16
2.3.5Empiricalmodelsappliedinpreviousstudies 17
CHAPTERIII:RESEARCHMETHODOLOGY 20
3.1Analyticalframework 20
3.1.1Hypotheses 20
3.1.2Determinantso f theprobability 20
3.1.3Determinantsofloanamount 21
3.1.4Specificempiricalmode ls 22
Model1 22
DescriptionofthemodelI 22
Definitionandexplanationofvariablesofthemodel1 22
Expectedsignsofthevariables’coefficients 23
Model2 24
Descriptionofthemodel2 , 24
Definitionandexplanationofvariablesofthemodel2 24
Expectedsignsofthevariables’coefficients 25
3.2 Datasource 3.2.1 Datasource 26
Whereisdatasource? 26
Whatisitsva1idip? 26
Whenaretheycollected? 26
Population 26
3.2.2Sampling 27
Trang 7Samplingmethod 27
3.3 Analysism e t h o d s 29
3.3.1 Stat isticaltestsfordescriptiveanalysis 29
3.3.2 Correlationanalysis 29
3.3.3 Statisticaltestsforvalidityofspecificmodels 30
3.4Analysistool 30
CHAPTERIV:RESULTSAND DISCUSSION , 31
4.1 SituationofhousingcreditprogramforurbanhouseholdinHeChiMinhCity 31
4.1.1Housingdemandofurbanhousehold 31
4.1.2Nationalstrategyonhousinguptotheyear2010 31
4.1.3 Theoverviewofurbanfinancialsystem,borrowingbyurbanhouseholdsand housingf i n a n c e project 32
FinancialsystemandsourceofcredittourbanhouseholdsinVietNam 32
Overviewofborrowingby urbanhouseholds 32
4.1.4 HCMCHousingdevelopmentprogram 35
4.2HCMCHousingDevelopmentBank 35
4.2.1OverviewofHDBank 35
4.2.2 HousingcreditprogramofHDBank 38
4.3HCMCHousingDevelopmentBank 40
4.3.1 Analysis o f borrower’c h a r a c t e r i s t i c s 40
4.3.2 Correlationa n a l y s i s 44
4.3.3 Statisticaltestsforvalidityofspecificmodels 47
4.3.4Descriptioncollectingdataandchoosingsuitablemethod 48
4.4Resultsofmodelstestingandexplanation 49
4.4.1Empiricalresult—ModelI ‘ 49
Trang 84.4.1.3 Analysisthefactoraffecttotheprobabilitytogethousingloanforhousehold.
50
4.4:2Empiricalre‘sult—Model2 54
4.4.2.1Entermethod 54
4.4.2.2 BackwardLRmethod 54
4.4.2.3 Analysisthefactoraffecttotheprobabilitytogethousingloanforhousehold 54
CHAPTERV:CONCLUSIONA N D IMPLICATION 58
5.1Conclusionontheappliedmethodologyandlimitation 58
5.2 Co nclusiononthestudiedresults 58
5.3Policyimplicationinmacrolevel 59
5.4PolicyimplicationforHDBankaswellashousingcreditprogram 59
ReferencesAnne
x
Trang 10DLH:DepartmentofLandandHouse
Trang 11CHAPTERI : INTRODUCTION
1.1Problems t a t e m e n t
Theworldisflatonallfieldsbyglobalization,informationtechnologydevelopmentespeciallyintheeconomicfield.VietNamalso followsthistendencyb y joiningeconomicorganizationsinareaaswellasintheworldsuchasAFTA,WTO
Economicdevelopmentandreformsinthesectorhasbroughtincreasedurbanization.Urbanpopulationisexpectedtoincreasefurtherwithariseintheurbanization
levelsandinthepopulation.InaresearchofJBIC(1999)statedthatVietNamhasbeenexperiencingr a p i d u r b a n i z a t i o n o w i n g toeconomic d e v e l o p m e n t a f t e r theDoiMoipolicy,a n d urbanpopulation i s predictedt o increaseto46millioni n 2025f r o
m 1 5millionin1995
Urbandevelopmentand housingsector, especiallyi n HanoiandHCMC,is urgentlychallengedb y s w e l l i n g m i g r a t i o n f r o m r u r a l a r e a s , e x p a n d i n g i n f o r m a
l s e t t l e m e n t ,
emergingrelocationneedsbyinner-cityredevelopment,accelerating reformofSOEsthatprovidedt h e i r employees
w it h houses.Thisimpliesdemandf o r housingw o u l d increaseatafasterpaceinurbanVietNamintheshorttermtomediumterm
Tos o l v e u r b a n developmentandh o u s i n g p r o b l e m fort h e r e s i d e n t , V i e t
N a m islearningvaluablelessonsf r o m o t h e r c o u n t r y ’ s differentmodelsofh o u
s i n g development.Vietnameseauthoritiesclearlyorganizedandexposedaparticularplansuchasurband e v e l o p m e n t po li cy , r e a l e s t a t e institution, h o u s i n g d e v
e l o p m e n t a n d housingfinance Withhousingfinance,
theauthorityspecifiestwoaspectsaremunicipalhousingfunda n d h o u s i n g f i n a n
c e f a c i l i t y I n m u n i c i p a l housingf u n d , respective“Housingfund”wasestablishintheearly1990’s
in HCMCandin1998inHanoi.Thesefundsmobilizedcapitalsprimarilyfromthesalesrevenueoftheformerstate-
ownedhouses,andareusedforhousingfinance.AnotherfacilitynamedHIFUwassetupinHCMCin1997.HIFUmobilizescapitalsfrombankloans,equityandtrustfundentrustedbythe
Trang 12Another furtherissueconcernsthisstudyisthehousingfinanceproject willsetupafacilitytoprovidemortgagesandloansforurbanlow-
incomeandpoorpeopletoimprovetheirpropertyorbuildorbuynewhomes.ItwillalsopromoteinstitutionalstrengtheningandcapacitybuildingtodevelopVietNam'shousingfinancesystem
Trang 131.4 Summaryonresearchm e t h o d o l o g y a n d data
Themethodisused,includingstatisticalanddescriptiveanalysis,reviewofhistoricaltrends,andcomparativemethods.Apartform,quantitativemethodisextensivelyused
Trang 14Creditisthetradeofmoney,goodsorservicesatthepresenttimeforapaymentinthefuture.Creditcanbeprovidedinmanydifferentformsandunderawidevarietyofarrangements( K i n n o n Sc
o t t , 2000)
Borrowingisonesideofcredit.Ingeneral,borrowingisdefinedasthattobetransferredpropertyrightonagivenobject(e.g.sumofmoney)inexchangeforimplementingobligationofaclaimonspecifiedobject(e.g.acertainsumofmoney)atspecifiedpointoft i m e i n t h e f u t u r e I n e x t e n s i o n o f t h i s d e f i n i
t i o n , b o r r o w i n g b y h o u s e h o l d s , particularlyurbanhouseholdisdefinedasactivitiesofhouseholdstoobtainexternalresourcestosupportotherhouseholdactivitieswithobligationtorepayinfuture.Inotherway,borrowingismadebyhouseholdtofinancehousehold'sbudgetdeficit
Housingcreditmarketthepresenceofheterogeneityamongdifferenthouseholdinducestosituationwherebyhouseholdsfallintobudgetdeficitwhilesomeothersareinbudgetsurplus.Therefore,thedeficithouseholdsdesiretoborrowinordertocovertheirdeficitwhilesurplushouseholdsa l
s o desiretolendoutfortheiri n t e r e s t Consequently, householdcreditmarketisestablishedtofacilitateborrowingandlendingofhouseholds.Creditmarketfunctionistotransferpurchasingpowerfromsurplushouseholdstodeficitonesbyissuingandacquiringofmoney-denominateddebt
2.1.2Bankingtheory
Creditmanagement:howtodeterminethecreditworthiness?
4
Trang 15termloandecision.Creditanalysisisanimportantstepwiththepurposeusingtomakeloandecision:acceptorrejectissuingcredit.Inordertomakecreditdecisionbanksmustdothreestepsfollowing:
- Collectingsu ffi cie nt &accurateinformation
- Analyzingandprocessingdatacollected
- Predictingabilityofrepayingseedandinterestofhousehold
Bycreditanalysis,bankscanreplacetheirexperiencesabouthouseholdandtheirprojectappliedforloanwithscientificallyargumentandevidencesrelyoninformationanddataprocessing.Therefore,creditanalysishelpbanksavoidingtwotypesofmistake:(1)givecreditforbadclient,(2)andrejectingthegoodone
InformationusingforcFeditanalysis
Trang 16
-Analysiscontents:analysisshouldbetargetedevaluationofcapacityrepayingloanthatmean,itevaluatewhethercustomercanrepayseedmoneyandinterestornot.Toappreciaterepaymentcapacityofcompany,wehavetodeterminedfactorseffectingtocustomer’srepaying-
debtcapacity.Inotherhand,creditanalysiscontentsshouldbeconcentratedintoanalyzefactorseffectingtoabilitytomeetobligation.Basically,abilityofrepayingloanisinfluencedby:
Therearetwomajorwaystoexplorecausesofcreditrationing.Firstly,traditionalviewsconsidercreditrationingresultedfromgovernmentinterventionsoncreditmarketbyimposinginterestrateceilingonlendinginstitutions.Interestrateisexogenouslyheldundermarketclearinglevel.Withinterestratekeepartificiallylow,somepotentialborrowerswhowant
distributedasymmetiicallya m o n g marketparticipants
Fragmentationofcreditmarketstronglyaffectstheborrowingbehaviorsofurbanhouseholds.Fragmentationofcreditmarket,firstly,isthoughtasaconsequenceoftherepressiveg o v e r n m e n t p o l i c y C e i l i n g r a te ondepositan d loanrateimposedbycentralbankinducestoseverecreditrationinginformalfinancialsector.Resultingfrominter-
linkagebetweenformalandinformalfinancialmarketstheunsatisfieddemandofhouseholdsforformalloanflowsintoinformalfinancialsectorandputdemandforinformalloanstoriseup.Secondly, it isviewedthatfragmentationofhouseholdcreditmarketiscausedbystructuralandinstitutionalf e a t u r e s ofcreditmarketi n developingcountries I n addition, fragmentationofcreditmarketmayalsoresultfromweaknessintheinfrastructure
6
Trang 17sectorsareparalleldevelopedbecausetheyservedifferentsegmentsofcreditmarket
-I n conclusion,underperfectcreditmarket,borrowing,alongwithsaving,allowsurbanhouseholdstomaximizetheirutilityovertime.Resourcesorendowments,incomes,andactivitiesofhouseholdsdeterminethedemand
forloan.Theeffectsofthosefactorsonthedemandofurban
householdsforcreditarecalled"demandsideeffects".Ontheotherhand,c r e d i t marketc o n d i t i o n s a n d relationship betweenurbanhouseholdsandfinancialintermediariesaffectborrowingbyurbanhouseholds.Ifcreditmarketisinefficient,someofpotentialhouseholdborrowersfailtoaccesstocreditmarket.T h e r e f o r e , s e v e r i t y of creditrationingi s anexplanationforcreditconstraintofurban households;andhighfragmentationofcreditm a r k e t i s anexplanation f o r va r i o u s b o r r o w i n g
b e h a v i o r s o f ur ba n households.Borrowingbyurbanhouseholdsissubstantiallydeterminedbyconditionofcreditmarketsocalled"supplysideeffects".Thus,borrowingbyurbanhouseholdsisjointlyaffectedbybothdemandandsupplysidefactors
2.2 ExperiencesofhousingdevelopmentinsomeAsiancountries:
AswithLatinAmericaandAfrica,thenumberofurbanresidentsisfastexpandinginAsia.A s i a i s alsohometothel a r g e s t concentration o f poorpe o p l e i n theworld(Chapmaneta1,1999;Montgomeryeta1,2001).Aboutaquarter
ofthetotalurbanpopulationinAsiaislivingbelowthepovertylinealthoughtheproportionmaybehigherinsomecountries.IndiaandChinaeachholdsaboutathirdoftheregion’surbanpopulationwithmanylivinginrelativepoverty(Jacquemin,1999).Ofthe12millionpeopleinMumbai,forexample,about50percentlivesinslums,dilapidatedhousesandonpavements.Intheextreme,theyjointhenumberofhomelesspeople,estimatedtobeinexcessof100millionintheworld(UNCHS,1999).Inonerecentestimate,AsiaalonewillneedtoinvestasumofUS$280billionayearoverthenext30yearstomeetthebasicneedso f thepopulationi n housinga n d otherurbans e c t o r s (BrockmanandWilliams,1 9 9 8 )
ThelackofhousingaccessisoneofthemostseriousandwidespreadconsequencesandcausesofpovertyinAsiancities.Theimprovementsinhousingthatareimportanttoimprovingthequalityoflifeamongthepooroftendoesnotreceivetheattentiontheydeservefrompolicymakers(Da
niere,1 9 9 6 )
T o makeanyappreciableimprovement,substantialgovernmentspendingisneeded,bothinthephysicalexpansionofthecity’sinfrastructurea ndimplementationo f povertya lleviationprograms.Buttressedbytheheritageofliteraturethatarguestheimportanceofa
ffordableandimprovedhousingin
Trang 18analysisoftheperformanceo f housingdevelopment.
FollowbyGlobalurbandevelopmentmagazineinSingapore(GUDS,1 1 / 2 0 0 7 ), inafundamentalperspective,withoutparalleleconomicdevelopment,the
housingimprovementswould nothaveadvancedsodramatically.DeliberateactionwastakentodiversifytheeconomyandprovideemploymentinSingapore.Witheconomicgrowth,thenominalhouseholdincomehadincreased.RealGDPhadgrownatanaverageof8.6%peryearoverthe30-
yearperiodfrom1965to1999.ThishadfuelledgrowthinrealpercapitaGDPfromS$4000in1965toS$32,000in1999(whileinflationremainedlow,around2to3%peryear).Atthehouseholdlevel,theaveragemonthlyhouseholdincomeincreased.AsNgandYap(2001)illustrated,from1988to1998,averagemonthlyhouseholdincomehadincreasedby6.7%peryear,leadingtohigherassetownership.Theproportionofhomeownershippublicflatsexpandedfrom26percentin1970to92percentofthehousingstockby1999
Althoughthefinancingofpublichousingdrawsfromthegeneral
generationpotentialofthissector.By2000,theHDB(HousingDevelopmentBoardofSingaporewasestablishedinthebeginningofyear1960)inprovidingatotalhousingenvironmentforallwholackhasinitiatedtheconstructionofmorethan850,000dwellingunits,1‘ 9,500commercialpremises,12,800industrialpremises,morethan1460schoolsandcommunityfacilities,45parks,17,347markets/
backgroundofthecountry’seconomicprogress,Singapore’sexperiencealsodemonstratestheemployment-hawkercenters,andnumerouscarparks.Theconstructionofthesefacilitieswhileprovidingimprovedhousingandbetterqualityoflifeforthepoorhascreatedconstructionjobsandhasahighmultipliereffect.Reflectingontheeconomicimpact,somehousingscholarssuchasSandilands(1992)havedescribedtheconstructionsectorasaleadingsectorsinceitsgrowthratesareabovetherateofgrowthofoverallGDP.Othershavewrittenaboutthepumpprimingeffectofpublicsectorhousingconstruction(seeKrauseetal,1987)
Aswithmanyothercities,Singapore’squesttoprovidei t s poorresidentswith go
odlivingenvironmentcisnotnew.Adequateshelterwiththepromiseofadecentlifeofdignity,goodhealth,safety,happinessandhopeisonethemethathasbeenrepeatedinternationallyandenshrinedinsuccessiveUnitedNationsdeclarations(see,forexample,
Trang 19UNCHS,1 9 9 8 ; 1 9 9 9 ; WorldB a n k , 1 9 9 3 ) TheS i n g a p o r e d ev e l o p me n t e x p
e r i e n c e ,
however,showsthatpublichousing(evenhigh-rise)forthelowerincomefamiliesneednotdegenerateintopolarizedandmarginalenvironments.Nonetheless,thereemergenceofthehomelessunderscorestheurgency
forfurtherresearch.Inparticular,thetrendtowardstallerhousingpresentschallengesThepoorofSingaporedonothavethealternativetooptoutofthishousing.Inthisregard,weareremindedofMitlin’s(2001,p5l2)exhortationtounderstandandfollowtherealitiesofthepoorinthecontinuingefforttocreateaffordablehousingthatseektoaddresstheirdiverseneeds
Insummary,Singapore’ssystemofhousingdevelopmentwithasingleempoweredauthorityresponsibleforhousingdeliverymaynotbethemodelforallcountries,buteffectivepragmaticmanagementprinciples(suchasinclusivehousingandwideninghomeownershipopportunityforlower-
families,directedassistanceforlow-incomerenterhouseholdsa n d continualre vie w ofhousingaccess) apply inmostcontexts.Thereisagrowingliteraturethatemphasizesacomprehensiveapproachtohousing.SimilartosituationofChinaandThailandorotherAsiancountries,VietNamcangetthemostsuitablelessonsforhousingmarketandpolicyinthewayofeconomicdevelopment,
2.2.2InChina
China’shousingmarketandpolicycontextarerelativelyunique,differingfromthoseoftheuropeandtheUS,includingthepost-
Communistcountries (WangandMurie1999,Naughton1994).ThissectionthereforereviewChina
’shomeownership-orientedhousingpolices.Inthissectionandthroughoutthepaperthediscussionfocusesonurbanhousingpolicyonlybe.causeofthedifferentrulesandinstitutionalarrangementgoverninghousinginruralandurbanareas
Privatization
Aseconomic‘reformsdeepenedinthe1990sChina’spolicymakerssoughttoprivatizemuchofthepublicly-ownedhousingstockthathadbeenpreviouslyrentedfromthestateorstate-
ownedenterprises(SOEs).Indoingsothegovernmentwasmotivatedbyanumberoffactors,foremostofwhichwasthefactthatmaintenancecostlevelsranwellabovethenominalrentspaidbytenants.Zhang(2003)citesfiguresindicatingthatasof1991rentongovernment-ownedhousingaveraged0.13Y/
m2oflivingspace(enterprise-ownedhousingwasevencheaper)whileupkeepexpensesaveraged2.31
Y/m2.Undertheseconditionshousingcostsaccountedforonly
Trang 20reformsdesigned t o encouraget h e development o f housingm a r k e t s L i u , Park,a n dZheng’s(2002)analysisoftherelationshipbetweenhousinginvestmentandeconomicgrowthfoundsignificantpositiverelationshipsoverboththeshortandlongruns:anotherimportantpolicymotivationforspurringdevelopmentofhousingmarkets.
HousingProvidentFund
TheHousingProvidentFund(HPF)wasdesignedin1992tohelpweanemployeesfromworkplacehousingprovision.Assuch,itwaspairedwithreformofthesalarysystem.Insteadofprovidinghousingdirectlyandpayingemployeesacorrespondinglylowersalary,theprogram’sgoalwastoenlistpublicsectoremployeesinthedevelopmentofthecommercialhousingmarketbyraisingtheirincomes
kindhousingbenefit,therebyencouragingthemtofindhousinginthemarketplace(Wang2001).Thereformwaspartofamoregeneralefforttohaveindividualsandmarketsreplacegovernmentandworkunitsastheentitiesresponsibleforhousing
butsiphoningtheincreaseintosavingsaccountsdedicatedtohousing,whilereducingtheirin-finance(Lee2000).Becauseemployerparticipationisnotmandatoryintheprivatesector,theprimaryHPFbeneficiariesaregovernment,party,SOE,andotherpublicsectorworkers,althoughsomeprivatefirmsandforeignjointventuresalsomatchemployeecontributions
InarecentoverviewofChina’shousingpolicy,Sun(2004)criticizesthetargetingoftheHPFsystem.Thisisreinforcedb y thefactthatevenmostworkingl o we r -
Trang 21Declaration”affirmingthatsound,sanitaryandaffordablehousingforeveryoneiscentraltothewell-beingofnations.Italsoreaffirmedthathousingismorethanshelter;itisapowerfulenginethatcreatesopportunityandeconomicgrowth.Severalotherprincipleswerealsopromulgated:
(a)Housingasasustainednationalpriority:Housingisalong-termprocessthatrequiresastablepolicyframeworkandnational priorityattention
(b)Housinga s a n e n g i n e o f s o c i a l a n d e c o n o m i c d e v e l o p m e n t : H o u s i
n g b r i n g ssignificantbenefitsintermsofemploymentcreation,domesticcapitalmobilizationandsocialwellbeinginthefaceofthemajorchallengesposedbypopulationgrowthandurbanization.(SeeseminardetailsandBellagioHousingDeclarationinGHBNewsletter,41stedition,2005)Theconclusionsfrom
thismostimportantconferenceindicatedthatmanycountriesrecognizedthathousingismorethanshelter.Itisoneoflife’sessentialsandaprocessorengineofeconomicandsocialdevelopment.TheGovernmentshouldgiveahigh-priorityforestablishingalong-termhousingpolicyandstrategy
2.2.4 InKorea
In1962,KoreaNationHousingCorporation(KNHC)wasestablishedwiththemissionofimprovingthepubliclivingstandardsandwelfarethroughhousingconstructionandurbanredevelopment
KNHCi s a 1 0 0 percents t a t e
-o w n e d c -o m p a n y D u e t -o i t s s t r -o n g l i n k s w i t h t h egovernment,ithasbeenprovideddirectfundingassistancebythegovernmentintheformofequitycontributionsandloansfromtheNationalHousingFund
KNHC'sorganizationconsistsofMainOfficewith20Divisionsunder4HeadDivisionsand1 ResearchI n s t i t u t e , 2RegionalH e a d D i v i s i o n s i n SeoulandGyeonggi,and 1 0BranchOfficesinothermajorcities
However,theliabilities,theaccruedinterestofwhichshouldbepaidbyKNHC,areonly2,254billionwonoftotal9,301billionwon
Tenantsand.housingbuyerswillpaytheinterestexpensesoftherest(7,047billionwon)
whichchieflycomesfrom NationalHousingFunds
Trang 22KNHCwillb ereborna s
Anyfuturechangesinratingwouldoccurifthecountry'ssovereignratingischanged,itsaid.Downwardpressuremay occurifthegovernment'sfiscalconditionweakens,orifthecorporationisprivatized.RivalratingsagencyStandard& Poors(S&P)alsogavethecorporationa foreign-currencycreditratingof"Aminus"andadomestic-
currencyratingof"A."S&P'soutlookforthecorporation'screditratingis"stable."
Thecreditratingreflectsthecorporation'sfirmstatusintheSouthKoreanhousingmarketanditshousingprojectsforthecountry'slow-incomepeople
2.3 Theoreticalmodelsandempiricalliteratureforhousingdemand
2.3.1Generalobservations
Housingloanforhouseholdseemtobeavailableinmanycountries,includingatleastFinland,UK,Japan,Spain,Portugal,Italy,France,Norway,Sweden,US,Australia,Germany,Belgium,Thailand,Philippines Thisappliesespeciallywelltocontributionsthatconsiderindebtednessasaproblem.Itseemstobe
particularlydifficulttofindsimulationbasedanalysesonhouseholddebt.Instead,descriptiveanalysesseemtobemorecommonplace.Thereareafewtheoreticalcontributionsonhouseholddebt.Thepermanentincomehypothesis,presentedbyMiltonFriedmanin1957,statesthatpeoplebaseconsumptiono
n whattheyconsidertheir‘normal’incomeeventhoughtheirincomesmayvaryconsiderablyintheshortterm.Thismaycreateoccasionalneedstoincurloan.Thelifecycleapproachissomewhatsimilartothepermanenti n c o m e hypothesis,butitemphasizestheimpactofchangesinwealthonconsumption.Neitheroftheseapproachesfocusesonproblemsrelatedtoindebtednessofhousehold.Thispartfocuseso n d e t e r m i n a n t o f h o u s i n g l o a n a n d l o a n a m o u n t c
a u s e d b y h o u s e h o l d ‘indebtedness
Beforegoingtotheliteratureofhousingloanandloanamount,reviewingsomeliteratureofhousingdemandandhousingcreditinsomecountrieshelpknowdeeplybelowliteratures
12
Trang 23rij——r H j , t j , x,Yi,;ri,zj„i;-)
wherePisthepriceofaunitofhousingservicesincommunity/
tenurechoicej,IisthestatutoryHjjpropertytaxrate,Pisthepriceofthecompositegoodthatisthenumeric,Yisincome,Xisavector ofhouseholdcharacteristicsthatareindependentofthechoiceofcommunity/tenure,Zi s a j
vectoro f l o c a l p u b l i c g o o d s a n d o t h e r c o m m u n i t y characteristics,andcontains unobservableijcharacteristicsthatvaryacrosshouseholdsandcommunities
Householdincomeandthepriceofthecompositecommodityareexogenous.Thepriceofhousingreflectsthesupplypriceofhousingandanycapitalizationofthecommunitymixofpublicservicesandtaxlevels.Pisconstantacrossallinanygivenj,butdiffersacrossHjjurisdictionsandacrosstenurestatus
ClusandRalph(2007)alsohadresearchofhousingdemand Beyondmoney,monetarypolicyandfinancialdevelopmentshousingmarketsarecertainlyalsoinfluencedbyotherfactors,suchastaxes,demographicsandotherdevelopmentsdeterminingthedemandforhousing.Thisresearchalsostatedtherelationsbetweenhousingloanandhousingdemand.MarcoSalvi(2007)alsopresentedthemodelforthedemandofhousingintheGreaterZuricharea.Besidesthat,therearejustfewempiricalofhousingdemandsuchasBajariandKahn(2002);Ferreira(2004);Bayer,McMillan,Ruben(2002).Allthesepapersexposeanalysisconcernedtohousingdemand.Theseliteraturesofhousingdemandprovethathousingdemandisalwaysburningissueinmanycountriesintheworld
2.3.2Determinantsofhousingloan
Thereseemtobehardlyanytheoriesondeterminantsofhousingloanforhousehold.Instead,therearenumerousempiricalanalysesonhouseholds’debtservicingdifficulties
Maya n d T u d e l a ( 2 0 0 5 ) u s e d Britishd a t a t o s t u d y w h i c h factorsd e t e r
m i n e d thelikelihoodofh a v i n g d e b t s e r v i c i n g d i f f i c u l t i e s U n e m p l
o y m e n t , highl e v e l s o f indebtednessandahighproportionofnon-collateral
debtincreasedthelikelihoodofproblems.Difficultiesseemedtobeofpermanentnature;pastproblemswereagoodpredictoroffutureproblems.Therewasalmostnoevidenceofhousingwealthpreventingdifficulties.Thismightbedue
Trang 24difficulties,eventhoughcollateralcertainlyreducesbanks’creditrisks
MayandTudelaintroduceanewconcept,namely‘debt-at-risk’,anindicatorofcreditrisk.Itissimplythesumofhouseholdlevelhousingdebtmultipliedbythehouseholdlevellikelihoodoffinancialdistress.Ifitispossibletoidentifythedeterminantsofthelikelihoodofdistress,andifmicroleveldataareavailable,itispossibletocalculatetheaggregateamountof‘debtatrisk’andhowitwouldreacttochangesintheparameters,suchasincome,age,housevalue,housesize,etc.Thesectionsafterofthispaperapplythisconcept
LiuandLee(1997)usedv ar i o u s methodstostudythedeterminantso f housinglo
an
defaultsinTaiwan.Severalfactors,includingtheloan-to-valueratioandthelevelofeducation,s e e m e d t o c o n t r i b u t e t o t h e o c c u r r e n c e o
f p r o b l e m s P r o b l e m s w e r e particularlyc o m m o n p l a c e a m o n g theyoungest.Bowie-
CairnsandPryce(2005)foundwithBritishdatathathouseholddebtservicingabilitywasanincreasingfunctioninthelevelofeducation,ageandmarriedstatus.Familieswithmanychildrenweremorelikelytohaveproblems.Geographicfactorsseemedtoplaysomerole.Partially,Bowie-
CairnsandPrycementionsomemajorcharacterseffecttotheloanpaymentasfollow:
NumberofchildF£!ninahouseholdandpaymentdifficulties
Anincreaseinthenumberofchildreninahouseholdisassociatedwithhigheroutgoingsandlessavailablefinancestorepaydebt.Itisworthexploringtheirexperienceofmaintainingpayments.However,withineachyearcomparisonbetweenhouseholdswithdifferentnumbersofchildrenconfirmsthat,inmostcases,asthenumberofchildrenincreasestherateofrepaymentdifficultyandarrearsincreases
SimilartothecaseinHDBank,theexpectedresult CairnsandPryce.TheresultofregressionofthisresearchwillbeshowndetailsinchapterIV
likesresultofBowie-
Astoloanswithnocollateral,Del-RioandYoung(2005b)concludedthathighlevelsofdebtandfactorsrelatedtomarriedstatusandethnicitywererelevanttotheoccurrenceofproblemsamongBritishhouseholds
14
Trang 25Intheseresearches,majorvariablesstronglyeffecttotheprobabilityofhousingloanwhicha r e i n c
o m e , a g e , s e x , h o u s e v a l u e , h o u s e s i z e , p r i n c i p a l , r e s i d e n t i a l status,occupation,interest,maritalstatus,credittype,etc.InrealconditionofVietNamandabilitytogetthedata,theauthorwillchoosesomevariablesinthemodelassex,age,education,income,size,housevalue,maturity,collateralsandloanamountfortheprobabilitytogetahousingloan.BanksinVietNamusuallyhavehousingcreditwithcommonconditionsasprincipal,income,interest,maturity.Butinsituationofeconomicdevelopingandpressureofjoiningtheworldeconomic,commercialbankinVietNamshouldhasmorecreditprogramespeciallyhousingcreditasmentioningwithflexibleanddiversifiedconditionformanyobjectives.This
researchbuildsamodelwithmanyvariablest o g e t m e a n i n g v a r i a b l e s a n d m a i n
v a r i a b l e s h a v e d e e p l y e f f e c t t o t he probabilitytogetahousingloan.Fromtheresultofthisresearch,commercialbankwillhasmorehousingcreditprogrambasedoncharacteristic
Brown,Garino,TaylorandPrice(2003)found
thatoptimismseemedtostrengthenthedemandfornon-collateralloans,eventhoughafteracertainlevelthedegreeofoptimismhadnoimpact.Factorssuchasspouseincomeandsavingsseemedtohavenoimpact
RiiserandVatne(2006)presentedobservationsonNorwegiandata from198G—
2003.Householddebthadbeenonincrease,especiallyamongtheyoungesthouseholdsandthosewithlowincome.Thegrowthoffinancialwealthhad takenplaceaboveallinhouseholdswithnodebt
Magri(2002)studiedtheoccurrenceofdebtamongItalianhouseholds.Higherincomestrengthenboththe‘demandforloansandtheavailabilityofcredit,whereasbeinganentrepreneur
strengthenedthedemandforcreditbutmadeitmoredifficulttoobtainloans
BrownandTaylor(2005)studiedthedeterminationofhouseholdfinancialwealthanddebtintheUK,GermanyandtheUS.Therewasaclearcorrelationbetweenfinancialwealthanddebt.Ifhouseholdswithnodebtwereexcluded,thecorrelationvanished
Trang 26propertyincomeofpensioners.Thiscouldbethoughtofasarisingfromacutinthestatepensionoraworseninginpayoutsfromcompanypensions.Itismodeledas20%pointdeclineintheagepremiuminoldagethatisassumedtobepermanentandoccursunexpectedlyinthe2026—
30period(itreducesthenon-propertyincomeof
thoseover60by20%).Whentheshockoccurs,allcohortsreducetheirconsumptionofgoodsandhousing,butthosewhowillhavejust
retiredreducetheirconsumptionthemostastheyexperiencethelargestproportionatedeclineintheirlifetimeincome.Thedeclineofaround12%(forthoseaged61
65)intheirimmediatespendingissmallerthanthedeclineintheirnon-propertyincomebecausetheirspendingisalsodependentonwealthwhichisnotaffectedbythechangeinincome.ThisresultisthesimilartothisresearchandinVietNam.Whentheoldofhouseholderincreasesorthehouseholderisonretire,theprobabilityofhousingcreditdecreases
Crook(2001)analyzedthe1995USSurveyofConsumerFinancesdata;thedemandforhouseholdloansseemedtobeanincreasingfunctioninincomeandfamilysize
DavydoffandNaacke(2005)presentedapurelydescriptivereportonthedistributionofhousingandconsumer
loansinFrance,Britain,GermanyandItaly.HousingloanswereparticularlycommonplaceintheUKbutremarkablyexceptionalinItaly,eventhoughowner-
occupiedhousingisparticularlycommonplaceinItaly.Inallthecountriesthedeterminantsofhousingloanamountwererathersimilar
Lendingornotandhowmuchforlendingareoneofthemostimportantaspectsofboththelenderandtheborrower.Therearealsoresearchesconcernedloanamount.Similartothemodelofhousingloan,themodelofhousingloanamountisbuiltwithvariablesassex,age,education,income,size,housevalue,maturity.Inreal,thismodelhasdetailanalysisofhousingcreditforthehousehold
2.3.4Theoreticalm o d e l
s Thebasicmodel
ThebasicmodelofChung(2000)basedonassumptionsthatthereisahouseholdlivesintwoperiodswithinaperfectmarket.Thehouseholdhasainter-temporalutilityfunctionandbehavesrationally
Thehouseholdchoosetoconsumeatthelevelsthatmaximizeitsutilityovertime.Ifitscurrentincomeislessthanitscurrentconsumption,thehouseholdmustborrowtoobtainhigherlevelofutility
Generally,thebasicmodelindicatesthefactorsaffectinghouseholddemandforloanarecurrentconsu
mptionlevel,incomeandasset.Itimpliesthatthedemandofhouseholdfor
16
Trang 27WhereAs isinitialamountofassets;YiIsthecurrentincome;Yisfutureincome;andrismarketrateofinterest.Theequationexplicitlyindicatesthatthedemandofhouseholdsforloan
risesifpreferenceforcurrentconsumptionbeinghighorexpectedincomeincreasingo r amountofinitialassetsandcurrentincomeaswellasinterestratesdropping.Thus,thebasicmodelshowsthatborrowing,alongwithsaving,allowsthehouseholdto
smoothitsconsumptionpathandtomaximizeitsutilityovertime
Theextendedmodel
Inextensionofthebasicmodel,suchfactorsashouseholdresources,activitiesandflowsofresourcesareincludedtoidentifydeterminantsofthedemandofhouseholdsforloan;andsomeassumptions a r
e changed T h e models h o w s thatt h e de ma nd o f urbanhouseholdsforloanincreaseswithitsliquidityrequirementsforactivities.Chung(2000)writethatlevelofhouseholdbudgetdeficitdeterminesthelevelofborrowing:B=dR- ;wwhheerreeBBisthelevelofborrowing;dRisthechangeinassets;Yj isincomejthofthehousehold;andFgistheoutflowofexpendituretofinanceactivitygg.Increasesinsuchhousehold‘activitiesasconsumption,productionandinvestmentcreateincreasingo u t f l o w
s o f household r e s o u r c e s I f i n f l o w o f resources f r o m i n c o m e generatingactivitiesandassetswouldnotmeetoutflows,demandforloanmayrise.Theaboveequationshowsthatthedemandofthehouseholdforcreditappearswhenflowsofincomeandchangesinhousehold'sresourcesdonotmeetdemandforfundingthehouseholdactivities
Hence,thedemandforloanappearsand riseswhenhouseholddeficitgap appearsandbroadens.Thedemandofthehouseholdforloanisdeterminedbyhouseholdresourcesandactivities.2.3.5Empiricalmodelsappliedinpreviousstudies
ModelappliedbyEgertandMihaljek(2007).
Egerta n d Mih al jek ( 2 0 0 7 ) h av e b o t h s h o w n thath o u s e p r i c e d y n a m i c s a r e usuallymodeledintermsofchangesinhousingdemandandsupply(seeexHMTreasury,2003).Onthedemandside,keyfactorsaretypicallytakentobeexpectedchangeinhouseprices(PH),householdincome(Y),therealrateonhousingloans(r),financialwealth(WE),demographicandlabormarketfactors(D),theexpectedrateofreturnonhousing(e)andavectorofotherdemandshifters(X).Thelattermayinclude3proxiesforthelocation,a
geandstateofhousing,orinstitutionalfactorsthatfacilitateorhinderhouseholds’
Trang 28OzlemOzdemir(2004)constructeda
conceptualmodeltoexplaintherelationshipbetweenconsumercreditclients’paymentperformanceandcreditcategory,interestrate,sex,age,maritalstatus,income,loansize,maturity,residentialstatusandoccupation.Theequationofthemodelisasfollows:
A=o+§collateral+yjcreditriskorborrowervariables+‹ptrelationshipfactors+(rother+c
Where
Collateralisthecollateralvirtueaspercentageofloanvolume,
Creditriskorborrowercharacteristicsvariablesincludeavectorofjvariablesthatshowthedirectandindirectcreditoftheborrowersuchasassetsize,age,liabilities-to-assetsratio,currentratio,interestcoverageratio,andthelike,
Relationshipfactorsrepresentavectoroftvariablesthatshowtherelationshipbetweentheborrowerandfirmsuchashousebankstatus,relationduration,andnumber
ofbanksthattheborrowerhasrelationshipswith
Otherrepresentsavectorofrvariablesthatcapturestheyearsoflending,banktypeofthelendingbanks,sectorclassification,etc
Trang 29ModelappliedbyL.Ellis,J.LawsonandL.Roberts-Thomson( 2 0 0 3 )
Fromt h e r esul t o f ane c o n o m e t r i c m o d e l , t h r e e k e y v a r i a b l e s e f f e c t t o t h eh
o us in gleverageforhouseholdasageofthenhouseholdhead,householdincomeandhouseholdhousingwealth
ModelappliedbyI.BalkirFatmaHassanIsmailandS.Al-Segini( 2 0 0 6 )
TomeasurethepossiblerelationbetweenvariablesandtheamountofloanorgrantallocatedtotheUAEnationals,threeregressionmodelsareused.Thegeneralspecificationofthemodelsisasfollows:
withvariableswhichcanbegottenthedataandinformation.ThedetailofthemodelforthisresearchwillbeshowninthenextchapterIII
Trang 303.1 Analyticalframework
3.1.1 Hypotheses
The
aboveanalyticalgroundproposesthatcharacteristics,endowmentsofhouseholdsandloancharacteristicswoulddeterminetheprobabilityofgettingahousingloanofaborrower.Therefore,thefollowinghypothesesareraised
3.1.2 Determinantsoftheprobabilitytogetahousingloan
Thismodelshowsthedeterminantsoftheprobabilitytogethousingloan.Thetesteddeterminantsoftheprobabilitytogetahousingloanaresex,age,educationlevel,incomeofborrowerandHowdothevariablesaffecttotheprobabilitytoborrowofurbanhouseholdsandwhichvariable
isstronglyaffectstheprobabilitytoborrowofurbanhouseholds.Thevariabledefinitionofthismodelasfollow:
20
Trang 31Educationofhouseholdleader:levelofeducationaffectsrobustlytheiroccupationandincome.Thestabilityofoccupationandhighincomeensurethecapacitytopaybackthehousingloan
Incomeo f household:t h e l e v e l a n d the s t a b i l i t y of incomea r e important f a c t o r
s i n
evaluatingthecapacityofrepaymentfromhousehold
Sizeofhousehold:thisfactoraffectsstronglysavingsandexpendituresofhousehold.Becauseanincreaseinthenumberofchildreninahouseholdisassociatedwithhigheroutgoingsandlessavailablefinancestorepaydebt,itisworthexploringtheirexperienceofmaintainingpayments
Numberofincomeearnersinhousehold:thisfactorvigorouslyimpacttosavingsandincomeofhousehold.Themoreincomeearners,themoresavingsare
Valuesofhouse:housevalueisvaluated
asacollateralsecurityincasewithoutcollateralforhousingSloan.Besideshousevalueshowthesavingsofhouseholdatthetimewherethehouseholdgettheloanandtheloanamountwhichthehouseholdwanttoget.Maturity:intuitively,probabilityofcreditforhousingincreaseswhenmaturityincreasesbecause
themoreprobabilityofperiodicrepaymentfromhousehold.Itmeansthatthelongerterm,thesmallerperiodicprincipalandinterestofhousehold
Collateral:Assetpledgeincaseofdefault.Ifloanwasguaranteedbymortgageorpledgeasset,itwillcementresponsibilityandobligationofborrower.In
caseofinsolvent,collateralturntobesecondreceivableofbanks,however,mortgageorsecurityassethasaccommodatetorealisticc o n d i t i o n s
Loanamountorloansize:effecttoprobabilityofcreditdelinquencyincreases
whentheloansizeincreases.Sothisfactorwilldefineapositiverelationshipbetweenloansizeandhousehold’paybackperformance,assumingthereisnoinflation.Thelendersgenerallyprefergivingthiskindofcreditforlowerloansizeinordertodecreasetheirrisk
3.1.3Determinantsofloanamount
Thesecondmodelattemptstoprovethatcharacteristicsandendowmentsofhousehold,andloancharacteristicsdetermineloanamountsborrowed.Thetesteddeterminantsofloana m o u n t a r e a g e o f households, h o
u s e h o l dsize,house o f value,householdexpenditure,occupationsofhouseholdmembersand
numbersofdependants Which
Trang 32amount.Thevariabledefinitionofthismodelasfollow:
• Dependentvariable
Theloanamountofhousingloan forhousehold:thisvariableismeasuredb a s i n g onprivatecharacteristicsofborrowersandstatusofborrowers’household
Trang 33B- + a ; S E X + a AGE+ a EDU+ I NCOME +a5SIZE+HHNO+
a7HOUSEVAL+ agMATUR+a9COLL+aieLA
• Definitionandexplanationofvariablesofthemodel1:
+Dependentv a r i a b l e :
Bistheprobabilitytogetahousingloan.It’sabinaryvariablehavingtwovalues(0;1).Value[TJmeansacasethatborrowergotahousingloanwhilevalue[0]indicatesacasethatborrowerwasrefused
2 AGE - More agei s l e s s p r o b ab i l i t y to getloan,
Trang 343 EDU + Ifthehouseholdheadhashighereducationlevel,theprobab
ilitytogethousingloanwouldbehigher.Inthiscase,theexpectedsignis(+);incontrary,theexpectedsignis(-)
4 INCOME + Moreincomeismoreabilitytogethousingloan
becausehighincomeguaranteehighpayment
5 SIZE - Bigsizeofhouseholdistoincreaseexpendituretogetherwith
decreasingincomeaswellasdecreasingpayment
householdnumbercanearnmoreincomealongwithincreasingpaymentcapacity
hashousevalueasmuchaspossiblebecauseh o u s e v
a l u e i s t h e c o l l a t e r a l o f t h e housingl oa nandhousevalueis highwhichmeansthatloa
islowandriskfromthehouseholdalsoislow
8 MATUR + Longtermofloanmaturityissynonymouswithincrea
singpaymentformhousehold.Thelongermaturityofhousingloan,thesmallertheperiodicprinciplewhichtheymusttopay.Itmeans
thattheirincomeensurerepaymentfromhousehold
9 COL + Ift h e h o u s e h o l d headhascollateral,t h epr
behigher.Inthiscase,theexpectedsignis(+);incontrary,theexpectedsignis(-)
theh i g h e rprobabilitytogetthehousingloanis
Model 2
24
Trang 35+ Moreageislessloanamount.
3 EDU + Ift h e h o u s e h o l d h e a d h a s h i g h e r e d u c a
t i o nlevel,t h e h o u s i n g l o a n a m o u n t w o u l
Trang 364 INCOME + Morei n c o m e i s more h o u s i n g l o a n a m o
u n t becausehighincomeguaranteeshighpayment
5 SIZE - Bigs i z e o f h o u s e h o l d ist o i n c r e a s eexpe
ndituretogetherwithd e c r e a s i n g incomeaswellasdecreasingpayment.Itmeansthatbiggersizeislessloanamount
increasingpaymentcapacity.Somorehouseholdnumbercanearnismoreloanamount
HOUSEVAL
+ Householdha s housevalueasmuchaspossi
blebecausehousevalueisthecollateralofthehousin
gl o a n and h o u s e v a l u e i s highwhichmeansthatloanamount
frombankislowandriskfromthehouseholdalsoislow
8 MATUR + Longt e r m o f l o a n m a t u r i t y i s s y n o n y
m o u swithincreasingpaymentformhousehold.Thelongermaturityofhousing
loan,thesmallertheperiodicprinciplewhichtheymusttopay.Itmeansthattheirincomeensurerepaymentfromhousehold.S o morematurityismoreloanamount
2isthesimilartothemodel1.Butthesignofagevariableisdifferentfromthemodel2.Theagevariableinthemodel2willbepositivesign.Inlaborage,themoreageisthehigherworkingpositionandincome
3.2 Datasourceandsampling
3.2.1Datasource
DataisusedinthisthesiscollectedfromdatabasesystemofHDBank
Dataincludes bothindividualinformationandhouseholdinformationoftheborrower.Theborrowersarethepersonswhocangethousingloan(inmodel1&2)andcannotgethousingloan(inmodel1)
26
Trang 37authorwanttoapplytheresultofthisresearchtorealityofVietnameseeconomyespeciallyHDBankcase.NowVietNamhasmanydifficultiestofacethehighinflation,economic
crisisallindustries,tighteningmoneypolicyofSBV OncemoreimportantthingistheviolentcompetitioninbankingfieldatthetimeofundertakingtoparticipateinW T O T h i s r e s e a r c h w i l l h a v e
m a n y m e a n i n g f o r ban kt o f i n d o u t t h e s t a b l e developingstrategyparticularinc
hasafortunatechangetojoinmodemprojectofbankinallmodule(kernel,generalledger,customerlending,branchteller ).That’scorebankingproject.Almostofdataforthisthesiscanbeextractedfromthecorebankingsystem.AnotherfortuneissupportandpermissionofHDBankgeneraldirectortoallowandtosignadecisionfortheauthortogetthedata
Theconditionsforgettingthedataforthisthesisare:
- Loaninformationandcustomerinformationfromheadofficeandbrancheso
fHDBankinHCMC.Becauseofgeographicconditions,it’sdifficulttogetdataofsomevariablessuchassizeofhousehold,thenumberofhouseholdcan
earnincome fromarchivesofbranchesareoutHCMC
- Loaninformationandcustomerinformationmusthasenoughforallvariablesofthesissuchas:sex,age,education,incomeofhousehold,sizeofhousehold,housevalue,maturityloan,collateral,loanamount
DataisusedintheanalysisfromthecorebankingofHCMCHousingDevelopmentBank.Theanalyzeddataareoftheyear2005,2006and2007.Thereasonwhychoosetheseyearare:
- Theinflationrateislowsononeedtochangesomevariablevalueinfixedlevel;
-R e a l estatemarketisstableandhasgoodgrowth;
-RegulationandpolicyofHDBankareconsistent,stable,nosignificantchangescomparewiththeyear2008
Population(totalcasesofborrowersandloansthatyouareabletoaccess)
Totalcasesofborrowerscangetthehousingloansare1408casesinHCMCbranches.Icannotdefineexactcasesofborrowersbecausemanycasesarenotkeptinarchives
3.2.2Sampling
Samplesize
Thesamplesizeconsistsof306observedcases.Ofwhich,thereare198casesgettingahousingloanfromtheHDBankand108casesrefusedtogettheloan.ComparedtothetotalborrowingcasesoftheHCMCbranchoftheHDBank,thesampleoccupies21.7%
Samplingmethod
Trang 38
-Bythepossibilitytogetaloan:thepopulationisdividedintotwostratums:thecasesthatw e r e a c c e p t e d a n d r e f u s e d t o getthehousing l o a n ( 6 5 % a n d 3 5 % ofcasesaskingloanfromtheHDBank—figure2.1)
- Bytheobservedyearsincombinationtothegrowthrateinbusiness( f i g u r e 2.2):thesamplesaredrawnbyyearfollowingthepercentageo f eachyearbusinessi n c
Figure2.1sho ws thest ru ct ur e ofthepossibilityt o gethousingloanornot.Totally,
Blmprobabllltyt o
g e t loan
28
Trang 39Figure2 2 s h o w s thestructureofs a m p l e s in
everyyearbyprobabilityandimprobability.Theobservationwillbepickedfollowbygrowthratepercentageoftotalhousingloanamount.Totalhousingloanamountinyear2005,2006,2007are413,591,2268billionVNDwithinturnpercentageare43%
ThecasesacceptedforahousingloanThecaserefusedtogetahousingloan
Oyear2005
■ year2006 Oyear2007
3.3 Analysism e t h o d s
3.3.1Statisticaltestsfordescriptiveanalysis
Descriptiveanalysiswillbeappliedinthestudytounderstandthecentraltendency,thedispersionandthedistributionofthesamples.DetailofstatisticaltestfordescriptiveanalysiswillbepresentedinchapterIV(item4.3)
Trang 40- Multico-linearitytest:Multico-linearitytestslinearrelationshipsbetweentwoormoreexplanatoryvariables.
- Autocorrelationtest:Durbin-Watson(DW)testwillbeusedforautocorrelationofvariables
3.4Analytictool
AlldataofthisthesiswillberunbySPSSsoftwareincludesanalysessuchas:statisticaltestsfordescriptiveanalysis,correlationanalysis,testsforvalidityofspecificmodels