1. Trang chủ
  2. » Giáo án - Bài giảng

Tiết 23: TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁCCẠNH GÓC CẠNH (C.G.C)

22 353 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Trường hợp bằng nhau thứ hai của tam giác cạnh góc cạnh (C.G.C)
Người hướng dẫn GV Võ Văn Phúc
Chuyên ngành Toán
Thể loại Bài giảng
Định dạng
Số trang 22
Dung lượng 3,24 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

GV: VÕ VĂN PHỤCHỘI THI NHÀ GIÁO ỨNG DỤNG CNTT... Không đo các độ dài AC và A’C’... BCA= ACD gt.

Trang 1

GV: VÕ VĂN PHỤC

HỘI THI NHÀ GIÁO ỨNG

DỤNG CNTT

Trang 2

KIỂM TRA BÀI CŨ

1/ Phát biểu định nghĩa hai tam giác bằng nhauđ?

2/ Nêu trường hợp bằng nhau thứ nhất

của tam giác ?

Trang 3

Không đo các độ dài AC và A’C’

Vậy  ABC và  A’B’C’ có bằng nhau không?

Trang 4

Tiết 23: TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH GÓC CẠNH (C.G.C)

1- VÏ tam gi¸c biÕt hai c¹nh vµ mét gãc xen gi÷a

- Bµi to¸n: VÏ tam gi¸c ABC biÕt AB=2cm,

BC=3cm, gãc B =700

Trang 5

Muốn vẽ tam giác ABC ta có thể vẽ như sau:

* Vẽ góc B = 700

* Trên một tia góc B lấy điểm A sao cho BA = 2cm

* Trên tia còn lai góc B lấy điểm C sao cho BC = 3 cm

* Nối A với C ta được tam giác ABC

Trang 6

-VÏ gãc xBy= 70 0 -Trªn tia Bx lÊy ®iÓm A sao cho BA=2cm -Trªn tia By lÊy ®iÓm C sao cho BC=3cm

- Nèi A vµ C ta ® îc tam gi¸c ABC

Trang 7

KiÓm nghiÖm: AC=A’C’.

Thì  ABC,  A’B’C’có

sao?

Trang 8

Ta thừa nhận tính chất cơ bản sau.

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai

tam giác đó bằng nhau

Trang 9

NÕu ABC vµ  A’B’C’ cã: AB = A’B’

B = B’

BC = B’C’ th×  ABC =  A’B’C’ (C-G-C)

Trang 10

BÀI TẬP:

sao?

Nếu hai cạnh và góc của tam giác

này bằng hai cạnh và góc của tam

giác kia thì hai tam giác đó bằng

nhau.

Trang 11

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc

xen giữa của tam giác kia thì hai

tam giác đó bằng nhau.

Trang 12

 MNP vµ  MPQ kh«ng b»ng nhau v×: N1 = N2 nh

ng hai gãc nµy kh«ng n»m xen gi÷a hai cÆp c¹nh b»ng

nhau.

BCA= ACD (gt)

Trang 13

¸ p dông tr êng hîp b»ng nhau c¹nh-gãc-c¹nh H·y ph¸t biÓu mét tr êng hîp b»ng nhau cña

hai tam gi¸c vu«ng cho h×nh tr ên :

Trang 14

Trang 16

Hệ quả:

Nếu hai cạnh góc vuơng của tam giác vuơng này lần lượt bằng hai cạnh góc vuơng của tam giác

vuơng kia thì hai tam giác vuơng đó bằng nhau

Trang 19

Hãy sắp xếp lại 5 câu sau đây 1 cách hợp lí để giải bài toán trên1) MB = MC ( gt)

AMB = EMC (hai góc đối đỉnh)

MA = ME

2) Do đó  AMB =  EMC ( c- g -c)

3) MAB = MEC > AB//CE

(hai góc bằng nhau ở vị trí so le trong)

4)  AMB =  EMC > MAB = MEC ( hai góc t ơng ứng)

5)  AMB và  EMC có:

Bài 26/118(SGK)

Trang 20

> MAB = MEC ( hai gãc t ¬ng øng)

3) MAB = MEC > AB//CE ( cã hai gãc b»ng nhau ë vÞ trÝ so

le trong)

Trang 22

Hòa Thắng, Tháng 2 năm

2009

Võ Văn Phục

Ngày đăng: 22/10/2013, 23:11

HÌNH ẢNH LIÊN QUAN

Trong các hình sau hai tam giác nào bằng nhau? Vì sao?  - Tiết 23: TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁCCẠNH GÓC CẠNH (C.G.C)
rong các hình sau hai tam giác nào bằng nhau? Vì sao? (Trang 12)
hai tam giác vuông cho hình trờn: - Tiết 23: TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁCCẠNH GÓC CẠNH (C.G.C)
hai tam giác vuông cho hình trờn: (Trang 13)
Trên mỗi hình sau, có các tam giác nào bằng nhau? Vì sao? - Tiết 23: TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁCCẠNH GÓC CẠNH (C.G.C)
r ên mỗi hình sau, có các tam giác nào bằng nhau? Vì sao? (Trang 18)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w