HDedu - Page 10
Trang 14HDedu - Page 14
Trang 54x(x y 1) 3 0 (1)
(x,y )
5(x y) 1 0 (2)
3(2; )
Trang 55x – 2y – 1 = 0 (do x + y 0 x 1 và y 0)
x = 2y + 1
(2y 1) 2y y 2y 2(y 1)2y(y 1) 2(y 1) 2y 2 (do y + 1> 0 y 0)
4
x y 1(*)
1 1,
4 4
HDedu - Page 55
Trang 565x y 4xy 3y 2(x y) 0xy(x y ) 2 (x y)
Trang 57= HD
y2 – (4x + 8)y – 5x2 + 16x + 16 = 0
2 y 5x 4' 9x
5
2 2
12x 2xy y
2
y xy 5x 2
HDedu - Page 57
Trang 58u v
4
(3)(4)
x y
23xy2
12
32
HDedu - Page 58
Trang 59x 1 y(y x) 4y (1)(x 1)(y x 2) y (2)
x 1 y x 2 1y
7
x y xy 3
x 1 y 1 4
HDedu - Page 59
Trang 60HDedu - Page 60
Trang 61,
1; 1
2 2
1;1 2
6 (a) (3 ; 1), 1 ;13 . (b) 3 13 ;0 ,
2
3 13; 4 2
HDedu - Page 61
Trang 84Hình học 11
Trang 85HDedu - Page 85
Trang 100HDedu - Page 100
Trang 114Lượng giác 11
Trang 115HDedu - Page 115
Trang 133HDedu - Page 133
HD's
Trang 134HDedu - Page 134
Trang 161Hình học 12
Trang 162HDedu - Page 162
Trang 181un + 1 = unq (n *)
n 1 n
uqu
u
2
2, n *)hay uk – 1 + uk + 1 = 2uk
2
k k 1 k 1
u u uhay |u |k u uk 1 k 1 (k 2)
(n *)
n
n(u u )S
Trang 184n[2u (n 1)d]
S
2
1 5
1 1
1
14u
d5
Trang 187u (1 q )S
Trang 189www.tuhoc.edu.vn
htttp://tuhoc.edu.vn/blog
(a) d = 2012(b) d = a
13
2(1 64 2)S
2 1
1
1q2
u 2
thì S20 1023 2
512( 2 1)
HDedu - Page 189
Trang 190f'(x) < 0 f(x) = 0
HDedu - Page 190
12
Trang 191HDedu - Page 191
Trang 308x x
x
11
dx ln | x | Cx
1 dx tan x Ccos x
1 dx cot x Csin x
HDedu - Page 308
Trang 309I ln|u| C ln|x +x +5| Cu
= HD
HDedu - Page 309
Trang 310I 2cos 2x dx I 2x sin x dx
HDedu - Page 310
Trang 3112 1
Q(x) a x x x mx n
HDedu - Page 311
Trang 312(x 1)(x 2) x 1 x 2
x 3x 2
A(x 2) B(x 1) (A B)x (2A B)(x 1)(x 2) (x 1)(x 2)
Trang 313x 2x 1ln x 5ln|x - 2| C
HDedu - Page 313
Trang 315www.tuhoc.edu.vn
htttp://tuhoc.edu.vn/blog
2x 5 1
x
I 2x 8ln x 2 C2
Trang 3171 cos 2x cos x
2
3
3
3sin x sin3x sin x
43cos x cos3x cos x
Trang 318cos3x cos 3x cos 3x C.
HDedu - Page 318
Trang 32021cosa cosb [ cos(a b) cos(a b)]
21sina sinb [ cos(a b) cos(a b)]
Trang 3211 dx cot x Csin x
2
2
1 dx 1tan(ax b) C
acos (ax b)
dx cot(ax b) C
asin (ax b)
VD7: Tính các nguyên hàm:
= HD(a)
Ta có: T2 = 2
2
1(1 tan x)dx dx tan x C
cos xVD8: Tính các nguyên hàm:
= HD
Ta có:
2 1
Trang 3222 9
3 10
4 11
4 12
T cos 2x(sin x cos x)dx
4 3
3 4
Trang 323T tan 2x tan 2x x+C
3 12
T cot (3x 1) cot(3x 1) x+C
HDedu - Page 323