Phương pháp và kĩ thuật ôn nhanh thi đại học đạt điểm cao môn Toán cuốn sách hay dùng để ôn tập những kiến thức môn toán để đạt điểm cao. Bên cạnh đó còn hướng dẫn các em cách giải bài tập toán nhanh và hiệu quả, nhằm mục đích giúp các em đạt điểm cao nhất trong các bài kiểm tra, kì thi sắp tới.
Trang 1PH561P ncuYin P I I U Kiirinii
PHUONO PHAP
D A T D I E M C A O
Trang 2NGUYEN PHU KHANH
PHUONG PHAP
&
KI T H U A T
DAT DIEM CAO
\SP/ NHA XUAT BAN DAI HOC SlT PHAM
Trang 3hoc sinh on tap, van dung sang tao kien thuc, tong hop, phan tich, kiem tra nang lye toan dien, hucfng dan chien thuat giai de thi dai hoc Sach trinh bay noi dung trong tam on thi dai hoc gbm:
- Phucmg trinh, bat phuong trinh, he phucmg trinh dai so He phucmg trinh mil va Idgarit
- Bai todn to'ng hap Bat dang thuc; cue tri cua bieu thuc dai so
- 8 phuang phdp giai phuang trinh lugng gidc nhanh nhat
- Van de lien quan den sophiec, dai sotohffp, xdc sudi
- Cdc bai todn lien quan den ung dung ciia dqo ham va do thi cua ham so: chieu bieh thien cua ham so; cue tri; gid tri Ion nhat va nho nhat cua ham so; tiep tuyen, tiem can (dimg vd ngang) cua do thi ham so; tint tren do thi nhirng diem c6 tinh chat cho truac, luang giao giua hai do thi (mot trong hai do thi Id dubng thang)
- Tim giai han
- Tim nguyen ham, tinh tich phan Ung dung cua tich phan: Tinh dien tich hinh phang, the tich khdi trdn xoay
- Hinh hoc khong gian (tong hap): quan he song song, quan he vuong goc cua dubng thang, mat phdng; dien tich xung quanh cua hinh non trdn xoay, hinh tru trdn xoay; the tich khdi lang tru, khdi chop, khdi non trdn xoay, khdi tru trdn xoay; tinh dien tich mat can vd the tich khdi cdu
- Phuang phdp toa do trong mat phang: Xdc dinh toa do cua diem, vecta Duong trdn, ba dudng conic Viet phuang trinh dudng thdng Tinh gdc; tinh khodng cdch tit diem den dudng thang
- Phuang phdp toa do trong khdng gian: Xdc dinh toa do cua diem, vecta Duong trdn, milt cdu Viet phuang trinh mat phdng, dudng thdng Tinh goc; tinh khoang cdch tie diem den dudng thang, mat phdng; khodng cdch giita hai dubng thdng; vi tri tuang ddi cua dubng thdng, mat phdng vd mat cdu
Mac du tac gia da danh nhieu tam huyet cho cuon sach, nhung sai sot la dieu kho tranh khoi, rat mong nhan duac sy phan bien va gop y quy bau ciia ban doc
de nhung Ian tai ban sau cuon sach dugc hoan thien hon
Tac gia
3
Trang 4C A U T R U C D E T H I DAi H Q C M O N T O A N '
I PHAN C H U N G (7 diim)
Cau 1 (2 diem):
a) Khao sat su bien thien va ve do thi cua ham so
b) Cac bai toan lien quan den ung dung cua dao ham va do thi cua ham so: chieu bien thien ciia ham so; cue tri; gia trj idn nhat va nho nhat cua ham so; tiep tuyen, tiem can (dung va ngang) cua do thi ham so; tim tren do thi nhiing diem c6 tinh chat cho truac, tuong giao giira hai do thi (mot trong hai do thi la duong thang)
- Tim gioi han
- Tim nguyen ham, tinh ti'ch phan
- ung dung ciia tich phan: tinh dien tich hinh phang, the tich khoi tron xoay
Cau 5 (1 diim):
Hinh hoc khong gian (tong hop): quan he song song, quan he vuong goc cua duong thang, mat phang; dien tich xung quanh cua hinh non tron xoay, hinh tru tron xoay; the ti'ch khoi lang tru, khoi chop, khoi non tron xoay, khoi tru tron xoay; tinh dien tich mat cau va the tich khoi cau
Cau 6 (1 diem):
Bai toan tong hop
II PHAN R I E N G (3 diem)
Thi sink chi dugc lam mot trong hai phan (phan A hoac phan B)
A Theo chucmg trinh Chuan:
Cau 7a (1 diem):
Phuong phap toa do trong mat phang:
- Xac dinh tpa dp cua diem, vecto
- Duong tron, elip
- Viet phuong trinh duong thSng
- Tinh goc; tinh khoang each t u diem den duong thing
Cau 8a (1 diim):
Phuong phap toa do trong khong gian:
- Xac djnh toa dp cua diem, vecto
- Duong tron, mat cau
- Tinh goc; tinh khoang each t u diem den duong thang, mat phang; khoang each giiia hai duong thang; vi tri tuong doi cua duong thang, mat phang va mat cau
Trang 5Cau 9a (
1 diem)
:
- S
o phuc
- T
o hop, xa
c suat, thon
g ke
B Theo chuang trinh
Nang cao:
Cau 7b
- Duon
g tron, b
a duon
g conic
Cau 8b
- Duon
g tron, ma
t cau
g thang
t phan
g v
a ma
t cau
Cau 9b
(1 diem)
:
- S
o phuc
- T
o hop, xa
c suat, thon
g ke
- Ba
t dan
g thiie Cu
PHlTdNG TRINH , BA
T PHlTdN
G TRINH , H
E
I
P HlT
O fNG TRINH
Phuong trinh, bat phuong
trinh, he phuong trinh
dai so.
H( phuong trinh mil
G T RI NH C
Trang 63) He doi xung loai 1
Phuong phap chung: Dat an phu a = x + y; b = xy
4) He doi xung loai 2
Phuong phap chung: Tru tung vehai phuong trinh da cho nhau ta dugc: (x - y).f(x; y) = 0
5) He phuong trinh dang cap bac hai
Xet truong hop y = 0 Vol y ?t 0, ta c6 the tien hanh theo cac each sau:
- Dat an phu y = t.x
- Chia ca hai ve'cho y^, va dat t = —
y
M O T SO P H U O N G P H A P G I A I H E P H U O N G T R I N H
1) Phuong phap the
• Phuong phap: Ta riit mot an (hay mot bieu thuc) t u mot phuong trinh trong he va
the vao phuong trinh con lai
• Nhqn dang: Phuong phap nay thuong hay su dung khi trong he c6 mot phuong
trinh la bac nha't doi voi mot an nao do
2) Phuong phap cong dai so
3) Phuong phap bien doi thanh tich
4) Phuong phap dat an phu
5) Phuong phap ham so
6) Phuong phap su dung bat dang thuc
C/iM y: ting dung dao ham gidi todn phuong trinh, he phuong trinh
Su dung cac tinh chat ciia ham so de giai phuong trinh la dang toan kha quen thupc
Ta thuong c6 ba huong ap dung sau day:
Huang 1: Thuc hien theo cac buoc:
Buac 1: Chuyen phuong trinh ve dang: f(x) = k
Buac 2: Xet ham so y = f(x)
Buac 3: Nhan xet:
• Voi x = Xg <=> f(x) - f(xg) = k, do do Xg la nghiem
• Voi X > Xg o f(x) > f(xQ) = k, do do phuong trinh v6 nghiem
• Voi X < Xg <=> f(x) < f(xQ) = k, do do phuong trinh v6 nghiem
• Vay Xg la nghiem duy nhat aia phuong trinh
Huong 2: Thuc hien theo cac buoc:
Suae 1: Chuyen phuong trinh ve dang: f(x) = g(x)
Buoc 2: Dung lap luan khang dinh rang f(x) va g(x) c6 nhung tinh chat trai ngugc
nhau va xac dinh Xg sao cho f ( X g ) = g(xg)
Buac 3: Vay Xg la nghiem duy nhat ciia phuong trinh
Trang 7Buac 3:
Khi d
o f(u) = f(v) o
u = v
1 V5 x
-l
-7 3x
= 4
3 ~ + X = x
+ X XV2x
4 2'"'+2^''-9.2'''+18
3 = 2^''*'+2''"+9.2^*"
Lcri giai
1 Die
u kien: x > —
1
V3x +13)(
%/3x +
13 =
0 o
V sx -l = V sx TlS
Trucrng hap
2: V
Sx -l + V3x
+ 1
3 =
6 (1)
2, Die
u kien: 1 +
- ^
0 o > 0
4x
+ 3
+ Vd
i X > 0 , phuon
g trin
h
o>
yx 2
+2
x =-2
(x 2
>0, t
a c
6 2t
^ +1-
6 Vx
^ +2
x =
1 o x^ + 2x =
a ma
n die
u kien
+ Vd
i X ^ -
2, phuon
g trin
h o
-V x^
+2x = -2(x
^ + 2x) +
3
Dat t = >
/x
^+
2x,t>
0, t
a c6: 2t
^ 1-
-3 =
0 o
t = | hoa
9 <=
> 4x
^ + 8x -
'^'^''^ man
dieu kien
Trang 8Vay phuong trinh da cho c6 nghiem x = - 4 - V 5 2 ; X = - 1 + r/2
Phuong trinh da cho c6 nghiem duy nhat x = 2
4 Phuong trinh da cho tuong duong v6i
Trang 9gidi
1 Die
u kien: x > 1;
x # 3;x #
15
= ' 0g 5^
log5|x-5
o2
|x-3 = x-l<:=>2x-
6 =
-l hoa
c 2x-6 = l-x <:=>x =
6 <
x <
4 v
a x ;t -
^ {
x + 6)
o log
^ (4 ~ x) + iog^ (
x + 6) =
1 + log^ |
x + 2|
o
(4 x)(x + 6) = 4|x +
2
<=>4(x + 2) = (4-x)(x + 6) hoa
c 4(
x + 2)
(4-x)(
=-x + 6) (v
i (*
) ne
n (4-x)
6x-1
6 = 0c:>x = 2,
x = -
8
+ V6
i x'-2x-32 = 0<=>
x =
l + 733,x = l-V33
; x = 1
- V3
3
3 Die
u kien: 2.6"
-4
" = 2".2"^2.6
" -4
" <
^2" (4
" + 2.6
" (4.6
" -3.4") <
^4" (2
" + V4.6
"-3.4")
= 8" +i2
27"-12"+2.8" = 27" +8
Vi d
u 3 Gia
1.2x^+6x^+6x + l =
3| x
+ 2
2 8
log4 N/X^ -
9 +
3^2 log4
(x + 3)^ =
^i
±i =
y 3+
3y2+
3y + iox = 2y^
+6y^
+6
y (1)
Trang 10Theo de bai ta CO p h u a n g t r i n h 2x + 6 x + 6 x + l = y + 1 <=> y = 2x + 6 x + 6 x ( 2 ) ,
Ttr (1) va (2) s u y ra
o (x - y)(2x2 + 2y2 + 2xy + 6x + 6y + 7) = 0
Trang 112 Die
u kien: x > 1
Dat a = Vx-l,b = Vx
\/(
x-l)(x
X +
1 = a.b
:i
x-l = l<=>
x =
2
+ V6
i b = l th
i Vx^+x^+
x +
1 =l»
x''+x
^+
x = Oc=>x^x^+x +
j = 0<=>x = 0(loai,do
moi x)
l
=0
3 4(
N/X +T
-3
)X
' +
(I 3V
X +
1-8
)X
~4
VX
-1
3
-0
1 Die
u kien: -
2 <
x <
2
Dat t = x + \/4-x' =
^c
>3t'-2t-8 = 0ci>
t = hoac t
= 2
+ Vo
i t = 2, t
a c6: x + V4-x' =
a C
O x
+v4
-x^ = — <
= > v4
-x^ =
x>
2-0
4~x^ =4-4
x + x^
-i
3
x = -2±Vl4
=> X =
3
-2-Vl4
; x = 2
; x -2-Vi4
2 Die
u kien: x > -
l =
0
Trang 123 Dieu kien: x>l Bien doi phuong trinh da cho, ta dugc:
4 X ' N / > O ^ - 1 2 X ' + 1 3 x > / ) r r i - 8 x - 4 V x ^ l - 3 = 0
x V ^ ( 2 V ^ - 3 ) ' = 0 5
De vetrai bang 0 thi ta phai c6: <=> x =•
Vay X = ^ la nghiem cua phuong trinh da cho
' 2 3 ' 2 3
2 x ' * + 2 x ^ y + x^y^ = 2 x + 9(l) X ' + 2 x y = 6x + 6 (2)
Trang 13Trumig hap
1: x = 0 khong tho
a ma
n (2)
Trudng hap 2: x^O,
(2) su
y r
a y = 6x + 6-x
2x , the'va
o (1) t
a dug
c ,
( 2 ^
6x + 6-x
+ x'
( 2 ^
^) + ^^^"^^ ^
^ =2
x +
9 ox(
x + 4)^ =0ci>
b (a
;b
>0)
4
He tr
o thanh:
a + 6b
= n + b '
b +
4a =
7 + a~
< =>
\
a-2 = (b-3)- (1)
b-3 = (a-2)' (2)
Lay (l)-(
2) t
a dugc: (b-a-l)(a + b-4) =
0
+ V6
i b-a-l =
0 =
> b = a + l tha
y va
o (1) t
a dugc:
a =
2 =
> b = 3 =>
(x
;y) = (log, 2;log, 3) hoa
c a = 3 => b = 4 =>
- 4 = 0 v6 nghie
m (d
o t
u (1), (2) t
a ru
t dug
c a ^ 2
; b ^ 3
l;2)
1
2x^-9y^
=(
y)(4xy-l)
xx"^ 3xy+ y
y + 4) = -36
1
Lai giai
-9y3=(x
x" 3x
-y + y^
=-1
2x^ -9y^
=(
y)(4xy-l) J2x
x-^ -9y'' = (x y)(x^ +
xy + y^)
x2-3xy + y2=
-l '
^-x^ -3xy + y
^
=-1
x = 2y
< =>
x = 2;y =
l
x = -2;y = -1
: (2;1)
; (-2
; -1)
2
1 - =
(1)
y-(x-4y)(2x-
y + 4) = -36 (2)
1 1
/ X
(y-x)(y
^+
xy+ ,
- y^
Trang 14Trumg hap 1: x = y , the vao phuong trinh (2) ta dugc
Khi do (2) o 2x^ + 4y^ ~ 9xy + 4x - 16y = -36 o 2(x +1)^ + 4(y - 2f - 9 x y = -18
Truong hop nay khong xay ra do xy < 0 => 2(x +1)^ + 4{y - 2)^ - 9xy > 0
Vay nghiem cua he phuong trinh la (x;y) = (2; 2); (-6;-6)
V i du 8 Giai cac he phuong trinh sau tren tap so thuc:
Truong hap 2: (x + y)(x + y + 4) - 2xy = 0 <r> x^ + y^ + 4(x + y) = 0, v6 nghiem do dieu kien
Vay nghiem cua he la (x; y) = (-3; 7); (2; 2)
2 Dieu kien: x^- ,y> -
Trang 15Trucntg hop 1: y
-x = 0<=>y =
x th
e va
o (1 ) ta
a duo
c V2-t
^ = 2-1 <=
<=> t = 1
2-t
^O
2-\}
4t +
xy
2-U J2
y nha
t (x
; y) = (1
; 1)
n ta
p so thuc:
1 <
2x^ +
xy = y^ - 3y +
2
x2 -y 2
2c:.y^-(x + 3)y + 2-2x^ =
0
Coi da
y la phuong trin
c y
= -x
+ l
Truang hap 1:
Truang hap 2:
y = 2x + 2
Jy = 2x +
2
x2 -y
^=
3 [3
X^+8 X
+ 7 =
0(A
'
= 5<0 )'
y =
-x + l |y =
2
(xy + l)x^+(x +
l)^ =x^
y + 5
x (1 )
4x
^y
+ 7x2 + 2x2
^9+1
= 2
x +
1 (2)
Dieu kien : y > -1 v
Tu phuon
g trin
h (1 ) ta c6:
x2 (xy + 1) + (x
-\
-x
(x
y + 1) = 0 <=> x(x
y + l)(x - 1) + (x- 1)^
= 0
o(x -l) (x 2y
+
x -l)
= 0ox = l hoa c x2y +
x -l
= 0
+ Vo
i x = 1 tha
y va
o (2 )
ta duoc
y + l +1) =
0 o y = -1
+ Vo
i x^y + 2 x-l = 0 o
Trang 16Phuong t r i n h (*)<=> x = y, thay vao p h u o n g t r i n h t h u hai ciia he, ta d u g c
x^ - 2x^ - 3 x 4 - 4 = 0 <=>x = l hoac x = ^ - ^ ^ ^ hgp voi dieu kien ta dugc
l + \/l7
x = 1, x =
2 Vay he da cho c6 hai nghiem (x; y) la: (1; l}; Lt.^^^^y^ ^
Trang 17Vi du
xy(x + l)(y + l) =
72 y(
2x)-2x = 1
y-0
1
H§ phuong
18
(x2+
x)(y2+
y) =
72
Dat \ x^
+x = a, a
> 4
y^
+y = b,
2
a =
12, b = 6
4
Truong hap 2: Do
7
y(
2x)-2x = 1
a dug
c h
e (b-a)^
-a
^ oa
^ = -2ab<=>a =
0 hoa
c a =-2
b
+ Vd
i a = 0 => b = ±
3 =: >
y = -
4
+ V6
i a = -2b
^5b2 = 9ob = 4-,
a = —
^ hoa
c b = -4=,
a = -
^
3 u
- 1
; 4);
-
(-1 —
^;
-1 + A) (_
sl5
Vi du
2>
/x
^+
3y-Jy^
(y + 3)-
Trang 181 Neu X = 0 thi he da cho <=>
Lai gidi
l + y 2 = 0 , , he nay v6 nghiem
4 - x ^ x^ +3y = 4
y^+8x = 9
y =
-4 - x ^
+ 8 x = 9
Trang 19<
x^
-8x^
+72x-6
5 =
0 4-x
^ y =
(x l)(x + 5)(x^
-4
x + 13) =
0
x^
y = -7
x^
+x-5
y-2(
ll x- y) +
v =
^ y- x;u
,v > 0
'u = 2;v =
l
u -V =
1
7v-2u^
+4v^
-y =2
ll x-
y =
4
-X + y = 1
ri 3^ 2'2
y
\
Dat t = ^, t
a C
O phuan
g trinh: (
2 + t2)2
=3t2
(l +
t)
c =>
t'*-3t^
x - 5
Trang 20
Dat z = -J^^ > 0 Ta CO he phuong trinh
z = x + 5
2z = x^ + X- 5 <=>
z^ = x + 5 x^ = 2 z - x + 5 <=>
z^ =x + 5 x^ - z ^ = 2 z - 2 x
z = X + 5
X = z
x + z + 2 = 0
Truong hop x + z + 2 = 0 khong xay ra vi x, z > 0
Voi X = z > 0 ta duoc x = ^ ^ ^ ^ , y = 2x = 1 + V2I
Vay nghiem cua he da cho da cho la: (x;y) = ( ;2x = 1 +
Vi du 14 Giai he phuong trinh sau tren tap so thuc:
x^y^ + 4x^y - 3xy^ + x^ + y^ = 12xy + 3x - 4y +1
(u + l ) ( v + l ) = 2
3 u - 2 v = 3 <=>
2 o (u + l ) ( 3 u - l ) = 4
V i du 15 Giai cac phuong trinh sau tren tap so thuc:
Lai giai
1 Dieu kien: x > 3 Dat log3(x-2) = t > 0 C5> x = 3 * + 2
Trang 219)
\
= 1(1)
Ham
so f(t) =
v9 , nghich bien tren
M ne
n phuon
g trin
h (1) c
Voi t =
=:
> X
= 2 +
s
2 Die
u kien: x > 0
-1 = 3x - |x^ +
x +
1 j
log3(
X +X +
1 logj 3
-x = 3x - ^x^ +
X +
1
<=> I logj
^x
^
+X
+ 1J+ x
^ +
x +
j = log3 3x + 3x (*
)
Xet ha
m s
o t(t) = logg t +1 tren (0;
+00) c
6 f'(t) = +1
> 0, V
f (3x) <=>x^+
x +
l = 3xo
x = l
Vi d
u 16 Gia
1.21og(^
> /x +
N/X j
= log4
X 2
logj^
l + x
-N/
x
=(
x)V3
l-x
Lcri giai
1 Die
u kien: x > 0 Phuon
\[x +
\/x j = log
^ \/
x
Dat t = log(
, = log4
>/x
N/^ + ^ =
6'(1)
V^
= 4*(2)
The (2) va
o (1) t
a duoc: 4
* +2
^ = 6' ci
>
v6
y
v6
Xet ha
m s
o f (t) =
a tha
y f(t) nghjc
h bie
n tre
n # , m
y va
o (2) ta c6
x =
16
2 Die
u kien: x >
= N/
SVx ->/3
\/x^
Trang 22Vay phuong trinh da cho c6 nghiem x = 0, x = 1
V i du 17 Giai cac phuong trinh sau tren tap so thuc:
f ( x ) = - ^ - ^ - ^ "^^^"^^^ + , i > 0,Vx 6 (-2; 4) f(x)dong bien tren | - 2 ; 4 J Ma
Lap bang bien thien suy ra: f (x) > f (3) = 2 Vx G [2;4]
=> Phuong trinh f (x) = \/x-2 + N / 4 - X = 2 C6 nghiem duy nhat x = 3
V i du 18 Giai cac phuong trinh sau tren tap so thuc:
Trang 23Xethamso f(t) =
'+
^t, t
a c6: f (t) =
'ln
t + ^ >
0,Vt
Ham f(t) don
g bie
n tre
n M
nen phuong
trinh (*
)
= f
2x
^ ,
i v , , n die a ma 2 tho = = > X — < — — = — o
-u kien
2 Dieu kien: x # -3, x
— 1
0 713 X
a c6: f (t) = 713' I
n 71
3 >
0, V
t e ^ ne
n ha
m f(t) don
g bie
n
tren , do do phuong
-^^
ox^
+3x-40 = 0
x =
5
Vi d
u 19
1.
(6x + l)log^(x +
l) + 6(x
-l)
lo g2
(x + l)-
7 =
0
JM _>
i|
L ^ 2x ' el '- ^ " 2 ế
-5 x-
1
3 log,„,,(2014-l''"^'+4'""!-4) =
Lai giai
1.
Dieu kien: x > -
1
Ta tha
y x =
khong phai l
a nghie
m cii
a phuan
g trinh
7 1
;-—;+
oo ) (
^4
; "
Trang 24Xetx 6 ( - — ; + o o ) , thi V T ( * ) la ham so dong bien, V P ( * ) la ham so nghich bien
6
ma V T ( I ) = V P ( l ) nen tren (-~;+co) thi x = 1 la nghiem duy nhat thoa man ( * )
6 Vay phuang trinh da cho c6 3 nghiem:
2 f)ieu kien: x 1; x - Phuong trinh da cho viet lai: e^^""''^ - ^ ^ ^ = e^" ^— (*)
2 x - 5 x - 1 Xet ham so f(t) = e' - - , t a c 6 f (t) = e' > 0,Vt ^ 0, nen ham f(t) dong bien V t # 0
x - 1 2x^5 <=> x = 2 hoac X = 4
nc:>f(|2x-5|) = f ( | x - l | ) o
Vay phuang trinh da cho c6 2 nghiem: x = 2 , x = 4
3 Dat T = 2 0 1 4 ' ' " " ' + 4 " " ' - 5
Phuong trinh da cho tro thanh: log,,,,^ (T + 1) = 2014^ - 1
Xet ham de thay phuong trinh tren luon c6 nghiem T = 0 <=> 2014^^^'""^ + 4'""' = 5 Data=|sinx| ( a 6 [ 0 ; l ] ) 2014-'+4^^' = 5 (1)
Ta c6: 2014'' ^ 4= (2) Dau " = " xay ra khi a = 0
Dat f(a) = 4 ' + 4 ^ ' ( 3 ) f (a) = l n 4 4 ' - l n 4 4 ^ ' ^
Xet f'(a) = Oc=>
4^:
(4).Dat g(z) = — , ( z e [ 0 ; l ] )
Khi do xet g(z) trong moi khoang ^ 10; U 1 ^
In 4 In 4 (4) •» a = V l- a ' <=> a =
Tiep tuc xet f(a) trong moi khoang
0;-Giai phuong trinh sin x = 1 hoac sin x = 0 danh cho ban doc
f(a) = 5 khi a = 1 hoac a = 0
V i du 20 Giai cac he phuang trinh sau tren tap so thuc:
Trang 25Phuong trinh (l)
< =>
(x
- i
f + 3(x -1) = (2
- + 3(2
- y) (3)
Xetham
so f(t) = t
^+
3t,te(0
;+
oc) '
Ta c6
; f (t) = 2t +
3 >
0,Vt e (0;
2
y 6 (O;+oo) ne
n (3) <
= > f (x -1) =
f (
2 y) <
-= > x ^ 1 = 2
a dugc:
X
(3
-y )-
2 hoa
c y = 1
+ V
ai y = 1 => X = 2 (khong
thoa man dieu kien)
+ V
oi y = -
2 =
> X = 5 (thoa man dieu kien)
Vay h
e phuan
g trin
h c
6 nghie
m duy nhat (x
;y) = (5;-2)
2.Tac6 >
/t
^l+t
t>
0 Vtê
-e
"" =21n(
y + ^/y-+l)
gy-e >'
=2in(x + Vx^
+l)
Tu
do su
y ra: e
" e"" +
2 ln(
x + Vx^ +1) = ế - e"^ +
2 ln(
y + ^y^
+1)
Xet ha
m s
o f(t) = é -e
"' + 2ln(t +
7t^
+l)
2
Ta C
O f'(t) = é +
' + > 0
B
o d
o f(t) don
a su
y r
a x = ỵ
Thay x = y vao h
e t
a dugc:
ê-e-" =21n(
x + \/x
^+
l)og(x) = é'-e"
21n(x + Vx^
''-+l) =
0 (*)
Taco g'(x) = é'+e
——
^2Ve
la mo
t nghie
m cu
a (*)
Vi d
u 21 Cia
2ỵl
p-=0 L
4x-
26x-42.^
Trang 26Xet ham so f(t) = (t^ + l)t => f'(t) = 3t^ +1 > 0, Vt e # => f(t) dong bien tren
Thir lai x = 3, y = 3 thoa man he phuang trinh
V i du 22 Giai cac he phuong trinh sau tren tap so thuc:
1 ( 2 x 2 - 3 x + 4 ) ( 2 y 2 - 3 y + 4) = 18
X + y +xy - 7 x - 6 y +14 = 0 2
x" - y'* + 28x + 31 = 32x + 4y^ + 6y^
x^ +y^ + x y - 7 x - 6 y + 14 = 0
Trang 27Lai gidi
1
(2x^-3x + 4)(2y^
-3
y + 4) =
18 (1)
x^+y
^+
xy-7x-6y+ 1
4 =
0 (2)
6y+ 1
4, t
e =
> f'(t) = 4t -
3, f'(t) =
0 t = - <
1 4
so f(t) don
g bien
Trumtg hap 1:
6, ke
t ho
p vo
i y ^ 1
^ f(y) >
f(1) =
3 =
> f(x).f(y) =
(2x^ 3x + 4)(2y^
- 3
y + 4) >
18
Trumtg hap
2: x = 2
he tr
a than
h 2y2-3y + l =
0
<=>
y -4
y +
4 =
0 [y
^2
y = l,y =
2
v6 nghiem
x'* y^ + 28x +
31 = 32x + 4y^ +
6y^
(l)
x^+y
^+
xy-7x-6y + 1
4 =
0 (2)
Phuong trin
h (l)
o
x'* -32
x = y
"
+4y-^ +6y
^ -28y-3
1
c:>x''-32x = (
y +
32(y + l) (3)
f-Gia s
u phuan
g trin
h (2) l
7)
y-x +
6y + 1
^-4 =
0 c
6 A = (y-7)
4^
^-y^
-6
y + 14J
3y
6 nghie
m ne
n A>
<
Tuong tu coi phuon
g trin
h (2) l
-32t tre
n
3
Ta c6: f'(t) = 4t^
-3
2 = 4(t^
< =>
f (x) =
f (y+
l) <
= > x = y+ 1
3 , su
a duoc: 3y
^ -10
y +
8 = 0<:=>y= -
hoac y = 2
Trang 28+ Vdi y = 2 X = 3 (thoa man)
Vay he da cho c6 nghiem (x;y) = (4; 2)
V i du 24 Giai cac he phuong trinh sau tren tap so thuc:
Trang 291
Lai gidi
x3-3
x =
(y-l)3
-7 9(
l) (1)
y-l +V
^ = , /^
i
(2)
Tu dieu tcien va
u pliuon
g trin
h (2) ta c6 x
> 1;
jy -1 > 1
Phuang trin
h (1) o x'' -3
x = (^y-1)^
3^
-
y-l , xet ha
m s
o f(t) = t'' -3t tre
n [V,+x)
Ham so dong bie
n tre
n [1
; +oo), t
a c
6 f(x) = f(^y -1) =
y =
5
Voi X = ^y-
i dug
c x = 1
; x = 2
2
\/x^Tl -3 x^
x +
2 =
0 (2)
Voi y < 0 thi VT
(I ) >
, VP(l) < 0 =>
tix phuan
g trin
h (2) cu
a h
e su
y r
a x > 2
Khid
o:
(l )c
yfj4y^
+1-1 V /
o Vx^ +
1 +
2 = 2x^y^4y^
+1 +x^y (3)
Thay 2 = x
Vx^ +
1 +
x = 2x2yj4y2
+1 +2x^y <=>
- 1+ +-
= 2yj4y
^+
1+
2y
X y
X ^
Xet ha
m so: f(t) =
0
I
Taco: f'(t) =
Vl +
t^
,=
^ = 2y c^
xy = l
Thay x
y = — va
o phuan
g trin
h (2) cu
a h
e t
a c6: x = 4 => y = —
2 8
Thu lai tha
y x = 4, y = - thoa ma
y-y + 2)
2 •
x2+y
X + N/X^+1=3>'
y + Jy^
+l
=3'' x'
y'
y-=7
x^y + 2xy^
+y
' =
9
Trang 30Lai giai
1 Thay 2 = + y^ vao phuong trinh thu nhat ta dugc
2^-2>' = ( y - x ) ( x y + x^+y2)c:>2''-2>' =y3-x3 c:>2''+x^ =2>'+y3 (1) Xet ham so f(t) = 2'+ t^,t e c6 f'(t) = 2 ' l n 2 + 3t^ > 0,Vt e #, suy ra f(t) dong bien
tren M Khi do phuong trinh (1) o f(x) = f(y) <=> x = y, the vao phuong trinh thu hai ta dugc
X = y = ± 1
Vay he phuong trinh da cho c6 nghiem la (x;y) = (1;1); (-1;-1)
2 Tru ve hai phuong trinh ta dugc
x + V x ^ + l - f y + J y 2 + l l = 3>'-3'< ^ x + V x ^ + l + S " = y + J y ^ + 1 + 3 ^ ,
CO dang f(x) = f(y)
Xet ham so f(t) = t + V t ^ + 1 + 3 ' tren # Ta c6: f (t) = 1 + - ^ = ^ = + 3 ' l n 3 > 0,Vt e #
=> f(t) dong bien tren R
Khi do f(x) = f(y) <=> x = y, the vao phuong trinh thu nhat ta dugc
Suy ra g(x) dong bien tren R Boi vay g(x) = g(0) <=> x = 0
Vay he phuong trinh da cho c6 nghiem duy nhat (x;y) = (0;0)
y ( x ^ - y ^ ) = 7 y(x + y y = 9 = > x > y > 0
3 He da cho <=> T u phuong trinh thu hai suy ra x = - = - y
Thay vao phuong trinh dau ta dugc: y 3^8 - y - y ^ = 7
Dat t = ^ > 0 ta CO phuong trinh: t" = 7 o t ' - ( 3 - t ' ) ' + 7 t = 0
Xet ham so f(t) = t" - (3 - 1 ' + 7t = 0, ta c6: f '(t) = 9t' + 9t' (3 - 1 ' ) ' + 7 > 0; Vt > 0
Trang 31Vay ha
m s
o f(t) don
g bie
n tre
n khoan
g (0;+co) ne
l)
Vi d
u 26 Gia
>8X +
1
3 ^log2(
2 + x) + log,(
4-Vl 8-
x)
<0
1^
11
u(4;+Go )
0 = (a' + m)' -[(
2m + 10)a' - a-20 + m''
Ta chon
m debie'u thuc tron^
dd'u phdn tick la
1 hhng d&ng thiec:
A' = l-4(
2m+10)(m 20) =
i(
3 + VT7) hoa
c
—
^x
(5-V2T)
^-3 Die
u kien:
2 + x
>0, 18-x
^O
4-^18-
x >
0 o-2<
x<
18
Trang 32Ket h o p v o i dieu kien, ta c6 nghiem ciia bat p h u o n g trinh la: - 2 < x < 2
V i d u 27 Giai cac bat p h u o n g t r i n h sau tren tap so thuc:
Vay bat p h u o n g t r i n h d a cho c6 tap n g h i e m S = [3;+<»)
Trang 33Vi d
u 28 Gia
1.2 X- +X +
1 2 + x -
4 ^ 4 X +
2
log3_^^^-(x^ -1) +
log3^^^(2
x -1) ^
4 Bat phuon
2 ^ ,2-7x
«>
2 x
1
, + 1
X +
4
(2 + ^/x2+l)^/x^+l
x2-3
^/(x + 4)(x
^ +
x + l)+
x +
4 (
2 + ,/x^
<0 +l x2 ^/ l) /^ ^ 2 + 4 ( x + )+ l x + 4)(x^+ ^,/(x +
o
X -
- 3 < 0 <=>
2 Die
u kie
n x > 1 Ba
^ lo8V2 i(''' -
^) ^ '°gV^2
^ ^(x
^ -1) ^ log^
i d
o x + — > 0
va ~ > 0
2x + 2 |
x2 -±
Trang 34-Vay bat phuong trinh da cho c6 tap nghiem S = 3 — • 5 ;+oo
V i du 30 Giai bat phuang trinh sau tren tap so thuc: 9" + x.S" + 3 < S"""^ + 3x + 3"
Vay bat phuong trinh da cho c6 tap nghiem S = [O; 1
V i d u 31 Tim m de phuang trinh sau c6 nghiem thuc
Dat t = Phuang trinh tro thanh (t -1)^ + = m
x + 2 ] - 2 x 1 Xet ham g(x) = - ; = = = , ta c6 g'(x) = —^ , va g'(x) = O o x = -
4x^ + 1
Trang 351
Gioi han: lim g(x) =
I,
lim g(x) = -
tren (-1
; S
],iac6 f'(t
) = 2(t-l) ^
va f'(t) =
2 Gid
i han: li
Lap ban
g bie
n thien, su
y r
a phuon
g trin
h f(t) =
i v
a ch
i
khi m ^ 7
18
Vi d
u 32 Ti
m
(x 2
+l)%
0
Lot
giai
x^(-2x2+x-2) +
m~
m2)(
x2+l)%
0 (l)
o
(m-m^
)(
x^
+l)%
VX^
+1/
n M
, t
a c6: g'(x) =
va g'(x) =
0 o
x = ±
Lai c6: lim g(x)=
lim g(x) =
)^
i.
Dat t=
g(
x),
- m
^ ^ 2t^ -
1^
(3)
Xet ha
m so: f(t) = 2t^
-t' tre
n
Tac6:f'(t) = 4t-3t^ v
I
2
; 8'
UJ
: f'(t) =
0 <=>
t =
0
min f(t) =
6 nghie
m
Trang 36nay xay ra k h i va chi k h i m = 16 hoac m ;t 16 va A ' = ( m +6)^ - ( m - 1 6 ) ( 3 m + 4 0 ) ^ 0
<=> 5 - 7363 < m < 5 + V363 V a y 5 - ^363 < m ^ 5 + V363 thoa m a n bai toan
Trang 37-y) x
2 +
x +
y
i/x^ +2y
x +
y
Jx^
+2y + l +y + l
J.—
;x e[0
;+
oo );
lim f(x) =
0, V
x e [0; +oo) ^ f(x) don
f(0) = -
1 V
x E [0; +oo)
-y
^+
3y
3x-2 = 0
+ m = 0
CO nghie
m thuc
Dieu kien: -l<
x<
l, 0
<y
<2
-^2y-y^
+m=
0 (2)
Phuong trin
h (1)
« x
^ - 3
x = (y -1)^ - 3(y -1)
Xet ha
m s
o f(t) = t"' - 3t tren doa
n [-1
; 1] v
a ta thay ha
n f(x) = f(y-l)<=>x =
- lc:>
y =
x + l
-2V1
x^
-,; ,x
e -1;1 ,g'(x) =
Phuong trin
h (3) c
6 nghie
m x
e -1
Trang 38Dteu kien du: V d i m > 1 , xet he p h u o n g t r i n h
Gia s u (xQ;yQ) la n g h i e m cua he (*)
Do d 6 m o i n g h i e m cua h e (*) d e u la n g h i e m cua he d a cho
Thay x = - 2 y v a o p h u o n g t r i n h t h u hai cua he (*) ta d u g c
He (*) CO n g h i e m , d o d o he cho c u n g c6 n g h i e m V a y m > 1 thoa m a n bai toan
BAI TAP TVr LUYEN
Bai t a p 1: G i a i cac p h u o n g t r i n h sau t r e n tap so t h u c :
Trang 39x + 4->
/5-x+3x^
8x-1
-9>
0
Bai ta
p 3: Gia
i ca
c phuan
g trinh, ba
1 2 log3 (x' -
4) +
3^1og3 (
x 2)' - log3 (
x 2)' =
4
• l og jX
log2N/x
+ 2
3 log,(
x'+
4x + 6) + log,(
x'+
2)
= 1 +logg(x+ 2)
'
4
Bai ta
p 4: Gia
i phuon
g trin
h
^3x^
-x + 200
1 -\/3x^-7
x +
2002 -^
6x-200
Bai ta
p 5: Gia
Bai ta
p 6: Gia
^ +
2
il og y^
-21og2
log4(2
y +1
)2 + lo g^
7^
(9xy + 9) + (y' +3x) = 10y
9xy(y' +3x) + 3x + y' = 25y' -40
y +
16
Bai ta
p 7: Gia
6)
= y
(x2+l)
(y
-l)(x2+
6) = x(y2+l)
-x2+y2+x + y-4 = 0
'x2
4
.y2+
^ = 1
6 y x +
x^ 2
x + x^ x
-^ y
8y 3 ^3y
4 2
4 x + y
Bai ta
p 8: Gia
1 ^
x + l+\/x + 2+^
x + 3
= 0
2.
v^
+ Vx^
Trang 40Bai tap 12: Cho cac so thuc a, b, c thoa m a n a > b > c > 0 Chung minh rang phuong trinh
sau C O nghiem duy nhat: V x - a - V x - b + ^ ^ = 0
V x - c