1. Trang chủ
  2. » Giáo án - Bài giảng

de kt 1 tiet HH 11 chuong 1 ncao(10-11)

13 760 22
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Kiểm Tra 1 Tiết Chương 1 Nâng Cao (10-11)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Hóa Học
Thể loại Đề Kiểm Tra
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 431 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Viết phương trình các đường thẳng d1 ; d2 lần lượt là ảnh của d qua phép đối xứng trục Ox và phép vị tự tâm I tỉ số k = 2.. Viết phương trình của đường tròn C3 là ảnh của đường tròn C q

Trang 1

CÁC BÀI TOÁN ÔN TẬP KIỂM TRA 1 TIẾT CHƯƠNG I:

PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

( Có hướng dẫn giải )

CÁC BÀI TOÁN TỌA ĐỘ :

Bài 1: Trong mặt phẳng toạ độ Oxy, xét phép biến hình F biến mỗi điểm M(x;y) thành điểm M'(x+1; y ) Chứng minh F là 1 phép tịnh tiến

Hướng dẫn : - Tính được MM'=(1;0 - Lí luận để suy ra F là phép tinh tiến

Bài 2 : Phép biến hình F biến một điểm M(x;y) thành điểm M’(ax;y)

a).Với các điểm M1 (x1;y1), N1(x2;y2) Tìm ảnh M’1 , N’1 lần lượtc của M1, N1 qua F

b).Tìm a để F là phép dời hình.

c).Với các giá trị a tìm được ở câu b, xác định cụ thể tên của phép dời hình trong

các phép dời hình cơ bản đã học ứng với mỗi a tìm được

Hướng dẫn : b) a = ± 1

c) a = 1, F là phép đồng nhất a = -1, F là phép đối xứng trục Oy

Bài 3 : Trong mặt phẳng tọa độ, cho đường thẳng có phương trình x + 2y – 3 = 0

và điểm A(1, 1)

a) Hãy tìm ảnh của điểm A và d qua O

b) Hãy tìm ảnh của d qua phép vị tự tâm A tỉ số 3

Hướng dẫn :

a) Khi lấy đối xứng qua Ox, mọi điểm M(x, y) biến thành điểm M’(x, -y).

Do đó, A biến thành A’(2, -1) và ảnh của đ/thẳng là đường thẳng có PT 2x + y +1 = 0

b) M(x, y)  dbiến M’(x’,y’)  d’ sao cho:

'

2 2 '

4 2 '

y y

x x

Từ đó, ta có 2x' y'  12  0

Bài 4 : Trong mặt phẳng Oxy, hãy viết phương trình ảnh của đường thẳng (d) : y

= 2x - 3 và parabol (P) y = x2 + x + 2 qua phép tịnh tiến theo vectơ v  3;0

Hướng dẫn :

 

2 3

Trang 2

Gọi M(x; y)  (d)  y = 2x - 3 (1)

'

v

Thay vào (1), ta được : y’ = 2(x’ 3) 3 = 2x’ 9 KẾT LUẬN : y = 2x -9

 

2 2

   

Gọi N(x, y)  (P)  y x 2  x 2. (2)

  ' 3 ' 3

'

v

Thay vào (2), ta được : y’ = (x’ - 3)2 + x’ - 3 +2 = x’2 - 5x’ + 8 KẾT LUẬN : y =

x2 - 5x + 8

Bài 5 : Trong mặt phẳng Oxy, cho đường tròn (C) : x2 + y2 -2x - 4y - 4 = 0 Hãy tìm ảnh của (C) qua phép đối xứng trục (d) : 2x - y + 1 = 0

Hướng dẫn : x2 y2 2x 4y 4 0     x 12y 22  9

 C

 có tâm I(1; 2) và bán kính R = 3

Gọi (d1) là đường thẳng qua I(1; 2) và vuông góc (d0)

 (d1) có VTPT n  1; 2

 (d1) : 1(x - 1) 2(y - 2) = 0  (d1) : x + 2y - 5 = 0

Gọi H là giao điểm của (d) và (d1)

3

;

5

x

x y

H

y

  

Gọi I'  §d I Khi đó H là trung điểm II’

'

'

1

1 12

5

I

I

x

I Y

 

Vậy PT đường tròn cần tìm là : 1 2 12 2 9.

Bài 6 : Cho đường tròn (C) : (x + 3 )2 + y2 = 9 Hãy viết phương trình đường tròn (C’) qua phép quay tâm O(0; 0) , góc quay  2

Hướng dẫn :

 Tìm tọa độ M x y' '; '  là ảnh của M x y ;  qua phép quay Q0; 

Đặt  Ox,OM ; OMa.

Ta có : OM OM; '   y M

Trang 3

 

 

' os + os

y = a.sin y' = a.sin +

 

' os cos -sin sin ' sin cos os sin

 

 

  x x''x c x os -y.sin.sin y osc

  C : x 32 y2 9

 C có tâm I  3;0; bán kính R = 3

0;

2

' 3 os - 0.sin 0

' 3.sin - 0 os 3

  

 

 

    

 Phương trình đường tròn cần tìm  C' :x2y 32  9

(Bài tập tự giải ) :

Bài 7: Trong mặt phẳng tọa độ Oxy, cho vectơ v   (1; 2) và đường tròn (C) có phương trình: x2 y2  4x 4y 1 0 

1) Viết phương trình ảnh của đường tròn (C) qua phép đối xứng trục Oy

2) Viết phương trình ảnh của đường tròn (C) qua phép tịnh tiến T v

Bài 8: Trong mặt phẳng Oxy cho đường thẳng (d) có phương trình 3x -4y + 1 =

0, đường tròn (C ) có tâm I(1; -2) và đi qua điểm M(1; 0)

1) Viết phương trình đường tròn (C )

2) Viết phương trình các đường thẳng (d1) ; (d2) lần lượt là ảnh của (d) qua phép đối xứng trục Ox và phép vị tự tâm I tỉ số k = 2 Viết phương trình đường tròn (C1) , (C2) là ảnh của (C) qua phép đối xứng trục Ox và phép vị tự tâm I tỉ số k = 2

3) Viết phương trình của đường tròn (C3) là ảnh của đường tròn (C ) qua phép đồng dạng là hợp thành của phép vị tự tâm I tỉ số k = 2 và phép tịnh tiến theo vectơ OB với B(-1;3).

Bài 9: Trong mặt phẳng Oxy cho tam giác ABC với A(3; 0) , B(0; 4) , C(-1; -2) Gọi A'B'C' là ảnh của tam giác ABC qua phép vị tự tâm I(1; -2) tỉ số 2 Tính chu

vi và diện tích của tam giác A'B'C'

Hướng dẫn : Chu vi tam giác A'B'C' bằng 2 lần chu vi tam giác ABC

Diện tích tam giác A'B'C' bằng 4 lần diện tích tam giác ABC

CÁC BÀI TOÁN HÌNH HỌC THÔNG THƯỜNG :

Trang 4

Bài 1 Cho tam giác đều ABC, tâm O, ba đường cao AA1,BB1,CC1 Hãy tìm xem

có những phép biến hình nào biến ABC thành chính nó

Hướng dẫn :

Phép đồng nhất - Phép đối xứng trục : DAA 1; DBB 1; DCC 1 - Phép quay :

Q(O,  120O); Q(O,  240O)

Bài 2 : Cho 2 đường tròn (O,R) và (O’,R) Tìm các phép dời hình biến (O) thành (O’)

Hướng dẫn + ( ) ( ' )

T

+ ĐI(O) = (O’) ( I là trung điểm của OO’

+ Đd(O) = (O’) ( d là đường trung trực của OO’)

Bài 3 Cho hai điểm A,B và đường tròn (O ) không có điểm chung với đường thẳng AB.Qua mỗi điểm M chạy trên (O ) dựng hình bình hành MABN.Chứng minh rằng điểm N thuộc một đường tròn xác định

Hướng dẫn : MN  ABkhông đổi Suy ra : Phép tịnh tiến theo AB biến M thành N

Vì M chạy trên (O ) nên N chạy trên (O’) là ảnh của (O ) qua T AB

Bài 4 Cho đường tròn (O,R) đường kính AB.Một đường tròn (O’,R’) tiếp xúc với (O,R) và AB lần lượt tại C và D.Đường thẳng CD cắt (O,R) tại I Chứng minh rằng I là trung điểm của cung AB

Hướng dẫn :

-C là tâm vị tự của (O ) và (O’)

- D thuộc (O’),I thuộc (O ),C,D,I thẳng hàng nên ( , ')

R

R C

V biến O thành O’,I thành D

-OI song song với O’D nên OI vuông góc với AB

-Kết luận: I là trung điểm của cung AB

Bài 5 :

Cho tam giác ABC với trọng tâm G Gọi A', B', C' lần lượt là trung điểm của các cạnh BC, CA, AB

a) Phép vị tự nào biến A thành A’; biến B thành B’; biến C thành C’.

b) Chứng minh tâm O của đường tròn ngoại tiếp tam giác ABC là trực tâm của

tam giác A',B',C'

c) Gọi H là trực tâm của tam giác ABC Chứng minh GO GH

2

1

Hướng dẫn

Trang 5

a) GA GA

2

1 '    V ( G;  21 ): A  A'

Tương tự : V ( G;  21 ): B  B' , C  C'

Kết luận

b) Ta có OA'  BC và BC // B'C' nên OA'  B'C'

Tương tự cm OB'  A'C'  đpcm

c) Ta có V ( G;  21 ):  ABC   A'B'C'

H là trực tâm tam giác ABC, O là trực tâm tam giác A'B'C' nên V ( G;  12 ): H

 O

Bài 6: Cho hai đường tròn (O1) và (O2) cắt nhau tại hai điểm phân biệt A và B Hãy xác định hai điểm M thuộc (O1) và N thuộc (O2) sao cho A là trung điểm của MN

Hướng dẫn : - Nêu được cách xác định vị trí 2 điểm M và N - Vẽ hình đúng

KKKK

Bài 7 : Cho hai đường tròn (O) và (O’) , bán kính khác nhau và tiếp xúc ngoài tại

A Từ A vẽ hai tia AM, AM’ vuông góc với nhau M  (O) ,

)

'

(

M  và A’ là giao điểm thứ hai của (O’) với đường nối tâm OO’

a) Chứng minh rằng AM//A’M’

b) Chứng minh đường thẳng MM’ đi qua tâm vị tự của hai đường tròn (O) và

(O’)

Hướng dẫn

90 ' ' ˆ '

A M

b) I là giao điểm MM’ và OO’ vì MA//M’A’ (cùng vuông góc với M’A) nên M AˆOM'Aˆ'O do đó OMA đồng dạng với O'M'A' và

' ' //

' ' ˆ

'

O

M   do đó I là tâm vị tự ngoài của hai đường tròn

Bài 8 : Cho tam giác ABC, trung điểm M của BC di động trên đường tròn (O;R)

cố định

a) Vẽ ảnh tam giác A’B’C’ của tam giác ABC qua phép vị tự tâm A, tỉ số k =

2/3

b) Khi M di động trên (O;R), A cố định, trọng tâm G của tam giác ABC chạy

trên đường nào ?

Hướng dẫn

a) Vẽ đúng, đầy đủ

b) Chỉ ra phép vị tự tâm A, tỉ số k = 2/3 biến M thành G

Trang 6

Kết luận G chạy trên đường tròn tâm O’, bán kính r = 2/3 R(là ảnh của đường tròn (O;R) qua phép vị tự nói trên

Bài 9 :

Cho tam giác ABC, dựng ở ngoài tam giác ấy 2 hình vuông ABDE và BCKF Gọi P là trung điểm của cạnh AC, H là điểm đối xứng của D qua B, M là trung điểm của đoạn FH

a) Xác định ảnh của 2 vectơ ABBP qua phép quay tâm B, góc 900

b) CMR DF = 2BP và DF vuông góc với BP

Hướng dẫn :

a) Ta có   

0

90

;

) (

BH BA

BD BH BA

 A H

Q B

 900 và  Q B900 BABH

Q B900 AH; Q B900 CF nên Q B900 ACHF

b) Vì P là trung điểm của AC nên theo tính chất

của phép quay, ta có ảnh của P qua phép quay trên là

trung điểm M của HF

 

BM BP

BM BP BM

BP

Q B900

DP BM

BF BM

//

2

1

Do đó,

BP DF

DF BP

 2 1

Bài 10 : Cho hai tam giác đều OAB và OA’B’ Gọi C1 và C2 lần lượt là trung điểm của các đoạn thẳng AA’ và BB’

Chứng minh rằng : OC1C2 đều

Hướng dẫn :

Xét phép quay Q tâm O với góc quay bằng góc lượng giác  OA OB;  Rõ ràng

A

B

C H

P M

F

K D

E

O

1 A’

B’

B

C2

Trang 7

  

0;

0;

0;

' '

Do C1 : C2 lần lượt là trung điểm của AA’, BB’ nên Q 0; C1 C2

2

0

OG OC

 

  OC C1 2 đều (đpcm)

Bài 11: Cho tam giác ABC Về phía ngoài của tam giác ABC vẽ các hình vuông BCIJ, ACMN, ABEF và gọi O, P, Q lần lượt là tâm đối xứng của chúng

1/ Gọi D là trung điểm của AB Chứng minh rằng DOP là tam giác vuông cân đỉnh D

2/ Chứng minh AO vuông góc với PQ và AO = PQ

Hướng dẫn :

1/  Phép quay Q( ,90 )C 0 biến MB thành AI, nên MB bằng và vuông góc với AI

 DP song song và bằng nửa BM, DO song song và bẳng nửa AI

 Suy ra DP bằng và vuông góc với DO

2/  Phép quay Q( ,90 )D 0 biến OA thành PQ

 Suy ra OA bằng và vuông góc với PQ

Bài 12 Cho hai phép quay Q AQ B có tâm quay là A và B ( phân biệt ) và có cùng góc quay 900 Gọi F là hợp thành của Q AQ B , F' là hợp thành của Q B

A

Q Hãy chứng tỏ F và F' là những phép đối xứng tâm và nêu rõ cách xác định tâm đối xứng của các phép đó

Hướng dẫn Lấy điểm O sao cho tam giác OAB là tam giác vuông cân với góc (AO,AB) = (BA,BO) = 45 0

Khi đó, Q A là hợp tành của hai phép đối xứng trục Đ AOĐ AB, còn Q B là hợp thành của hai phép đối xứng trục Đ ABĐ BO Vậy F là hợp thành của bốn phép đối xứng trục theo thứ tự : Đ AO, Đ AB, Đ AB, Đ BO, tức cũng là hợp thành của hai phép đối xứng trục Đ AOĐ BO Vì AO vuông góc với BO nên F là phép quay tâm O góc quay 180 0, tức là phép đối xứng qua điểm O Chú ý rằng có thể xác định điểm O bởi điều kiện :

Tam giác OAB vuông cân và (OB,OA) = 90 0

Tương tự , F' là phép đối xứng qua tâm O' , sao cho O'AB là tam giác vuông cân

mà (OA,OB) = 90 0

Bài 13 Về phía ngoài của tam giác ABC vẽ các hình vuông BCMN và ACPQ có tâm O và O'

Trang 8

a) Chứng minh khi cố định hai điểm A, B và cho điểm C thay đổi thì đường thẳng NQ luôn luôn đi qua một điểm cố định

b) Gọi I là trung điểm AB Chứng minh rằng IOO' là tam giác vuông cân

Hướng dẫn

a) Xét Q Q A, B lần lượt là các phép quay tâm A, B với góc quay ( AQ, AC) = (BC,

BN ) = 900

Hợp thành của hai phép đó là phép đối xứng qua điểm H xác định Vì phép đối xứng tâm H biến Q thành N nên H là trung điểm của đoạn thẳng NQ, tức là

đường thẳng NQ luôn đi qua điểm H cố định

b) Cách 1 : Gọi Q Q O, O' là các phép quay có góc quay 900 với tâm quay tương ứng

là O và O' thì phép hợp thành F của chúng biến B thành A, Nhưng vì F là phép đối xứng tâm , nên tâmđối xứng là trung điểm I của AB Suy ra tam giác IOO' vuông cân tại đỉnh I

Cách 2 : Phép quay tâm C góc quay 900 biến A thành P và biến M thành B Bởi vậy, ta có AM = PB và AMPB Chú ý rằng IO là đường trung bình của tam giác ABM và IO' là đường trung bình của tam giác APB nên suy ra IOO' là tam giác vuông cân

Bài 14 : Cho hình bình hành ABCD, hai đỉnh A, B cố định, đỉnh C chạy trên

một đường tròn (O) Tìm tập hợp điểm D

Hướng dẫn : Nêu được: tồn tại T ( C ) D

C  ( O )  D  ( O ' )

Bài 15: Cho hình thang ABCD có AB song song với CD, AD = a, DC = b, còn hai đỉnh A, B cố định Gọi I là giao điểm của hai đường chéo

1 Tìm tập hợp các điểm C khi D thay đổi

2 Tìm tập hợp các điểm I khi C và D thay đổi

Hướng dẫn :

1/ Chọn u DC  

, với u cố định

 Phép tịnh tiến theo u biến D thành C

 Kết luận 2/  Chứng minh: AI AB AC

AB b

 Kết luận

Trang 9

Bài 16: Cho đường tròn (O;R) Một điểm A cố định thuộc đường tròn, B và C di động trên đường tròn sao cho góc BAC  không đổi (00 < α < 1800),

a) Tìm tập hợp trung điểm M của BC khi α quay quanh điểm A

b) Tìm tập hợp trọng tâm G của tam giác ABC khi α quay quanh điểm A

Hướng dẫn :

a).Vì α không đổi nên độ dài đoạn không đổi : BC = 2Rsinα Từ đó ta có: OM= Rcosα

Vậy tập hợp điểm M là đường tròn (O,Rcosα)

G

M

O

A

b) Ta có:   AM

3

2

( , ) 3

( )

A

Suy ra G  đường tròn ảnh V )(O,Rcos ) (O,'R)

3

2 , A (   , với     R cos 

3

2 ' R , AO 3

2 ' AO

Bài 17: Cho đường tròn (O) có đường kính AB Gọi C là điểm đối xứng với A qua B và PQ là đường kính thay đổi của (O) khác đường kính AB Đường thẳng

CQ cắt PA và PB lần lượt tại M, N

a) Chứng minh rằng Q là trung điểm của CM, N là trung điểm của CQ.

b).Tìm quỹ tích các điểm M, N khi đường kính PQ thay đổi.

Hướng dẫn : a)

- Chứng minh đúng QB//AP

- Từ đó chứng minh được Q là trung điểm của CM

- Chứng minh tương tự N là trung điểm của CQ

b)

- Tìm ra đúng phép vị tự V(C,2)(Q)  (M)

- Lý luận đúng quỹ tích của điểm M

- Lý luận tương tự đưa ra đúng quỹ tích của N

Bài 18 Cho đường tròn (O) đường kính AB và đường thẳng d vuông góc với

AB tại B Với đường kinh MN thay đổi của đường tròn ( MN khác AB), gọi P và

Q lần lượt là giao điểm của d với các đường thẳng AM và AN Đường thẳng đi qua M, song song với AB cắt đường thẳng AN tại H

1) Chứng minh rằng H là trực tâm của tam giác MPQ.

2) Chứng minh rằng ABMH là hình bình hành.

Trang 10

3) Tìm quĩ tích điểm H.

4) Tìm quĩ tích trực tâm tam giác NPQ.

Hướng dẫn : a) MHPQ QH, PM nên H là trực tâm tam giác MPQ

b) AB//HM và AH//BM nên ABMH là hình bình hành

c) Từ câu b) có MH                            BA

Suy ra : T BA biến M thành H Quỹ tích H là ảnh của (O) qua TBA - trừ hai điểm là ảnh của A và B

Nếu ta lấy điểm C sao cho A là trung điểm của BC, thì quỹ tích H là đường tròn đường kính AC trừ đi hai điểm A và C

d) Điểm N đóng vai trò hoàn toàn tương tự như điểm M , nên quĩ tích trực tâm của tam giác NPQ cũng trùng với quĩ tích điểm H

Bài 19 Cho đường tròn (O) và điểm I không nằm trên đường tròn đó Với mỗi điểm A thay đổi trên đường tròn , dựng hình vuông ABCD có tâm là I

1) Tìm quỹ tích điểm C.

2) Tìm quỹ tích mỗi điểm B và D.

3) Khi điểm I trùng với O, có nhận xét gì về ba quỹ tích nói trên ?

Hướng dẫn

1) Phép đối xứng tâm ĐI với tâm I biến điểm A thành điểm C Vậy quĩ tích C là đường tròn ( )O1 , ảnh của đường tròn (O) qua phép đối xứng đó

2) Phép quay Q tâm I góc quay 2 biến điểm A thành điểm B và phép quay Q' tâm I góc quay  2 biến điểm A thành điểm D Suy ra quĩ tích B và D lần lượt là các đường tròn ( )O2 , ( )O3 : ảnh của đường tròn (O) qua các phép quay Q và Q' 3) Khi I trùng với O thì ( )O1 , ( )O2 , ( )O3 cũng trùng với (O) nên ba quĩ tích nói trên đều là đường tròn (O)

Bài 20 Cho hai đường tròn (O) và (O’) bằng nhau và cắt nhau tại A,B Một cát tuyến di động qua A cắt hai đường tròn đó lần lượt tại P và Q

a) Tìm tập hợp trung điểm I của đoạn PQ.

b) I là trung điểm của đoạn PQ Tìm tập hợp của điểm M trên PQ sao cho :

2

k

, với k  1

c) Tìm tập hợp trọng tâm G của ABI

Hướng dẫn

a) Lập luận đến PBQ cân tại B Lập luận đến AIB 90 0 Kết luận, Vẽ hình

b)AI  ( )

2

1

AQ

AP  Suy ra AMk AI Kết luận, Vẽ hình

Ngày đăng: 18/10/2013, 01:11

HÌNH ẢNH LIÊN QUAN

Cho tam giác ABC, dựng ở ngoài tam giác ấ y2 hình vuông ABDE và BCKF. Gọi P là trung điểm của cạnh AC, H là điểm đối xứng của D qua B, M là trung điểm  của đoạn FH. - de kt 1 tiet HH 11 chuong 1 ncao(10-11)
ho tam giác ABC, dựng ở ngoài tam giác ấ y2 hình vuông ABDE và BCKF. Gọi P là trung điểm của cạnh AC, H là điểm đối xứng của D qua B, M là trung điểm của đoạn FH (Trang 6)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w