Assume equal contribution by each... The gain parameter The value of Ro that will keep gain variation within 1% for variation in RL from 20 Ω to 500 Ω can be found from... According to
Trang 1Chapter 1
8
3.5 136.7
3
6.5 5 10 Sin 200 6.5
6.5 6.5 1
5 10 Sin 200
5 10 Sin 200
5 10 Sin 200 1
AB
DC
DC DC
L
ab
ab a L
Trang 21.7 Given
3
3 3
3
7.5 10 10 Sin 2000 7.5
7.5 7.5 1
10 10 Sin 2000
10 10 Sin 2000
10 10 Sin 2000 1
DC
DC
DC DC
7.5 5 1.5
2.5 20 10 Sin 7.5 4.5 10 Sin
V
A = = From Eq (1.10)
312.5 (40 10 )
Trang 3o L P
v P A
From Eq (1.11)
1 25 40
o
I
s s
s i
s i
v R A
v
R =
6.5 sin10005000
Trang 483.3– 42 mV ≤ VI – 24 mV ≤ 66 mV – 18 mV ≤ VI ≤ 90 mV
vo = io RL = 100 × 10–3 × 103 = 100 V
Av = oi
v
v =
1000.1 = 1000 or 60 dB
Ai = oi
i
i =
–3 –3
10
× = 100 or 40 dB
Ap = Av Ai = 1000 × 100 = 105 or 50 dB
Trang 51.15 (a) From Eq (1.23)
Av = (1 s i) (vo1 o L)
=
2
vo i L 2
v
=
2
vo i L 2
Trang 61.17
o o
v v
v v
∆
o1.5 k
R R
R V R
Ri > 7500 Ω From Eq (1.27)
o
o
v v
Trang 7For o
o
v v
∆ ≤ 0.5%
A
Variation in Av will be contributed by Avo, RS, and RL Assume equal contribution by each
Hence the value of Ro that will keep the variation in gain within 0.5% for variation in RL from 5 kΩ to 20 kΩ can be found from
v
1
1R + −(1 A ) (R+R )
Trang 8(c) For is = 2.5 µA, Rs + Rx = s
s
v i
Trang 10+
50 = (1 503 100 k 1 100 19.9 k)(is )
A
Trang 111.27
+ –
Ri ve
+ –
A Li i Ro
RL
+ –
vo
vi
ii
+ –
A iis iRo
Ro
RL
+ –
Trang 12(b) Assume ideal current amplifier with Ri = 0 and Ro = ∞, we have the reduced figure as
is Rs
A iis L
RL
+ –
R
Rx = R – RAis = R(1 – Ais)
For Ais > 1, Rx is negative, and if Ais = 2
Rx = – R For Rx = – 10 kΩ we need R = 10 kΩ
Thus an ideal current amplifier with Ais = 2 and R = 10 kΩ will simulate a negative resistance
1.28 (a) Using the result of Problem 1.27 for Ais = 2 and substituting R by impedances Z(s)
Zx = ii
( )( )
Trang 13( )( )
60×10
(a) Let C = 0.1 µF, then Ri =
100.1 10× ×60×10 = 1.67 kΩ
(b) Variation in Gm, according to Eq (1.36), will be contributed by Gms and RL Assume equal
contributions, Rs = 0 The gain parameter
The value of Ro that will keep gain variation within 1% for variation in RL from 20 Ω to 500
Ω can be found from
Trang 14+ –
Rs
RL
G vm i Ro
Assume 1% for and 1% for
Ri > 0.99 1 k
0.01
× = 99 kΩ Similarly
R + = o
1100
R + = i
15k
R + , Ri (1 – 0.99) = 5 k × 0.99 – 2 k
Ri = 295 kΩ For vs = 10 V, Io = 100 mA
Gm = os
Trang 151.33
Using Eq (1.41)
Zm = (1 o L) (mo1 i s)
Av = ( s imo) ( LL o)
–3 A
Ai = os
i
i =
–3
–32.3 10
×
1.34
Since the output variation should be kept within ±2%, variation of effective transimpedance
Zm should be kept to ±2% According to Eq (1.41) the variation in Zm will be contributed by
Zmo and Ro Assume equal contribution to the variation
Trang 16Ri = s(1 0.99)
0.99
= 100 k 0.010.99
×
= 101 kΩ m
R
R +R = 0.99, Ro =
m(1 0.99)0.99
= 20 k 0.010.99
× = 202
–
Rs
+ –
Rs
A vvo i
+ –
vo
Voltage amplifier For ideal voltage amplifier
i
Z
Trang 17Using Avo = Ais o
i
R R
Zmo = Avo⋅Ri = 250 × 50 × 103
= 12.5 MΩ Equivalent amplifiers are:
vi
+ –
+ –
vo
+ –
+ –
–
+ –
Ri vo
Gms = 20 mA/V
Trang 18Avo = Gms Ro = 20 × 10–3 × 2 × 103 = 40 V/V
Avo = Ais o
i
R R
Zmo = Avo · Ri = 40 × 100 × 103
= 4 MΩ Equivalent circuits
vs R1 Gvovi RL
Voltage amplifier
Rs
+ –
+ –
vi
+ –
ii
Ri
io + –
RL
1.38 (a) From Eq (1.21)
Trang 19Total effective voltage gain using Eq (1.23)
Av = os
Ai = oi
= 110,769 or 100.9 dB
Ap = Li
1.39 (a) Using Eq (1.21), Av of stage 1 and 2 is given by
= 76.9 From Eq (1.45), the overall open-circuit voltage gain
Avo = Av1 ⋅ Av2 ⋅ Avo3 = 76.92 × 80 = 473,088 or 113.5 dB From Eq (1.23)
Av = ( i vos)(iL L o)
Trang 20= ( o3 is3L)(is2 o2is1 o3 o2i3)( o1o1 i2)
Trang 21(b) Problem 1.40 Cascaded Current Amplifier
Trang 22| Av(jω) | =
4
21010
Trang 231.47
Rs
+ –
vo
+ –
+ –
980×0.1 = 10,204
fH = 10204
2π = 1624 Hz
fbw = Av(mid) × fH = 19.404 × 1624 = 31,512 (b) RL = 10 kΩ, Ro || RL = 10 k || 50 k = 8333 Ω
v g R
sR C
−+
Trang 24vi
+ –
Trang 251.49
+ –
Rs
+ –
C1
RL
+ –
+ –
Rs
+ –
+ –
−
−+ ×
Trang 26× – 1.2 = 3.6 Ω
Trang 2760 = 41.667 Ω L
120+
R
× = 50 V