u x=Brx Cr = ByCz is the area of the parallelogram formed by the vectors Br , Cr... The figure above shows the unit vectors and nˆ τ which are normal and tangent to the ˆ curve.. The vec
Trang 1CHAPTER 1 FUNDAMENTAL CONCEPTS: VECTORS
1.1 (a) A Bv v+ = + + +(iˆ ˆj) (ˆj kˆ)= +iˆ 2ˆj k+ ˆ
1 2
(1 4 1) 6
A Bv v+ = + + = (b) 3Av−2Bv=3(iˆ+ −ˆj) 2(ˆj k+ ˆ)= + −3iˆ ˆj 2k ˆ
(c) A Bv v⋅ =(1)(0) (1)(1) (0)(1)+ + =1
(d)
ˆ
ˆ ˆ
1 1 0 (1 0) (0 1) (1 0)
0 1 1
i j k
A Bv v× = =i − + j − +k − = − +i j k
1 2
(1 1 1) 3
A Bv v× = + + =
1.2 (a) A B Cv⋅(v+ v)=(2iˆ+ ⋅ +ˆj) (iˆ 4ˆj k+ ˆ)=(2)(1) (1)(4) (0)(1)+ + =6 (A B Cv+ v)⋅ =v (3iˆ+ + ⋅ˆj kˆ) 4ˆj=(3)(0) (1)(4) (1)(0)+ + =4
(b) ( ) 12 10 01 8
0 4 0
(A B Cv× v)⋅ = ⋅v A B Cv (v× v)= −8 (c) Av×(B Cv× v) (= A C Bv v⋅ ) (v− A B Cv⋅ v) v =4( )i kˆ+ ˆ −2 4( )ˆj =4iˆ−8ˆj+4 kˆ
( ) ( ) ( ) ( )
( ˆ ˆ) ( )ˆ ˆ ˆ ˆ
× × = − × × = −⎣ ⋅ − ⋅ ⎦
= −⎣ + − + ⎦= +
Trang 21.3
2 2
( )( ) (2 )(2 ) (0)(3 ) 5 cos
5 14
5 14
θ = ⋅v = + + =
cos 1 5 53
14
1.4
(a) A iv= + +ˆ ˆj kˆ : body diagonal
A= ⋅ =A Av v i iˆ ˆ⋅ + ⋅ + ⋅ =ˆ ˆj j k kˆ ˆ 3 (b) B iv= +ˆ ˆj : face diagonal
B= ⋅ =B Bv v 2
(c)
ˆ ˆ ˆ 1 1 1
1 1 0
k j i
Cv = × =A Bv v
(d) cos 1 1 0
3 2
A B AB
θ = v v⋅ = − = ∴ =θ 90o
1.5
sin
B= Bv = × =A Cv v AC θ y sin B
A
θ
cos
A Cv v⋅ = AC θ =u x cos u
A
θ
2
A
v v
v
B A
v
v v
u2 12
A A
= v+ v× v
1.6 ˆ d ( ) ˆ d ( )2 ˆ d ( )3 ˆ ˆ2 ˆ3 2
dt dt
dt dt
dAv = α + β + γ = α+ β + γ
2
d A
dtv = β+ γ
v
Trang 31.7 ( )( ) ( )( ) ( )( ) 2
0= ⋅ =A Bv v q q + 3 − +q 1 2 =q −3q+2
0 (q−2) (q− =1) , q= or 2 1
2
A Bv+ v = A Bv+ v ⋅ A Bv+ v = A +B + A Bv⋅v
⎡⎣Av + Bv⎤⎦2 = A2+B2+2AB
Since A B ABv v⋅ = cosθ ≤AB , A Bv+ ≤v Av + Bv
A Bv⋅ =v ABcosθ = A Bv v cosθ ≤ A Bv v
cos
1.9 Show Av×(B Cv× v) (= A C Bv v⋅ ) (v− A B Cv⋅ v) v
ˆ ˆ ˆ
x y z x x y y z z x x y y z z
x y z
k j i
)
B B A C A C A C B A B A B A B C
x x x y x y z x z x x x y y x z z x
A B C A B C A B C A B C A B C A B C i
x y x y y y z y z x x y y y y z z y
A B C A B C A B C A B C A B C A B C j
x z x y z y z z z x x z y y z z z z
A B C A B C A B C A B C A B C A B C k
ˆ ˆ ˆ
y x y z x z y y x z z x
x y x z y z x x y z z y
x z x y z y x x z y y z
A B C A B C A B C A B C i
A B C A B C A B C A B C j
A B C A B C A B C A B C k
Trang 4ˆ ˆ
ˆ
z y
x
y z z y z x x z x y y x
k j
i
A A
A
B C −B C B C −B C B C −B C
ˆ ˆ ˆ
y x y y y x z z x z x z
z y z z z y x x y x y x
x z x x x z y y z y z y
i A B C A B C A B C A B C
j A B C A B C A B C A B C
k A B C A B C A B C A B C
1.10
sin
y A= θ
2xy y B x xy yB xy AB inθ
Α = A Bv v×
1.11
( )
ˆ
ˆ ˆ
x y z
x y z x y z x x y y z z ( )
x y z
v v v v
z
A
=
=
1.12
Let Av = (Ax,Ay,Az),
Bv = (0,By,0) and Cr
= (0,Cy,Cz)
Cz is the perpendicular distance between the plane Av
, Bv
and its opposite u B is directed along the x-axis since the vectors
xC
= r r r
Br , Cr are in the y,z plane u x=Brx Cr = ByCz
is the area of the parallelogram formed by the vectors Br
, Cr Multiply that area times the height of plane v
,
A Bv
= Ax to get the volume of the parallopiped
V =A u x x =A B C x y z= •A B x Cr (r r)
Br
Ar
Cr
ur
y
Trang 51.13 For rotation about the z axis:
i iˆ ˆ⋅ =′ cosφ = ⋅ˆ ˆj j′, k k′ˆ ˆ⋅ =1
ˆ ˆi j⋅ = −′ sinφ
ˆ ˆj i⋅ =′ sinφ
For rotation about the y′ axis:
i iˆ ˆ⋅ =′ cosθ = ⋅k kˆ ˆ′, ˆ ˆj j′⋅ = 1
i kˆ⋅ =ˆ′ sinθ
k iˆ ˆ⋅ = −′ sinθ
cos 0 sin cos sin 0 cos cos cos sin sin
0 cos
1 0
1 sin cos sin sin cos 0
T
φ
⎟
⎟
⎟
⎠
1.14
3
ˆ ˆ cos 30
2 1
ˆ ˆ sin 30
2 ˆ
i i
i j
i k
′
′
⋅ = − = −
′
⋅ =
o
o
1
ˆ ˆ sin 30
2 3
ˆ ˆ cos 30
2
ˆ
j i
j j
j k
′
′
′
⋅ =
o
o
ˆ ˆ 0
ˆ ˆ 0
ˆ ˆ 1
k i
k j
k k
′
⋅ =
′
⋅ =
′
⋅ =
2
1
x y z
A A A
′
′
′
⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢= − ⎥
Av =3.232iˆ′+1.598ˆj′−kˆ′
Trang 61.15 1 Rotate thruφ about z-axis φ =45o Rφ
Rotate thru
2 θ about x’-axis θ =45o Rθ
Rotate thru
3 ψ about z’-axis ψ =45o Rψ
0
1 1
0
Rφ
⎟
⎜
⎟
⎜
1 1 0
1 1 0
Rθ
⎟
⎜
⎟
⎜
⎟
0
1 1
0
Rψ
⎟
⎜
⎟
⎜
( )
2 2 2 2 2 2
, ,
2 2 2 2 2 2
R ψ θ φ R R Rψ θ φ
⎟
⎜
2
2 1
1
, , 0
0
R
α
ψ θ φ β
γ
Condition is: xv′ =Rxv where and
1 0 0
x
⎛ ⎞
⎜ ⎟
′ = ⎜ ⎟
⎜ ⎟
⎝ ⎠
β γ
⎛ ⎞
⎜ ⎟
= ⎜ ⎟
⎜ ⎟
⎝ ⎠ v
Since x xv v⋅ =1 we have: 2 2 2
1
ψ +β +α =
After a lot of algebra: 1 2,
4 2
α = − 1 2,
4 2
β = + 1
2
γ =
1.16 v vv= τˆ=ctτˆ
ˆ v ˆ ˆ c
b
ρ
ˆ
t
Trang 7at b
t c
= , vv=τˆ b c and a cv= τˆ+cnˆ
2
1 cos
2 2
v a c bc
va bc c
θ = v v⋅ = =
45
θ = o
1.17 v tv( )= −ibˆωsin( )ωt + ˆj b2 ωcos( )ωt
( ) ˆ 2cos ˆ2 2sin
a tv = −ibω ωt− j bω ωt
1 3sin
at t=0, vv =2bω; at
2
t π ω
= , vv =bω
1.18 v tv( )=ibˆ ωcosωt− ˆjbωsinωt k ct+ ˆ2
a tv = −ibω ωt− jbω ωt k c+
1.19 v rev= &ˆr+r eθ&ˆθ =bke e ktˆr +bce eˆ kt θ
av= r r&&− θ& e + rθ&&+ r e&θ& θ =b k −c e e + bcke eˆθ
1 1
2 cos
4
v a va
φ = ⋅ = − +
v v
, a constant
av= R R&&− φ& e + R&φ&+R eφ&& φ +ze&&ˆ
2
ˆR 2 ˆz
av= −b eω + ce
4
av = bω + c
Trang 81.21 r tv( )=iˆ(1−e−kt)+ ˆje kt
( ) ˆ kt ˆ kt
r tv =ike− + jke
( ) ˆ 2 kt ˆ 2 kt
r tv = −ik e− + jk e
1.22 v e r e rv= ˆr&+ˆφ φsinθ +e rˆθ θ&
1
v e bφ ω ⎧π ⎡ ωt ⎤⎫ e bθ πω t
= ⎨⎩ ⎢⎣ + ⎥⎦⎬⎭−
ˆ cos cos 4 ˆ sin 4
2 8
v e b= φ ω ⎡π ωt ⎤−e bθ ωπ t
⎥
⎣
1
cos cos 4 sin 4
4 8
⎠
⎣
Path is sinusoidal oscillation about the equator
1.23 v v vv v⋅ = 2
2
dt
dtv⋅ + ⋅v v v = &
2v av v⋅ =2vv&
v a vvv v⋅ = &
Trang 91.24 d r v a( ) dr (v a) r d (v a)
dt⎡⎣v v v⋅ × ⎤⎦= dtv⋅ ×v v + ⋅v dt v v×
v v a( ) r dv a v da
dt dt
× + ⋅ ⎜ × ⎟ ⎜+ × ⎟
⎠
⎠ ⎝
v
v v v v
0 r ⎡0 v a ⎤
= +v⋅ + ×⎣ v v& ⎦
d
r v a r v a
dt⎡⎣v v v⋅ × ⎤⎦= ⋅ ×v v v&
1.25 v vv= τˆ and a av= ττˆ+a n nˆ
v a vav v⋅ = τ, so v a
a v
τ
⋅
= v v
n
a =aτ +a2
, so ( )1
n
1.26 For 1.14,
1
a
τ
+
⋅ +
⋅
−
=
c t
2 1
4 4
c t a
τ
ω
=
+
1
16 4
4
n
c t
ω
ω
⎞
⎛
⎝
For 1.15, ( )
1
2
kt kt
b k k c e b c ke
be k c
τ
+
ke k +c
n
1.27
ˆ
n
ˆ
τ
ˆ ˆ
dτ= −n dθ
dθ
ρ
Trang 10The figure above shows the unit vectors and nˆ τ which are normal and tangent to the ˆ curve The vectors are shown at 2 different points along the trajectory Since the particle
is moving tangentially to the curve and in a direction perpendicular to ρ , the local radius
of curvature, we have …
ˆ
v
= v
v τ
2
ρ
v & & &
a τ τ n n (since v&=0and from the above figure)
2 2
ˆ
v v
3
v
ρ ρ ρ
⎞
⎛
=
=
=
v
1.28
ˆ sin ˆ cos
P
rvo =ib θ + jb θ
ˆ cos ˆ sin
rel
vv =ibθ& θ − jbθ& θ
rel
av =ib θ&& θ θ− & θ − jb θ&& θ θ+ & θ
at the point θ π= , vvrel = −vv
So, vvrel =bθ& v=
v b
θ&= v a
b b
θ&&= =& o
Now,
ˆ rel ˆ ˆ
rel rel
b
ρ
1
2 2
rel
v
b
=⎜ + ⎟
⎝ o ⎠ v
P rel
vv = +v vv v and avP = +avo avrel
P
o
⎠
1
2 2
2
P
v v
⎛
o
v
is a maximum at
P
av θ =0, i.e., at the top of the wheel
Trang 112
2 sin v cos 0
a b
o 2 1
tan v
a b
⎝ o ⎠
Comments : Note that a point on the bottom of the wheel is instantaneously at rest, i.e.,
there is no relative motion between the ground and the bottom of the wheel assuming no slipping
2 2
0 0 1
⎜
= ⎜
2
x=
The transformation represents a rotation of 45o about the z-axis (see Example 1.8.2)
1.30 (a) a = iˆcosθ + ˆjsinθ
a
b
θ
φ
ˆcosϕ ˆsinϕ
cos θ ϕ cosθ sinθ cosϕ sin
cos θ ϕ− =cos cosθ ϕ+sin sinθ ϕ
(b) b a× = kˆsin(θ ϕ− )= (iˆcosθ + ˆjsinθ) (× iˆcosϕ+ ˆjsinϕ )
sin θ ϕ− =sin cosθ ϕ−cos sinθ ϕ -