1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solution manual for analytical mechanics 7th edition by fowles

11 23 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 146,88 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

u x=Brx Cr = ByCz is the area of the parallelogram formed by the vectors Br , Cr... The figure above shows the unit vectors and nˆ τ which are normal and tangent to the ˆ curve.. The vec

Trang 1

CHAPTER 1 FUNDAMENTAL CONCEPTS: VECTORS

1.1 (a) A Bv v+ = + + +(iˆ ˆj) (ˆj kˆ)= +iˆ 2ˆj k+ ˆ

1 2

(1 4 1) 6

A Bv v+ = + + = (b) 3Av−2Bv=3(iˆ+ −ˆj) 2(ˆj k+ ˆ)= + −3iˆ ˆj 2k ˆ

(c) A Bv v⋅ =(1)(0) (1)(1) (0)(1)+ + =1

(d)

ˆ

ˆ ˆ

1 1 0 (1 0) (0 1) (1 0)

0 1 1

i j k

A Bv v× = =i − + j − +k − = − +i j k

1 2

(1 1 1) 3

A Bv v× = + + =

1.2 (a) A B Cv⋅(v+ v)=(2iˆ+ ⋅ +ˆj) (iˆ 4ˆj k+ ˆ)=(2)(1) (1)(4) (0)(1)+ + =6 (A B Cv+ v)⋅ =v (3iˆ+ + ⋅ˆj kˆ) 4ˆj=(3)(0) (1)(4) (1)(0)+ + =4

(b) ( ) 12 10 01 8

0 4 0

(A B Cv× v)⋅ = ⋅v A B Cv (v× v)= −8 (c) Av×(B Cv× v) (= A C Bv v⋅ ) (v− A B Cv⋅ v) v =4( )i kˆ+ ˆ −2 4( )ˆj =4iˆ−8ˆj+4 kˆ

( ) ( ) ( ) ( )

( ˆ ˆ) ( )ˆ ˆ ˆ ˆ

× × = − × × = −⎣ ⋅ − ⋅ ⎦

= −⎣ + − + ⎦= +

Trang 2

1.3

2 2

( )( ) (2 )(2 ) (0)(3 ) 5 cos

5 14

5 14

θ = ⋅v = + + =

cos 1 5 53

14

1.4

(a) A iv= + +ˆ ˆj kˆ : body diagonal

A= ⋅ =A Av v i iˆ ˆ⋅ + ⋅ + ⋅ =ˆ ˆj j k kˆ ˆ 3 (b) B iv= +ˆ ˆj : face diagonal

B= ⋅ =B Bv v 2

(c)

ˆ ˆ ˆ 1 1 1

1 1 0

k j i

Cv = × =A Bv v

(d) cos 1 1 0

3 2

A B AB

θ = v v⋅ = − = ∴ =θ 90o

1.5

sin

B= Bv = × =A Cv v AC θ y sin B

A

θ

cos

A Cv v⋅ = AC θ =u x cos u

A

θ

2

A

v v

v

B A

v

v v

u2 12

A A

= v+ v× v

1.6 ˆ d ( ) ˆ d ( )2 ˆ d ( )3 ˆ ˆ2 ˆ3 2

dt dt

dt dt

dAv = α + β + γ = α+ β + γ

2

d A

dtv = β+ γ

v

Trang 3

1.7 ( )( ) ( )( ) ( )( ) 2

0= ⋅ =A Bv v q q + 3 − +q 1 2 =q −3q+2

0 (q−2) (q− =1) , q= or 2 1

2

A Bv+ v = A Bv+ v ⋅ A Bv+ v = A +B + A Bv⋅v

⎡⎣Av + Bv⎤⎦2 = A2+B2+2AB

Since A B ABv v⋅ = cosθ ≤AB , A Bv+ ≤v Av + Bv

A Bv⋅ =v ABcosθ = A Bv v cosθ ≤ A Bv v

cos

1.9 Show Av×(B Cv× v) (= A C Bv v⋅ ) (v− A B Cv⋅ v) v

ˆ ˆ ˆ

x y z x x y y z z x x y y z z

x y z

k j i

)

B B A C A C A C B A B A B A B C

x x x y x y z x z x x x y y x z z x

A B C A B C A B C A B C A B C A B C i

x y x y y y z y z x x y y y y z z y

A B C A B C A B C A B C A B C A B C j

x z x y z y z z z x x z y y z z z z

A B C A B C A B C A B C A B C A B C k

ˆ ˆ ˆ

y x y z x z y y x z z x

x y x z y z x x y z z y

x z x y z y x x z y y z

A B C A B C A B C A B C i

A B C A B C A B C A B C j

A B C A B C A B C A B C k

Trang 4

ˆ ˆ

ˆ

z y

x

y z z y z x x z x y y x

k j

i

A A

A

B CB C B CB C B CB C

ˆ ˆ ˆ

y x y y y x z z x z x z

z y z z z y x x y x y x

x z x x x z y y z y z y

i A B C A B C A B C A B C

j A B C A B C A B C A B C

k A B C A B C A B C A B C

1.10

sin

y A= θ

2xy y B x xy yB xy AB inθ

Α = A Bv v×

1.11

( )

ˆ

ˆ ˆ

x y z

x y z x y z x x y y z z ( )

x y z

v v v v

z

A

=

=

1.12

Let Av = (Ax,Ay,Az),

Bv = (0,By,0) and Cr

= (0,Cy,Cz)

Cz is the perpendicular distance between the plane Av

, Bv

and its opposite u B is directed along the x-axis since the vectors

xC

= r r r

Br , Cr are in the y,z plane u x=Brx Cr = ByCz

is the area of the parallelogram formed by the vectors Br

, Cr Multiply that area times the height of plane v

,

A Bv

= Ax to get the volume of the parallopiped

V =A u x x =A B C x y z= •A B x Cr (r r)

Br

Ar

Cr

ur

y

Trang 5

1.13 For rotation about the z axis:

i iˆ ˆ⋅ =′ cosφ = ⋅ˆ ˆj j′, k k′ˆ ˆ⋅ =1

ˆ ˆi j⋅ = −′ sinφ

ˆ ˆj i⋅ =′ sinφ

For rotation about the y′ axis:

i iˆ ˆ⋅ =′ cosθ = ⋅k kˆ ˆ′, ˆ ˆj j′⋅ = 1

i kˆ⋅ =ˆ′ sinθ

k iˆ ˆ⋅ = −′ sinθ

cos 0 sin cos sin 0 cos cos cos sin sin

0 cos

1 0

1 sin cos sin sin cos 0

T

φ

1.14

3

ˆ ˆ cos 30

2 1

ˆ ˆ sin 30

2 ˆ

i i

i j

i k

⋅ = − = −

⋅ =

o

o

1

ˆ ˆ sin 30

2 3

ˆ ˆ cos 30

2

ˆ

j i

j j

j k

⋅ =

o

o

ˆ ˆ 0

ˆ ˆ 0

ˆ ˆ 1

k i

k j

k k

⋅ =

⋅ =

⋅ =

2

1

x y z

A A A

⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢= − ⎥

Av =3.232iˆ′+1.598ˆj′−kˆ′

Trang 6

1.15 1 Rotate thruφ about z-axis φ =45o Rφ

Rotate thru

2 θ about x’-axis θ =45o Rθ

Rotate thru

3 ψ about z’-axis ψ =45o Rψ

0

1 1

0

Rφ

1 1 0

1 1 0

Rθ

0

1 1

0

Rψ

( )

2 2 2 2 2 2

, ,

2 2 2 2 2 2

R ψ θ φ R R Rψ θ φ

2

2 1

1

, , 0

0

R

α

ψ θ φ β

γ

Condition is: xv′ =Rxv where and

1 0 0

x

⎛ ⎞

⎜ ⎟

′ = ⎜ ⎟

⎜ ⎟

⎝ ⎠

β γ

⎛ ⎞

⎜ ⎟

= ⎜ ⎟

⎜ ⎟

⎝ ⎠ v

Since x xv v⋅ =1 we have: 2 2 2

1

ψ +β +α =

After a lot of algebra: 1 2,

4 2

α = − 1 2,

4 2

β = + 1

2

γ =

1.16 v vv= τˆ=ctτˆ

ˆ v ˆ ˆ c

b

ρ

ˆ

t

Trang 7

at b

t c

= , vv=τˆ b c and a cv= τˆ+cnˆ

2

1 cos

2 2

v a c bc

va bc c

θ = v v⋅ = =

45

θ = o

1.17 v tv( )= −ibˆωsin( )ωt + ˆj b2 ωcos( )ωt

( ) ˆ 2cos ˆ2 2sin

a tv = −ibω ωtj bω ωt

1 3sin

at t=0, vv =2bω; at

2

t π ω

= , vv =bω

1.18 v tv( )=ibˆ ωcosωt− ˆjbωsinωt k ct+ ˆ2

a tv = −ibω ωtjbω ωt k c+

1.19 v rev= &ˆr+r eθ&ˆθ =bke e ktˆr +bce eˆ kt θ

av= r r&&− θ& e + rθ&&+ r e&θ& θ =b kc e e + bcke eˆθ

1 1

2 cos

4

v a va

φ = ⋅ = − +

v v

, a constant

av= R R&&− φ& e + R&φ&+R eφ&& φ +ze&&ˆ

2

ˆR 2 ˆz

av= −b eω + ce

4

av = bω + c

Trang 8

1.21 r tv( )=iˆ(1−ekt)+ ˆje kt

( ) ˆ kt ˆ kt

r tv =ike− + jke

( ) ˆ 2 kt ˆ 2 kt

r tv = −ik e− + jk e

1.22 v e r e rv= ˆr&+ˆφ φsinθ +e rˆθ θ&

1

v e bφ ω ⎧π ⎡ ωt ⎤⎫ e bθ πω t

= ⎨⎩ ⎢⎣ + ⎥⎦⎬⎭−

ˆ cos cos 4 ˆ sin 4

2 8

v e b= φ ω ⎡π ωt ⎤−e bθ ωπ t

1

cos cos 4 sin 4

4 8

Path is sinusoidal oscillation about the equator

1.23 v v vv v⋅ = 2

2

dt

dtv⋅ + ⋅v v v = &

2v av v⋅ =2vv&

v a vvv v⋅ = &

Trang 9

1.24 d r v a( ) dr (v a) r d (v a)

dt⎡⎣v v v⋅ × ⎤⎦= dtv⋅ ×v v + ⋅v dt v v×

v v a( ) r dv a v da

dt dt

× + ⋅ ⎜ × ⎟ ⎜+ × ⎟

⎠ ⎝

v

v v v v

0 r ⎡0 v a

= +v⋅ + ×⎣ v v& ⎦

d

r v a r v a

dt⎡⎣v v v⋅ × ⎤⎦= ⋅ ×v v v&

1.25 v vv= τˆ and a av= ττˆ+a n nˆ

v a vav v⋅ = τ, so v a

a v

τ

= v v

n

a =aτ +a2

, so ( )1

n

1.26 For 1.14,

1

a

τ

+

⋅ +

=

c t

2 1

4 4

c t a

τ

ω

=

+

1

16 4

4

n

c t

ω

ω

For 1.15, ( )

1

2

kt kt

b k k c e b c ke

be k c

τ

+

ke k +c

n

1.27

ˆ

n

ˆ

τ

ˆ ˆ

dτ= −n dθ

dθ

ρ

Trang 10

The figure above shows the unit vectors and nˆ τ which are normal and tangent to the ˆ curve The vectors are shown at 2 different points along the trajectory Since the particle

is moving tangentially to the curve and in a direction perpendicular to ρ , the local radius

of curvature, we have …

ˆ

v

= v

v τ

2

ρ

v & & &

a τ τ n n (since v&=0and from the above figure)

2 2

ˆ

v v

3

v

ρ ρ ρ

=

=

=

v

1.28

ˆ sin ˆ cos

P

rvo =ib θ + jb θ

ˆ cos ˆ sin

rel

vv =ibθ& θ − jbθ& θ

rel

av =ib θ&& θ θ− & θ − jb θ&& θ θ+ & θ

at the point θ π= , vvrel = −vv

So, vvrel =bθ& v=

v b

θ&= v a

b b

θ&&= =& o

Now,

ˆ rel ˆ ˆ

rel rel

b

ρ

1

2 2

rel

v

b

=⎜ + ⎟

⎝ o ⎠ v

P rel

vv = +v vv v and avP = +avo avrel

P

o

1

2 2

2

P

v v

o

v

is a maximum at

P

av θ =0, i.e., at the top of the wheel

Trang 11

2

2 sin v cos 0

a b

o 2 1

tan v

a b

⎝ o ⎠

Comments : Note that a point on the bottom of the wheel is instantaneously at rest, i.e.,

there is no relative motion between the ground and the bottom of the wheel assuming no slipping

2 2

0 0 1

= ⎜

2

x=

The transformation represents a rotation of 45o about the z-axis (see Example 1.8.2)

1.30 (a) a = iˆcosθ + ˆjsinθ

a

b

θ

φ

ˆcosϕ ˆsinϕ

cos θ ϕ cosθ sinθ cosϕ sin

cos θ ϕ− =cos cosθ ϕ+sin sinθ ϕ

(b) b a× = kˆsin(θ ϕ− )= (iˆcosθ + ˆjsinθ) (× iˆcosϕ+ ˆjsinϕ )

sin θ ϕ− =sin cosθ ϕ−cos sinθ ϕ -

Ngày đăng: 20/08/2020, 13:35

TỪ KHÓA LIÊN QUAN