1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solution manual for college algebra with intermediate algebra a blended course 1st edition by beecher

16 19 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 369,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The opposite of a negative number is positive.. The absolute value of a negative number is positive.. The quotient of a negative number and a positive num-ber is negative... ↑ 7 places S

Trang 1

⫺1

0

⫺1

0

0

Chapter R

Review of Basic Algebra

Exercise Set R.1

RC2 The correct answer is (b) See page R-2 in the text

RC4 The correct answer is (f) See page R-3 in the text

RC6 The correct answer is (d) See page R-4 in the text

2 0, 1, 12,√

25

4 −6, 0, 1, −4, 12,√25, −123

6 √

3, 0.131331333133331

8 12

10 −3.43, −11, 12, 0, 1134, −137

12 All of them

14 {s, o, l, v, e}

16 {1, 3, 5, 7, 9, 11}

18 {−3, −2, −1}

20 {x|x is an integer greater than 3 and less than 11}

22 {x|x is a rational number or x is an irrational number}, or

{x|x is a real number}

24 {x|x is a real number and x ≤ 21}, or {x|x ≤ 21}

26 18 > 0

28 7 > −7

30 0 > −11

32 −6 < −3

34 −7 > −10

36 −1315< 11

250

38 −13.99 < −8.45

40 −1415 = −0.933 and −2753= −0.509433962 , so

−1415 < −2753

42 7 > x

44 t ≤ 102

3

46 True, since −7 = −7 is true

48 True, since −11 > −1312is true

50 x < −1

52 x ≥ −1

54 x < 0

56 x ≤ 0

58 3

60 16

62 127

64 13 8

66 16.4

68 465 70



 0

−15



= |0| = 0

72 | − 5| ≥ | − 2|

74 | − 8| ≤ |8|, or | − 8| ≥ |8| since | − 8| = |8|

Exercise Set R.2

RC2 The opposite of a negative number is positive RC4 The absolute value of a negative number is positive RC6 The sum of 0 and a negative number is negative RC8 The quotient of a negative number and a positive num-ber is negative

2 −25

4 2

6 −12

Trang 2

8 −3

10 −10

12 −32

14 1.9

16 −11.19

18 −2

7

20 −54

22 −34+1

8= −68+1

8= −58

24 −56+−78= −2024+−2124= −4124

26 9

28 0

30 2

3

32 2x

34 −5

36 −20

38 46

40 0

42 5

44 44

46 −17.7

48 −34.8

50 −135

52 −78−−52= −78+ 20

8 =

13 8

54 −2

3−4

5= −10

15+



−12 15



= −22 15

56 −47−−59= −3663+35

63 = −631

58 −40

60 −45

62 35

64 −152

66 42.7

68 −5512

70 3

72 432

74 71.04

76 65 14

78 −12564

80 −8

82 −9

84 8

86 0.7

88 Not defined

90 0

92 Not defined

94 10 9

96 −6 5

98 −1 65

100 1 0.8 This can also be expressed as follows:

1 0.8 =

1 0.8·10

10 =

10

8 =

5

4, or 1.25

102 8x

104 3

5÷−67= 3

5·−76= −107

106 −125 ÷−103= −125 ·−103= 8

108 −3

110 110

112 −4000

114 5

8÷−12= 5

8·−21= −54

116 −59÷−56= −59·−65= 2

3

118 −35÷−58= −35·−85= 24

25

120 −5

8÷−5

6



= −5

8·−6 5



= 3 4

Trang 3

122 7

124 −1.9

20 =

−1.9

20 ·1010 = −20019 , or − 0.095

126 −17.8

3.2 =

−17.8 3.2 ·1010 = −17832 = −8916, or − 5.5625

128 Not defined

130 3

8, −83; −107, 10

7; 1, −1; 0, does not exist; 6.4, 1

−6.4, or

−6.41 ; −a,1a

132 26

134 √

3, π, 4.57557555755557

136 All of them

138 5 >3

8

140 123 > −10

142 Use the definition of subtraction The number that

can be added to 11.7 to obtain −73

4 is −73

4− 11.7, or

−734− 11107 = −19209, or −19.45

Exercise Set R.3

RC2 True; see page R-23 in the text

RC4 False; see page R-22 in the text

RC6 False; see page R-20 in the text

RC8 True; see page R-22 in the text

2 63

4 x4

6 t5

8 (3.8)5

10



−4

5

3

12 9 · 9 · 9 = 729

14 (−7) · (−7) = 49

16 (0.1)(0.1)(0.1)(0.1)(0.1)(0.1) = 0.000001

18 (−3)(−3)(−3)(−3) = 81

20 2

3·2

3·2

3·2

3=

16 81

22 √

6

24 5 2

26 1

28 1

30  1 5

−3

= 1

 1 5

3 = 11 125

= 1 ·1251 = 125

32  5 2

−4

= 1

 5 2

4 = 6251 16

= 1 ·62516 = 16

625

34 1

x6

36 y7

38 1 (−4)3 = −641

40 9−2

42 n−5

44 (−8)−6

46 [6 − 4(8 − 5 )] = [6 − 4 · 3]

= [6 − 12]

= −6

48 10[7 − 4(8 − 5)] = 10[7 − 4 · 3] = 10[7 − 12] = 10[−5 ] = −50

50 [9(7 − 4) + 19] − [25 − (7 + 3)] = [9 · 3 + 19] − [25 − 10] = [27 + 19] − 15=

46 − 15= 31

52 [48 ÷ (−3)] ÷−14= −16 ÷−14= 64

54 30 · 10 − 18 · 25= 300 − 450

= −150

56 (9 − 12)2= (−3)2= 9

92− 122= 81 − 144 = −63

58 7 · 8 − 32− 23= 7 · 8 − 9 − 8 = 5 6 − 9 − 8 = 39

60 43+ 20 · 10 + 72− 23 = 64 + 20 · 10 + 49 − 23 =

64 + 200 + 49 − 23 = 290

62 (9 · 8 + 3 · 3)2= (72 + 9)2= (81)2= 6561

64 5000 · (4 + 1.16)2= 5000 · (5.16)2=

5000 · (26.6256) = 133, 128

Trang 4

66 (43 · 6 − 14 · 7)3+ (33 · 34)2=

(258 − 98)3+ (1122)2= (160)3+ (1122)2=

4, 096, 000 + 1, 258, 884 = 5, 354, 884

68 18 − (2 · 3 − 9) = 18 − (6 − 9) = 18 − (−3) = 21

70 (18 − 2)(3 − 9) = 16(−6) = −96

72 [(−32) ÷ (−2)] ÷ (−2) = 16 ÷ (−2) = −8

74 30 · 20 − 15 · 24 = 600 − 360 = 240

76 16 ÷ (19 − 15)2− 7 = 16 ÷ (4)2− 7 =

16 ÷ 16 − 7 = 1 − 7 = −6

78 53+ 20 · 40 + 82− 29 = 125+ 20 · 40 + 64 − 29 =

125+ 800 + 64 − 29 = 960

80 4000 · (3 + 1.14)2= 4000 · (4.14)2=

4000 · (17.1396) = 66, 558.4

82 8(7 − 3)

4 =

8 · 4

4 =

32

4 = 8

84 43

8 =

64

8 = 8

86 53− 72= 125 − 49 = 76

88 10(−5 ) + 1(−1) = −50 − 1 = −51

90 14 − 2(−6) + 7 = 14 + 12 + 7 = 33

92 −32 − 8 ÷ 4 − (−2) = −32 − 2 − (−2) =

−32 − 2 + 2 = −32

94 (3 − 8)2= (−5)2= 25

96 28 − 103 = 28 − 1000

= −972

98 2 × 103− 5000 = 2 × 1000 − 5000 =

2000 − 5000 = −3000

100 6[9 − (3 − 4)] = 6[9 − (−1)] = 6[9 + 1] =

6[10] = 60

102 1000 ÷ (−100) ÷ 10 = −10 ÷ 10 = −1

104 20 − 62

92+ 32 = 20 − 36

81 + 9 =

−16

90 = −8 45

106 4|6 − 7| − 5 · 4

6 · 7 − 8|4 − 1|=

4| − 1| − 5 · 4

6 · 7 − 8|3| =

4 · 1 − 5 · 4

6 · 7 − 8 · 3=

4 − 20

42 − 24 =

−16

18 = −89

108 53− 32+ 12 · 5

−32 ÷ (−16) ÷ (−4)=

125 − 9 + 12 · 5

2 ÷ (−4) =

125 − 9 + 60

−12

= 176

−12

= −352

110 2.3

112 900

114 −79

116 −79

118 23 120



−2 3



−15 16



= 2 · 15

3 · 16

= 2 · 3 · 5

3 · 2 · 8

= 2/ · 3/ · 5 3/ · 2/ · 8

= 5 8

122 2(61· 6−1− 6−1· 60)

= 2



6 ·16−16· 1



= 2



1 −16



= 2 ·56= 10

6

= 5 3

124 12345679 · 9 = 111, 111, 111

12345679 · 18 = 222, 222, 222

12345679 · 27 = 333, 333, 333 According to this pattern, we have 12345679 · 36 =

444, 444, 444

126 (π)√2≈ 5.047497267 (√

2)π≈ 2.970686424 Thus, (π)√2 is larger than (√

2)π

Exercise Set R.4

RC2 (c) RC4 (e) RC6 (g) RC8 (f)

2 t + 11, or 11 + t

4 d − 0.203

6 18 + z, or z + 18

8 d + c, or c + d

10 c ÷ h, or hc

Trang 5

Exercise Set R.5 5

12 t + s, or s + t

14 q − p

16 a + b, or b + a

18 2z

20 −6t

22 Let w represent the number of women attending Then we

have 48%w, or 0.48w

24 d − $19.95

26 65t

28 57y = 5 7(−8) = −456

30 x

y=

30

−6 = −5

32 5

p + q =

5

20 + 30 =

5

50 =

1 10

34 18m

n =

18 · 7

18 = 7

36 4x − y = 4 · 3 − (−2)

= 12 − (−2)

= 12 + 2

= 14

38 n3− 2 + p ÷ n2= 23− 2 + 12 ÷ 22

= 8 − 2 + 12 ÷ 4

= 8 − 2 + 3

= 6 + 3

= 9

40 a2− 3(a − b) = 102− 3(10 − (−8))

= 102− 3(10 + 8)

= 102− 3(18)

= 100 − 3(18)

= 100 − 54

= 46

42 I = $18, 000(0.046)(2) = $1656

44 A = (3.6 m)(1.9 m) = 6.84 m2

46 (−3)(−3)(−3)(−3)(−3) = −243

48 (−5.3)2= (−5.3)(−5.3) = 28.09

50 (4.5)0= 1 (For any nonzero number a, a0= 1.)

52 (3x)1= 3x (For any number a, a1= a.)

54

56 N = P + P (2.7%)(1), so we have N = P + 2.7%P , or

N = P + 0.027P , or N = 1.027P

58 2.56y 3.2x =

2.56(3) 3.2(4) =

7.68 12.8= 0.6

Exercise Set R.5

RC2 The statement 4 · 2 + 4 · 8 = 4(2 + 8) illustrates a distributive law

RC4 The multiplicative identity is the number 1

RC6 In the expression 7(5+ x), 5and x are terms 2

7x + 2x 5x 7x − 2x

x = −2 −18 −10 −10

x = 5 45 25 25

x = 0 0 0 0 5x and 7x − 2x are equivalent; 7x + 2x and 5x are not equivalent; 7x + 2x and 7x − 2x are not equivalent 4

5(x − 2) 5x − 2 5x − 10

x = −1 −15 −7 −15

x = 4.6 13 21 13

x = 0 −10 −2 −10 5(x − 2) and 5x − 10 are equivalent; 5(x − 2) and 5x − 2 are not equivalent; 5x − 2 and 5x − 10 are not equivalent

6 4

3=

4

3· 1 =43·aa = 4a

3a

8 3

10 =

3

10· 1 = 3

10·5y 5y =

15y 50y

10 36y 18y =

2 · 18y

1 · 18y =

2

1·18y18y = 2

12 −625t 15t =

−125 · 5t

3 · 5t =

−125

3 ·5t5t= −1253

14 5 + y

16 dc

18 pq + 14 = 14 + pq;

pq + 14 = 14 + pq = 14 + qp;

pq + 14 = qp + 14

20 s + qt = qt + s;

s + qt = qt + s = tq + s;

s + qt = s + tq

22 (5 · p) · q

24 7 + (p + q)

Trang 6

26 (4 + x) + y = 4 + (x + y) = (x + y) + 4;

(4 + x) + y = (x + 4) + y = x + (4 + y) =

(4 + y) + x;

(4 + x) + y = y + (4 + x) = y + (x + 4);

others are possible

28 (8 · m) · n = 8 · (m · n) = 8 · (n · m) = (8 · n) · m;

(8 · m) · n = 8 · (m · n) = (m · n) · 8 = (n · m) · 8;

(8 · m) · n = n · (8 · m) = n · (m · 8);

others are possible

30 3c + 3

32 7b − 7c

34 −6c − 10d

36 5xy − 5xz + 5xw

38 P + P rt

40 1

4πr +

1

4πrs

42 5x, −9y, 12

44 5a, −7b, −9c

46 9(a + b)

48 22(x − 1)

50 6(y − 6)

52 a(b + 1)

54 3(x + y − z)

56 4(a + 2b − 1)

58 4(2m + n − 6)

60 6(3a − 4b − 8)

62 x(y − z + w)

64 1

2h(a + b)

66 Let x and y represent the numbers; x2+ y2

68 n5

70 10 · 25 − 3 · 23= 10 · 25 − 3 · 8

= 25 0 − 24

= 226

72 Let a = −1 and b = 2 Then (a−b)(a+b) = (−1−2)(−1+

2) = −3 and a2− b2= (−1)2− 22= −3

Let a = 3 and b = −2 Then (a−b)(a+b) = (3−(−2))(3−

2) = 5and a2− b2= 32− (−2)2= 5

In fact, the expressions have the same value for all values

of x, so they are equivalent

74 Let x = 2 Then x

8

x4 = 2

8

24 = 256

16 = 16, but x

2= 22 = 4 The expressions are not equivalent

Exercise Set R.6

RC2 The terms 9y and 9c have different variables, so they are not similar terms The given statement is false RC4 −(5 − x) = −5 + x = x − 5; the given statement is true RC6

given statement is false

2 15a

4 −3c

6 14x

8 14x

10 −5x

12 −6x

14 14a − 9b

16 7a + 9b

18 9p + 12

20 −11.83a − 36.3b

22 −34x +3

4y − 34

24 P = 2(l + w) = 2(360 ft + 160 ft) =

2 · 520 ft = 1040 ft;

P = 2l + 2w = 2 · 360 ft + 2 · 160 ft =

720 ft + 320 ft = 1040 ft

26 5y

28 −a − 9

30 −x + 8, or 8 − x

32 −r + s, or s − r

34 −r − s − t

36 −9a + 7b − 24

38 4x − 8y + 5w − 9z

40 x − 2y +23z + 5 6.3w

42 6x + 9

44 5a − (4a − 3) = 5a − 4a + 3 = a + 3

46 6x − 7 − (9 − 3x) = 6x − 7 − 9 + 3x = 9x − 16

Trang 7

48 −9(y + 7) − 6(y − 3) = −9y − 63 − 6y + 18 =

−15y − 45

50 8y − 4(5y − 6) + 9 = 8y − 20y + 24 + 9 =

−12y + 33

52 −5t + (4t − 12) − 2(3t + 7)

= −5t + 4t − 12 − 6t − 14

= −7t − 26

54 −12(10t − w) +14(−28t + 4) + 1

= −5t +12w − 7t + 1 + 1

= −12t +12w + 2

56 14b − [7 − 3(9b − 4)] = 14b − [7 − 27b + 12]

= 14b − [19 − 27b]

= 14b − 19 + 27b

= 41b − 19

58 7{−7 + 8[5 − 3(4 + 6)]} = 7{−7 + 8[5 − 3(10)]} =

7{−7 + 8[5 − 30]} = 7{−7 + 8[−25]} =

7{−7 − 200} = 7{−207} = −1449

60 [9(x + 5 ) − 7] + [4(x − 12) + 9] =

[9x + 45 − 7] + [4x − 48 + 9] =

9x + 38 + 4x − 39 = 13x − 1

62 [6(x + 4) − 12] − [5(x − 8) + 11]

= [6x + 24 − 12] − [5x − 40 + 11]

= [6x + 12] − [5x − 29]

= 6x + 12 − 5x + 29

= x + 41

64 4{[8(x − 3) + 9] − [4(3x − 7) + 2]}

= 4{[8x − 24 + 9] − [12x − 28 + 2]}

= 4{[8x − 15] − [12x − 26]}

= 4{8x − 15 − 12x + 26}

= 4{−4x + 11}

= −16x + 44

66 3{[6(x − 4) + 52] − 2[5(x + 8) − 102]}

= 3{[6(x − 4) + 25 ] − 2[5(x + 8) − 100]}

= 3{[6x − 24 + 25 ] − 2[5x + 40 − 100]}

= 3{[6x + 1] − 2[5x − 60]}

= 3{6x + 1 − 10x + 120}

= 3{−4x + 121}

= −12x + 363

68 7b − {5[4(3b − 8) − (9b + 10)] + 14}

= 7b − {5[12b − 32 − 9b − 10] + 14}

= 7b − {5[3b − 42] + 14}

= 7b − {15b − 210 + 14}

= 7b − {15b − 196}

= 7b − 15b + 196

= −8b + 196

70 3d ÷ 2c = 3 · 5 ÷ 2 · 10

= 15 ÷ 2 · 10

= 7.5 · 10

= 75

72 x2÷ 3(y − z) = 62÷ 3(8 − 10)

= 62÷ 3(−2)

= 36 ÷ 3(−2)

= 12(−2)

= −24

74 16

76 −3

8÷9

4 = −3

8·4 9

= − 3/ · 4/ · 1

2 · 4/ · 3/ · 3

= −1 6

78 −16a + 24b − 32

80 16x − 8y + 10

82 8(3a − 2b)

84 5(3p + 9q − 2)

86 2 · (7 + 32· 5) = 104

88 (2 − 7) · 22+ 9 = −11

90 −3[9(x − 4) + 5x] − 8{3[5(3y + 4)] − 12}

= −3[9x − 36 + 5x] − 8{3[15y + 20] − 12}

= −3[14x − 36] − 8{45y + 60 − 12}

= −42x + 108 − 8{45y + 48}

= −42x + 108 − 360y − 384

= −42x − 360y − 276

92 {x + [f − (f + x)] + [x − f]} + 3x

= {x + [f − f − x] + [x − f]} + 3x

= {x − x + x − f} + 3x

= x − f + 3x

= 4x − f

Trang 8

Exercise Set R.7

RC2 (b)

RC4 (e)

RC6 (d)

2 88

4 9−2= 1

92

6 9−7= 1

97

8 a

10 1

12 (9y)2· (2y)3= 81y2· 8y3= 648y5

14 −18x7y

16 −24x−12y = −24yx12

18 −36x−12n= −x3612n

20 15t−5a= 15

t5a

22 76

24 513

26 12−12= 1

1212

28 2−2= 1

22, or 1

4

30 y−11t= 1

y11t

32 m−2t= 1

m2t

34 y9

36 −3ab2

38 −7a−4b

2

4 = −7b

2

4a4

40 7a16b5

9

42 520

44 9−12= 1

912

46 740

48 32x15y20

50 −271a−6b15= − b

15

27a6

52 8−4x16y−20z−8= x

16

84y20z8

54 5−6

49 = 1

56· 49

56  −4x4y−2

5x−1y4

−4

= 5x−1y4

−4x4y−2

4

= 5y6

−4x5

4

=

54y24

44x20

58  −200x3y−5

8x5y−7

−4

= 8x

5y−7

−200x3y−5

4

= x

2

−25y2

4

=

x8

254y8, or x

8

58y8

60  9−2x−4y

3−3x−3y2

8

= 3−4x−4y

3−3x−3y2

8

= 1 3xy

8

= 1

38x8y8

62 [(−4a−4b−5)−3]4= [(−4)−3a12b15]4= 4−12a48b60=

a48b60

412

64  2x2y−2

3x8y7

9

= 2 3x6y9

9

= 2

9

39x54y81

66 11b +2−(3b−3)= 11b +2−3b+3= 11−2b+5

68 −3xa +1−(2−a)= −3xa +1−2+a= −3x2a−1

70 −4xb +5−(b−5)y4+c−(c−4)= −4xb +5−b+5y4+c−c+4=

−4x10y8

72 76pq

74 x3ab−3b

76 45cx15acy10bc

78 −5xa +b−(a−b)yb−a−(b+a)= −5xa +b−a+byb−a−b−a=

−5x2by−2a, or −5x

2b

y2a

80 2.6 × 1012

82 2.63 × 10−7

84 340, 000 = 3.4 × 105; 322, 000, 000 = 3.22 × 108

86 200 billionths = 200 × 0.000000001 = 0.0000002 0.0000002

7 places Small number, so the exponent is negative

0.0000002 = 2 × 10−7

Trang 9

Chapter R Summary and Review:Concept Reinforcement 9

88 92,400,000

90 0.000000000000000000000000000911 g

92 3,240,000 tracks

94 33.8 × 10−5= 3.38 × 10−4

96 26.732 × 103= 2.6732 × 104

98 1.5 × 103

100 3 × 10−5

102 First we find the number of seconds in 31 days

31 days ×1 day24 hr×60 min1 hr ×60 sec1 min= 2, 678, 400 sec =

2.6784 × 106 sec

Also, we have 818 = 8.18 × 102

Now we find the number of hot dogs consumed

(8.18×102)×(2.6784×106) = (8.18×2.6784)×(102×106)

≈ 21.9 × 108

= (2.19 × 10) × 108

= 2.19 × 109 hot dogs

104 4.704 × 1013

5.88 × 1012 = 0.8 × 10 = 8 light years

106 2π(6.71 × 107) ≈ 42.16 × 107

= (4.216 × 10) × 107

= 4.216 × 108mi

108 1 hour = 60 minutes = 60(60 seconds) =

3600 seconds

The amount of water discharged in one hour is

(4, 200, 000 ft3/sec) × (3600 sec)

= (4.2 × 106ft3/sec) × (3.6 × 103 sec)

= (4.2 × 3.6)(106× 103) ft3

= 15.12 × 109ft3

= (1.512 × 101) × 109 ft3

= 1.512 × 1010ft3

1 year = 365days = 365(24 hours) = 365· 24 · 3600

sec-onds = 31,536,000 secsec-onds

The amount of water discharged in one year is

(4, 200, 000 ft3/sec) × (31, 536, 000 sec)

= (4.2 × 106ft3/sec) × (3.1536 × 107sec)

= (4.2 × 3.1536)(106× 107) ft3

= 13.24512 × 1013ft3

= (1.324512 × 101) × 1013ft3

= 1.324512 × 1014ft3

110 1

4· 70 × 1026= 17.5 × 1026= 1.75 × 10 × 1026=

1.75 × 1027oxygen atoms

112 −6t − (5t − 13) + 2(4 − 6t)

= −6t − 5t + 13 + 8 − 12t

= −23t + 21

114 54− 38 · 24 − (16 − 4 · 18)

= 625 − 38 · 24 − (16 − 4 · 18)

= 625 − 38 · 24 − (16 − 72)

= 625 − 38 · 24 − (−56)

= 625 − 38 · 24 + 5 6

= 625 − 912 + 5 6

= −287 + 56

= −231

116 20 − (5 · 4 − 8) = 20 − (20 − 8)

= 20 − 12

= 8

118 (−3x−2y5)−3

(2x4y−8)−2

2

=

 (−3)−3x6y−15

2−2x−8y16

2

=

 (−3)−3x14

2−2y31

2

= 3−6x

28

2−4y62

= 16x

28

729y62

120 (mx 2

−bxnx 2 +bx)(mbxn−bx) = mx 2

nx 2

122 (xa+bya+b)c= xac+bcyac+bc

Chapter R Vocabulary Reinforcement

1 The sentence x > −4 is an example of an inequality

2 In the notation 74, the number 7 is called the base

3 A variable is a letter that can represent various numbers

4 In the expression 6x, the multipliers 6 and x are factors

5 The number 5.93 × 107 is written in scientific notation

6 The product of reciprocals is 1

7 The sum of opposites is 0

8 The commutative law for addition states that a+b = b+a

Chapter R Concept Reinforcement

1 The statement is false For example, let a = 1 and b = 2 Then a − b = 1 − 2 = −1, but b − a = 2 − 1 = 1

2 The statement is true See page R-2 in the text

Trang 10

⫺4 0

0 1

4 Zero is neither positive nor negative The given statement

is false

5 The statement is false because |0| = 0

6 The statement is true See page R-15in the text

7 The statement is true See page R-12 in the text

8 The statement is true See page R-50 in the text

Chapter R Review Exercises

1 The rational numbers can be named as quotients of

in-tegers with nonzero divisors Of the given numbers, the

rational numbers are 2, −23, 0.4545, and −23.788

2 We specify the conditions by which we know whether a

number is in the set

{x|x is a real number less than or equal to 46}

3 Since −3.9 is to the left of 2.9, we have −3.9 < 2.9

4 19 > x

The inequality x < 19 has the same meaning

5 −13 ≥ 5is false since neither −13 > 5nor −13 = 5is true

6 7.01 ≤ 7.01 is true since 7.01 = 7.01 is true

7 x > −4

We shade all numbers to the right of −4 and use a

paren-thesis at −4 to indicate it is not a solution

8 x ≤ 1

We shade all the numbers to the left of 1 and use a bracket

at 1 to indicate it is also a solution

9 The distance of −7.23 from 0 is 7.23, so | − 7.23| = 7.23

10 The distance of 9 − 9, or 0, from 0 is 0, so |9 − 9| = 0

11 6 + (−8)

We find the difference of the absolute values, 8 − 6 = 2

Since the negative number has the larger absolute value,

the answer is negative

6 + (−8) = −2

12 −3.8 + (−4.1)

The sum of two negative numbers is negative We add

the absolute values, 3.8 + 4.1 = 7.9, and make the answer

negative

−3.8 + (−4.1) = −7.9

We find the difference of the absolute values, 13

7 − 3

4=

52

28− 21

28=

31

28 Since the negative number has the larger absolute value, the answer is negative 3

4+



−137



= −3128

14 −8 − (−3) = −8 + 3 = −5

15 −17.3 − 9.4 = −17.3 + (−9.4) = −26.7

16 3

2−



−13 4



= 3

2+

13

4 =

6

4+

13

4 =

19 4

17 (−3.8)(−2.7) The product of two negative numbers is positive We mul-tiply the absolute values, 3.8(2.7) = 10.26, and make the answer positive

(−3.8)(−2.7) = 10.26

18 −23 9

14



The product of a negative number and a positive number

is negative We multiply the absolute values and make the answer negative

2

3· 9

14 =

2 · 9

3 · 14=

2 · 3 · 3

3 · 2 · 7=

2 · 3

2 · 3·

3 7 Thus, −23 9

14



= −37

19 −6(−7)(4) = 42(4) = 168

20 When a negative number is divided by a positive number, the answer is negative

−12 ÷ 3 =−123 = −4

21 When a negative number is divided by a negative number, the answer is positive

−84

−4 = 21

22 When a positive number is divided by a negative number, the answer is negative

49

−7 = −7

23 5



−10 7



=5



− 7 10



= −5 · 7

6 · 10 = −

5 · 7

6 · 2 · 5=

− 7

6 · 2·

5

5= − 7

6 · 2 = −

7 12

24 −5



−15 16



= −5



−16 15



= 5 · 16

2 · 15=

5 · 2 · 8

2 · 3 · 5=

2 · 5

2 · 5·

8

3=

8 3

25 25

0 Not defined: Division by 0.

Ngày đăng: 20/08/2020, 13:33

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN