Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà Slide Kinh tế lượng TMU cô Hoàng Thị Thu Hà
Trang 1KINH TẾ LƯỢNG
GV: Hoàng Thị Thu Hà
Bộ môn: Toán
Email: ha.bmtoan.vcu@gmail.com
Trang 2Hoạt động của sinh viên
* Lên lớp đầy đủ theo quy chế
* Thực hiện 1 bài kiểm tra
* Làm đề tài thảo luận theo nhóm
* Tự nghiên cứu một số vấn đề trong môn học
KINH TẾ LƯỢNG
Trang 3TÀI LIỆU THAM KHẢO
http//mfe.edu.vn
Trang 4PHẦN MỀM ỨNG DỤNG
Trang 5CẤU TRÚC HỌC PHẦN
• Chương 1: Một số khái niệm cơ bản
• Chương 2: Mô hình hồi quy hai biến
• Chương 3: Mô hình hồi quy nhiều biến
• Chương 4: Mô hình hồi quy với biến giả
• Chương 5: Đa cộng tuyến
• Chương 6: Phương sai của sai số thay đổi
• Chương 7: Tự tương quan
• Chương 8: Chọn mô hình và kiểm định việc
chọn mô hình
Trang 66 1
2
4 5
B
Trang 7TOÁN CAO CẤP
BÀI TẬP 1.2 Cho hai ma trận
Tìm YTY ,XTY, XTX
1 2
n n 1
Y Y
Trang 8TOÁN CAO CẤP
1.2 CỰC TRỊ CỦA HÀM NHIỀU BIẾN
Bài toán: Cho hàm số
y= f(x1, x2,…,xn)
Tìm cực trị của hàm số trên nếu có
Trang 11LÝ THUYẾT XÁC SUẤT VÀ
THỐNG KÊ TOÁN
2.1 ĐẠI LƯỢNG NGẪU NHIÊN
• Ký hiệu: X, Y, Z,…
• Các tham số đặc trưng: E(X), Var(X), Se(X)
• Các quy luật phân phối xác suất quan trọng:
N(μ,σ2) , χ2(n), T(n), F(n1,n2)
Trang 122.1 ĐẠI LƯỢNG NGẪU NHIÊN
• Các công thức xác suất quan trọng:
Nếu T~T(n), thì
(n) α
P(|T|< t(n)/2) = 1-
P(T<- t(n)) =
P(|T|> t(n)/2) = α
Trang 13• Các công thức xác suất quan trọng:
Nếu F~ F(n1,n2), thì
1 2
(n ,n ) α
P(F > f )
2.1 ĐẠI LƯỢNG NGẪU NHIÊN
Trang 14• Hiệp phương sai của hai ĐLNN
Cov(X,Y): đo mức độ quan hệ giữa X và Y
Cov(X,Y)= 0: X,Y không tương quan
Cov X,Y E X E X Y E Y
2.1 ĐẠI LƯỢNG NGẪU NHIÊN
Trang 15• Hiệp phương sai của hai ĐLNN
Trang 16• Ma trận hiệp phương sai của các ĐLNN
cov X , X cov X , X Var X cov X , X
cov X , X cov X , X cov X , X Var X
Trang 17X Y Z
X 5.640000 41.12000 -1.620000
Y 41.12000 309.9600 -13.26000
Z -1.620000 -13.26000 0.810000
Trang 182.1 ĐẠI LƯỢNG NGẪU NHIÊN
Trang 19X Y Z
X 1.000000 0.983469 -0.757937
Y 0.983469 1.000000 -0.836851
Z -0.757937 -0.836851 1.000000
Trang 20BÀI TẬP 1.4 Viết ma trận hiệp phương sai của
1, 2, , k
2.1 ĐẠI LƯỢNG NGẪU NHIÊN
Trang 21• Xây dựng thống kê
• Tìm khoảng tin cậy ngẫu nhiên
• Trên mẫu, xác định khoảng tin cậy cụ thể
• Kết luận
2.2 ƯỚC LƯỢNG THAM SỐ BẰNG
KHOẢNG TIN CẬY
Trang 222.3 KIỂM ĐỊNH GIẢ THUYẾT THỐNG KÊ
PP truyền thống
• Xác định bài toán
• Xây dựng tiêu chuẩn kiểm định
• Tìm miền bác bỏ H0
• Trên mẫu, xác định giá trị thực nghiệm
• So sánh gttn với miền bác bỏ và kết luận
• Kết luận
Trang 23Phương pháp P -value
• Tính P-value
• So sánh P-value theo 2 trường hợp sau:
2.3 KIỂM ĐỊNH GIẢ THUYẾT THỐNG KÊ
Trang 24a) Chưa biết mức ý nghĩa α
2.3 KIỂM ĐỊNH GIẢ THUYẾT THỐNG KÊ
Trang 26CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.1 Kinh tế lượng là gì?
1.2 Phương pháp luận của kinh tế lượng
1.3 Một số khái niệm cơ bản
Trang 27CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.1 Kinh tế lượng là gì?
Econometrics = Econo + metrics: Đo lường kinh tế
Kinh tế lượng
Kinh tế học
Thống kê toán Toán học
Định lương mối quan hệ
Kiểm định giả thuyết
Dự báo
Trang 28CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.2 Phương pháp luận của kinh tế lượng
Nêu các giả thiết
Thiết lập mô hình toán +
Trang 29CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.1 Phân tích hồi quy
• 1.3.2 Bản chất và nguồn số liệu cho phân tíchhồi quy
• 1.3.3 Mô hình hồi quy tổng thể
• 1.3.4 Sai số ngẫu nhiên và bản chất
• 1.3.5 Mô hình hồi quy mẫu
• 1.3.6 Phần dư
Trang 30CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.1 Phân tích hồi quy
Nghiên cứu mối quan hệ giữa Y và
X2, X3, Xk
Ước lượng giá trị của
Y
KĐGT về
sự phụ thuộc
Dự báo giá trị của
Y
Trang 31CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.2 Bản chất và nguồn số liệu cho phân tíchhồi quy
Số liệu hỗn hợp Số liệu
mảng
Trang 32CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.2 Bản chất và nguồn số liệu cho phân tíchhồi quy
Tính chất của số liệu
Số liệu định lượng Số liệu định tính
Trang 33CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.2 Bản chất và nguồn số liệu cho phân tíchhồi quy
Nguồn số liệu
Số liệu sơ cấp Số liệu thứ cấp
Trang 34CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.3 Hàm hồi quy
Hàm hồi quy tổng thể (PRF) hai biến Y và X
Hàm hồi quy tổng thể k biến Y và X 2 ,X 3 ,…, X k
Trang 35CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.4 Sai số ngẫu nhiên và bản chất
Sai số ngẫu nhiên U ( nhiễu ngẫu nhiên) là biến
đại diện cho tất cả các yếu tố có ảnh hưởng đến biến phụ thuộc nhưng không đưa vào mô hình
Trang 36CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.4 Sai số ngẫu nhiên và bản chất
Trong mô hình 2 biến:
Trong mô hình k biến:
Trang 37CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.4 Sai số ngẫu nhiên và bản chất
Mô hình hồi quy tổng thể 2 biến
Mô hình hồi quy tổng thể k biến
(1.1*)
(1.2*)
Yi= f(Xi) +Ui
Yi= f(X2i, X3i , …,Xki) +Ui
Trang 38CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.5 Hàm hồi quy mẫu
Hàm hồi quy mẫu (SRF) hai biến Y và X
Hàm hồi quy mẫu k biến Y và X 2 , X 3 ,…, X k
Y = f(X , X , X )i
Trang 39CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một vài tư tưởng cơ bản
• 1.3.6 Phần dư
Phần dư tại quan sát i là e i
ei là ước lượng của Ui
(c)
e = Y - Y
Trang 40CHƯƠNG 1 MỘT SỐ KHÁI NIỆM CƠ BẢN
1.3 Một số khái niệm cơ bản
• 1.3.5 Mô hình hồi quy mẫu
Mô hình hồi quy mẫu hai biến Y và X
Mô hình hồi quy mẫu k biến Y và X 2 , X 3 ,…, X k
Trang 42• Đề xuất một mô hình có ít nhất 4 biến biểu
diễn mối quan hệ trên
• Dự đoán dấu của các hệ số hồi quy
Trang 43Chương 2: MÔ HÌNH HỒI QUY TUYẾN TÍNH
HAI BIẾN
2.1 MHHQ và các giả thiết cơ bản
2.2 Phương pháp bình phương nhỏ nhất (OLS)
và các tính chất của các ước lượng BPNN
2.3 Ước lượng và KĐGT về các hệ số hồi quy
2.4 Hệ số xác định và sự phù hợp của MHHQ
2.5 Phân tích hồi quy và dự báo
Trang 45• Yi, Xi, Ui là giá trị của Y, X, U tại quan sát i (i=1,…,n)
β β gọi chung là các hệ số hồi quy mẫu
2.1 MHHQ và các giả thiết cơ bản
Trang 46 Ý nghĩa của các hệ số hồi quy
• β1=E(Y/X=0):
•E(Y/X=Xi +1) = E(Y/X=Xi) +β2
2.1 MHHQ và các giả thiết cơ bản
Trang 472.1.2 Các giả thiết cơ bản của MHHQ
Giả thiết 1: Biến độc lập X là phi ngẫu nhiên Giả thiết 2: E(Ui )=E(Ui /X=Xi)=0
Giả thiết 3: Var(Ui )=Var(Ui /X=Xi)= σ2
Giả thiết 4: Cov(Ui , Uj)= 0 i≠j
Giả thiết 5: Cov(Ui , Xi)= 0
Giả thiết 6: Ui ~ N(0, σ2 )
2.1 MHHQ và các giả thiết cơ bản
Trang 501, 2
Trang 51Bằng PPBPNN hãy xây dựng hàm hồi qui mẫu:
Nêu ý nghĩa của các hệ số hồi quy mẫu vừa tìm được
Trang 52Ta có hàm hồi qui mẫu:
VÍ DỤ 2.1
Trang 542.2.2 Các tính chất của ULBPNN (sv tự chứng minh)
Trang 552.2.2 Các tính chất của ULBPNN (sv tự chứng minh)
Trang 56Chương 3: MÔ HÌNH HỒI QUY
TUYẾN TÍNH NHIỀU BIẾN
3.1 Mô hình hồi quy và các giả thiết cơ bản
Trang 573.1 Mô hình hồi quy và
các giả thiết cơ bản
3.1.1.Mô hình hồi quy tổng thể và mô hình hồi quy mẫu3.1.2 Dạng ma trận của MHHQ
3.1.3 Các giả thiết cơ bản của MHHQ
Trang 591538 35 5 5 5
i
Trang 60* Ý nghĩa của các hệ số hồi quy
Khi tất cả các biến độc lập đều nhận giá trị bằng
0, thì giá trị trung bình của biến phụ thuộc Y là
Khi biến Xj tăng lên 1 đv, các biến độc lập còn
lại không đổi, thì giá trị trung bình của biến phụ
Trang 61Hàm hồi quy mẫu
Trang 623.1.2 Dạng ma trận của MHHQ
1 2
n n 1
Y Y
n n 1
U U
n n 1
e e e
Trang 663.1.3 Các giả thiết cơ bản của MHHQ
Trang 673.1.3 Các giả thiết cơ bản của MHHQ
2 i
Trang 683.2 Phương pháp bình phương nhỏ nhất.
Tính chất của các ƯL BPNN
3.2.1 Phương pháp bình phương nhỏ nhất (OLS)
3.2.2 Các tính chất của các ước lượng bình phương nhỏ nhất(ƯL BPNN)
Trang 693.2.1 Phương pháp bình phương nhỏ nhất
Xét mô hình
Y X X U
a) Bài toán: Với số liệu đã cho, bằng PP BPNN
hãy xây dựng hàm hồi quy mẫu có dạng sau:
ˆY X X
Trang 742i 3i ki 2
Trang 80114 1356 816
1356 816 1
Trang 83 1
67740 2106 5964
2106 81 162 1944
2106 81 162 12746 6 08333 1944
Trang 8469 53704 6 08333 4 20370
ˆ
Y , , X , Z
* Hàm hồi quy mẫu:
* Nêu ý nghĩa của các hệ số hồi quy mẫu
Khi giá bán không đổi, chi phí dành cho quảng cáo tăng lên 1 triệu đồng, thì doanh số bán ra trung bình của cửa hàng tăng lên 6.083 triệu đồng.
Trang 85Khi chi phí dành cho quảng cáo không đổi, giá bán tăng lên 1ngàn đồng/ 1 đv sản phẩm, thì doanh số bán ra trung bình của cửa hàng giảm xuống 4.204 triệu đồng.
3 4 204
Trang 893.2.2 Tính chất của các ƯL BPNN
Trang 913.3 Ước lượng và KĐGT về các hệ số hồi quy tổng thể
3.3.1 Ma trận hiệp phương sai của các hệ số hồi quy mẫu
3.3.2 Ước lượng các hệ số hồi quy tổng thể
3.3.3 Kiểm định giả thuyết về các hệ số hồi quy tổng thể
Trang 923.3.1 Ma trận hiệp phương sai của
các hệ số hồi quy mẫu
Trang 933.3.1 Ma trận hiệp phương sai của
các hệ số hồi quy mẫu
Trang 94Chú ý:
2 2
3.3.1 Ma trận hiệp phương sai của
các hệ số hồi quy mẫu
(3.10)Sai số chuẩn của hàm hồi quy (S.E of regression)
σ
1)
Trang 963.3.1 Ma trận hiệp phương sai của
các hệ số hồi quy mẫu
BÀI TẬP 3.2 Lập công thức tính trong
trường hợp mô hình có 3 biến Y, X, Z
2 i
Trang 973.3.2 Ước lượng các hệ số hồi quy tổng thể
Bài toán: Với độ tin cậy γ=1-α , hãy ước lượng β j
Trang 98• Với độ tin cậy γ=1-α, xác định phân vị n k
3.3.2 Ước lượng các hệ số hồi quy tổng thể
Khoảng tin cậy của β j
Trang 99n k
α 2 j
Trang 1003.3.2 Ước lượng các hệ số hồi quy tổng thể
• Trên mẫu, tính các giá trị của
Trang 101VÍ DỤ 3.2
BÀI TẬP 3.3 Sử dụng số liệu trong ví dụ 3.1, hãy xácđịnh khoảng tin cậy 95% của β2
Trang 102Với γ=0.95 =>α=0.05 => n k 0.0257
2
t t 2.365
Trang 103( )
2 2
/ 2 2
Trang 107Vậy khoảng tin cậy của là:2
triệu đồng, thì doanh số bán ra trung bình của cửa
hàng tăng lên từ 4.919 triệu đồng đến 7.248 triệu
đồng
Trang 108BÀI TẬP: Sử dụng số liệu trong ví dụ 3.1, với độ tin
cậy 98%, khi giá bán tăng lên 2 nghìn đồng trên mỗi
sản phẩm, trong điều kiện chi phí quảng cáo không
thay đổi, thì doanh số bán ra trung bình sẽ thay đổi
trong khoảng nào?
Trang 109Với γ=0.98 =>α=0.02 => n k 0.017
2
t t 2.998
Trang 111VÍ DỤ 3.2
,
Trang 112ˆ t .Se( )ˆ ,
ˆ t .Se( )ˆ ,
Trang 113Vậy khoảng tin cậy của là:3
Trang 1163.3.3 Kiểm định giả thuyết về
các hệ số hồi quy tổng thể
Bài toán: Với mức ý nghĩa α Kiểm định giả thuyết
về β j theo một trong 3 bài toán sau:
Trang 117 Chọn tiêu chuẩn kiểm định:
0 j j
Trang 118Bài toán 1: xác định phân vị n k
α 2
t
Ta có: n k
α 2
Trang 119Bài toán 2: xác định phân vị n k
Trang 120Bài toán 3: xác định phân vị n k
Trang 121 Tính giá trị thực nghiệm:
0 j j
Trang 122VÍ DỤ 3.3
BÀI TẬP 3.4 Sử dụng số liệu trong ví dụ 3.1,
a) Với mức ý nghĩa 0,01 hãy kiểm định giả thuyết:
giá bán không ảnh hưởng tới doanh số bán ra.
giá bán không đổi, chi phí dành cho quảng cáo tăng lên 1 triệu đồng/1 tháng, thì doanh thu trung bình tăng cao hơn 6 triệu hay không?
Trang 125P T t α
Trang 126VÍ DỤ 3.3
Kết luận
Với mức ý nghĩa 1%, có thể nói rằng giá bán không ảnh hưởng tới doanh số bán ra.
Trang 127VÍ DỤ 3.3
BÀI TẬP 3.4 Sử dụng số liệu trong ví dụ 3.1,
a) Với mức ý nghĩa 0,01 hãy kiểm định giả thuyết: giá bán không ảnh hưởng tới doanh số bán ra.
b) Với mức ý nghĩa 0,05, liệu có thể nói rằng khi giá bán không đổi, chi phí dành cho quảng cáo tăng lên 1 triệu đồng/1 tháng, thì doanh thu trung bình tăng cao hơn 6 triệu hay không?
Trang 129
Trang 130P T t α
Trang 133ˆ(Y i Y i ) e i
3.4.1 Các ký hiệu
2 2
i
Y nY
Trang 1342 2
Trang 135Ý nghĩa :Đo mức độ phù hợp của hàm hồi quy mẫu
Trang 136Giải thích ý nghĩa của R2
Trong mô hình hồi quy, các biến độc lập giải thích được R^2% sự biến động của biến phụ thuộc Y so với giá trị trung bình,
100%-R^2% là do các yếu tố ngẫu nhiên gây ra sự biến động đó.
Trang 138Ý nghĩa :
Dùng để quyết định việc có nên đưa thêm biến mới vào mô hình hay không
Việc đưa thêm biến mới vào mô hình là cần thiết
chừng nào còn tăng, và hệ số góc ứng với biến
Trang 139Chú thích
• “ còn tăng
• hệ số góc ứng với biến đó có ý nghĩa thống kê
Y, X, Z
Muốn đưa thêm biến T
- Rngang^2 khi thêm T so với Rngang^2 khi chưa thêm T
- hệ số góc ứng với T có ý nghĩa TK
Kiểm định gt H0: β T =0,
nếu H0 bị bác bỏ thì βT có ý nghĩa thống kê
nếu chấp nhận H0 thì βT không có ý nghĩa thống kê
2
R
Trang 1403.4.3 Kiểm định giả thuyết đồng thời
Bài toán: Với mức ý nghĩa α, kiểm định giả thuyết
tất cả các biến độc lập trong mô hình (X2 ,X3, ,Xk )đều
không ảnh hưởng tới biến phụ thuộc Y
Trang 141• Giả thuyết 1: Vốn tư bản và số người lao động đều k ảnh
hưởng đến lợi nhuận.
• Giả thuyết 2: Vốn lao động, số người lao động và công nghệ
sản xuất đều k ảnh hưởng đến lợi nhuận
GT 2 là giả thuyết đồng thời
• Giả thuyết 3: Số người lao động và công nghệ sản xuất đều k ảnh hưởng đến lợi nhuận
Trang 1420 2 3 1
2 1
Trang 143- Tiêu chuẩn kiểm định
Nếu giả thiết H0 đúng thì F ~ F(k-1,n-k)
3.4.3 Kiểm định giả thuyết đồng thời
(3.15)
Trang 144Tìm miền bác bỏ H0 , với mức ý nghĩa α, xác định
Trang 146VÍ DỤ 3.4
BÀI TẬP 3.5 Sử dụng số liệu trong ví dụ 3.1, với
mức ý nghĩa 0.01, hãy kiểm định giả thuyết: cả hai
yếu tố chi phí dành cho quảng cáo và giá bán đều không ảnh hưởng tới doanh số bán ra.
Trang 1480 :
3 2
1
3 2
H
Bài toán cần kiểm định
2 0
2 1
Trang 151VÍ DỤ 3.4
2 i 2
2 2
R n - k 0, 98686 7
1- R k -1 1- 0, 98686 2
Bác bỏ H0
Trang 152VÍ DỤ 3.4
Kết luận
Với mức ý nghĩa 1%, ta có thể nói rằng ít nhất
một trong hai yếu tố giá bán và chi phí cho quảng
cáo có ảnh hưởng tới doanh số bán ra
Trang 1543.5 Phân tích hồi quy và dự báo
3.5.1 Dự báo giá trị trung bình
3.5.2 Dự báo giá trị cá biệt
Trang 155Giả sử giá trị của các biến độc lập X2 ,X3 ,…,Xk tương ứng là X20 ,X30 ,…, Xk0 Ký hiệu:
Trang 158Với độ tin cậy γ cho trước, hãy dự báo giá trị trung
bình của Y với điều kiện các biến độc lập X2 ,X3 ,…,Xk nhận các giá trị tương ứng là X20 ,X30 ,…, Xk0
Trang 159 Với độ tin cậy xác định phân vị
Trang 161VÍ DỤ 3.5
BÀI TẬP 3.6 Sử dụng số liệu trong ví dụ 3.1, với
độ tin cậy 98%, hãy dự báo doanh số bán ra
trung bình trong một tháng của các cửa hàng có
chi phí dành cho quảng cáo là 10 triệu đồng/ 1tháng và giá bán là 8 ngàn đồng/ 1 sản phẩm
Trang 163Với độ tin cậy γ=0,98, dự báo E(Y/X0) với
X0
1 10 8
Trang 164(XTX)-1 X0
0 96 74074
ˆY ,
67740 2106 5964 1 1
2106 81 162 10 1944
01944
Trang 166Với độ tin cậy γ cho trước, hãy dự báo giá trị cá
nhận các giá trị tương ứng là X20 ,X30 ,…, Xk0
Bài toán
3.5.2 Dự báo giá trị cá biệt
Trang 167 Với độ tin cậy xác định phân vị
Trang 169VÍ DỤ 3.6
BÀI TẬP 3.7 Sử dụng số liệu trong ví dụ 3.1,
với độ tin cậy 98%, hãy dự báo doanh số bán ra
trong một tháng của các cửa hàng có chi phídành cho quảng cáo là 10 triệu đồng/ 1 tháng vàgiá bán là 8 ngàn đồng/ 1 sản phẩm
Trang 170setb=sqr(secb^2-2.411941^2)
Trang 171Với độ tin cậy γ=0,98, dự báo Y0 với
X0
1 8 10
Trang 175Yi : lợi nhuận của doanh nghiệp i (tỷ VND/1 năm)
Zi :chi phí hoạt động của doanh nghiệp i (tỷ VND/1 tháng)
Xi : nguồn vốn huy động của doanh nghiệp i (tỷ VND/1 năm)
BÀI TẬP CHƯƠNG 3
Trang 180BÀI TẬP CHƯƠNG 3
2 Tìm khoảng tin cậy 98% của β3
3 Với mức ý nghĩa 1%, KĐGT nguồn vốn không ảnh hưởng tới lợi nhuận của DN
4 Với mức ý nghĩa 5%, KĐGT cả hai yếu tố
nguồn vốn và chi phí không ảnh hưởng tới lợi
nhuận của DN
Trang 182ˆ t .Se( ˆ ) ,
ˆ t .Se( ˆ ) ,
Trang 183BÀI TẬP CHƯƠNG 3
2 Tìm khoảng tin cậy 98% của β3
3 Với mức ý nghĩa 1%, KĐGT nguồn vốn không ảnh hưởng tới lợi nhuận của DN
4 Với mức ý nghĩa 5%, KĐGT cả hai yếu tố
nguồn vốn và chi phí không ảnh hưởng tới lợi
nhuận của DN
Trang 184• Với α= 0.01, kiểm định giả thuyết
0 2
1 2
0 0
Nếu H0 đúng thì T~T(n-3)
n k 9
α 0,005 2
α 0,01 t t 3,25
Miền bác bỏ Ho: W t : t 3, 25
Trang 185Bác bỏ Ho
Kết luận: Với mức ý nghĩa 1%, có thể nói rằng nguồn
vốn huy động có ảnh hưởng lợi nhuận của doanh nghiệp.
Trang 186BÀI TẬP CHƯƠNG 3
2 Tìm khoảng tin cậy 98% của β3
3 Với mức ý nghĩa 1%, KĐGT nguồn vốn không ảnh hưởng tới lợi nhuận của DN
4 Với mức ý nghĩa 5%, KĐGT cả hai yếu tố
nguồn vốn và chi phí không ảnh hưởng tới lợi
nhuận của DN
Trang 1870 :
3 2
1
3 2
H
Với α=0,05, kiểm định giả thuyết:
2 0
2 1
: 0 : 0
Tiêu chuẩn kiểm định:
Nếu giả thiết H0 đúng thì F ~ F(k-1,n-k)
2 2
Trang 1882 i 2
2 2
Bác bỏ Ho.
Kết luận: Với mức ý nghĩa 5%, có thể nói rằng ít nhất 1
trong 2 yếu tố nguồn vốn và chi phí hoạt động có ảnh
hưởng tới lợi nhuận của doanh nghiệp.