Ngoài việc củng cố cho học sinh tiểu học những kiến thức, kỹ năng toán học và giải một số bài toán về chuyển động đều thì khi giải các bài toán loại này đòi hỏi học sinh phải nắm vững cá
Trang 11 MỞ ĐẦU
1.1 Lý do chọn đề tài:
Bậc Tiểu học được đánh giá là bậc học rất quan trọng trong việc đặt nền móng cho việc hình thành nhân cách của học sinh Trên cơ sở cung cấp cho học sinh những tri thức ban đầu về tự nhiên và xã hội, nhằm phát triển năng lực nhận thức, trang bị các phương pháp và kĩ năng ban đầu về hoạt động nhận thức và hoạt động thực tiễn cho học sinh, góp phần phát huy và bồi dưỡng những năng lực, những phẩm chất, những tình cảm tốt đẹp của người Việt Nam Trong các môn học
ở Tiểu học, cùng với môn Tiếng Việt, môn Toán có một vị trí rất quan trọng
Đã có một quan điểm lý luận dạy học Toán cho rằng dạy học Toán là dạy học các hoạt động toán học Ở đây, chúng ta hiểu các hoạt động Toán học là các công việc của người làm toán Giáo viên dạy và học sinh học cách thực hiện các công việc của người làm toán Hoạt động cơ bản nhất của người làm toán là giải toán Thành thử, giải toán rất quan trọng trong dạy học Toán Trong thực tế, ở Tiểu học giải toán có thể sử dụng vào hầu hết các khâu trong quá trình dạy học
Là dạng toán xuất hiện muộn trong chương trình Toán lớp 5 nói riêng và
chương trình toán Tiểu học nói chung, nhưng dạng toán có nội dung về chuyển động đều là một trong những bài toán điển hình giữ vị trí quan trọng trong chương
trình Toán 5 Ngoài việc củng cố cho học sinh tiểu học những kiến thức, kỹ năng toán học và giải một số bài toán về chuyển động đều thì khi giải các bài toán loại này đòi hỏi học sinh phải nắm vững các đơn vị kiến thức đã học, các công thức toán học về chuyển động đều Đồng thời biết vận dụng một cách linh hoạt, tích cực, sáng tạo các công thức đó trong việc rèn kỹ năng giải toán Khi khai thác các
dữ kiện của bài toán cần tìm ra các đại lượng có mối liên hệ với nhau, từ đó đòi hỏi khả năng suy luận về các tình huống khác nhau của bài toán về chuyển động đều
Khi dạy học toán giải các bài toán về chuyển động là cơ hội giúp các em nhận thức về các đơn vị của chuyển động, biết được mối liên tưởng trong thao tác
tư duy, phân tích, tổng hợp và so sánh cùng với trí tưởng tượng không gian và vận dụng các kỹ năng toán học có quan hệ với nhau
Thông qua dạy các bài toán về chuyển động nhằm rèn luyện cho học sinh hình thành và phát triển năng lực tư duy như vẽ hình, cách ghi đúng kí hiệu, khả năng tổng hợp khái quát, trừu tượng hoá, suy luận logic và trình bày các kết quả theo một trình tự hợp lý làm cơ sở cho quá trình nhận biết và học toán có liên quan đến đại cương các đơn vị chuyển động ở các lớp sau này Đặc biệt, nếu học sinh có
kĩ năng thành thạo khi giải các bài về chuyển động đều sẽ tạo cho các em nền tảng vững chắc để học tốt môn Vật lí ở các cấp học trên
Quá trình dạy học sinh giải các bài toán về chuyển động ở lớp 5 không chỉ là quá trình hình thành ở học sinh một hệ thống những tri thức, kỹ năng và kỹ xảo của các nội dung cơ bản trong chương trình môn toán ở Tiểu học mà còn phải bảo đảm tối đa, làm cho hoạt động tư duy của học sinh phát triển tích cực, độc lập sáng tạo Qua đó còn phát triển ngôn ngữ nói chung cũng như thuật ngữ toán học nói riêng trên cơ sở giúp học sinh biết cách sử dụng công thức tính, kỹ năng học toán vào việc giải quyết những tình huống, tính toán cụ thể trong thực tiễn cuộc sống hàng ngày
Trang 2Thông qua hoạt động giải các bài toán về chuyển động sẽ giúp cho học sinh hình thành thói quen làm việc khoa học, kiên trì, bền bỉ phát huy được tính độc lập sáng tạo trong suy nghĩ tích cực tư duy, chính xác và tính trung thực trong đời sống con người
Là một giáo viên đang trực tiếp giảng dạy bậc tiểu học, cụ thể là nhiều năm liền dạy lớp 5, bản thân tôi cũng đã suy nghĩ tìm tòi cho mình cách giải quyết những vấn đề khó trong giảng dạy Thực tế cho thấy, khi học toán có rất nhiều học sinh cũng đã nắm được lí thuyết nhưng do các em nắm lí thuyết một cách máy móc nên khi vận dụng vào thực hành gặp nhiều lúng túng
Do vậy việc tìm ra biện pháp giúp học sinh giải toán chuyển động đều dễ dàng hơn có vai trò hết sức quan trọng, là cơ sở ban đầu cho quá trình dạy và học toán về sau Như thế, người giáo viên không chỉ dừng lại ở mức độ giúp học sinh độc lập, tự giác, tích cực giải và tính toán đúng các bài toán mà còn dạy cho học sinh nắm được phương pháp giải, quy trình giải thích hợp về các điều kiện liên quan đến bài toán Khi có phương pháp, kĩ năng giải các bài toán về chuyển động đều tốt là cơ hội tốt nhất để học sinh hình thành và phát triển năng lực Toán học, là việc làm cần thiết nhằm góp phần nâng cao hiệu quả việc giải một bài toán có liên quan đến rất nhiều đơn vị kiến thức Chính vì vậy, tôi đã quyết định chọn và
nghiên cứu đề tài: "Một số biện pháp giúp học sinh lớp 5 giải tốt các bài toán về chuyển động đều"
1.2 Mục đích nghiên cứu:
Bản thân tên đề tài đã chỉ rõ mục đích nghiên cứu: "Một số biện pháp giúp học sinh lớp 5 giải tốt các bài toán về chuyển động đều" Trong nội dung đề tài này
tôi đi sâu nghiên cứu những vấn đề sau:
- Nghiên cứu nội dung chương trình mạch kiến thức toán chuyển động đều trong chương trình Toán 5, tìm hiểu các dạng toán về chuyển động đều ở mức độ nâng cao
- Điều tra khảo sát, tìm hiểu thực trạng vấn đề giúp học sinh lớp 5 giải các bài toán về chuyển động đều ở cấp tiểu học
- Trên cơ sở đó, đề xuất một số biện pháp nhằm rèn kĩ năng giải các bài toán về chuyển động đều cho học sinh lớp 5
1.3 Đối tượng nghiên cứu
Các bài toán về chuyển động xuất hiện trong chương trình Toán 5 cuối bậc Tiểu học, sau khi học sinh đã được học đầy đủ các kiến thức về số tự nhiên, một phần ban đầu về số hữu tỉ và các nội dung cơ bản ở Tiểu học Dạng toán này dựa trên cơ sở sự phối hợp các kiến thức, kĩ năng đã học tạo nên các dữ liệu của bài toán Chính vì vậy, đối tượng tôi chọn ở đây là học sinh khối lớp 5 trong trường
1.4 Phương pháp nghiên cứu:
Trong những năm học qua, tôi đã liên tục trực tiếp giảng dạy lớp 5, dự giờ, theo dõi kết quả học tập của học sinh và có kế hoạch nghiên cứu, thực nghiệm trong quá trình giảng dạy thực tiễn
Để thực hiện tốt nhiệm vụ trên đây cần phải có phương pháp tối ưu để dạy học sinh giải toán về “các bài toán chuyển động” có chất lượng, tôi đã sử dụng các phương pháp:
- Dùng hình vẽ biểu diễn quan hệ giữa các đại lượng dựa trên cơ sở phân tích và tổng hợp bài toán
2
Trang 3- Phương pháp quan sát: Quan sát học sinh trong khi học sinh thực hiện giải toán, từ việc đặt ra câu hỏi để học sinh trả lời bằng miệng đến việc làm bài tập trên bảng, trong vở, bài kiểm tra
- Phương pháp thực hành luyện tập
- Phương pháp điều tra theo phiếu an-ket
- Phương pháp thực nghiệm
2 NỘI DUNG 2.1 Cơ sở lí luận:
Đặc điểm tư duy của học sinh tiểu học nói chung và tư duy toán học của học sinh tiểu học nói riêng còn mang tính cụ thể, hình thức Dựa vào các hình ảnh trực quan học sinh mới hiểu các mối quan hệ sâu sắc, khó phát hiện, các dấu hiệu bản chất Học sinh tiểu học thường nhầm lẫn giữa dấu hiệu bản chất với dấu hiệu không bản chất nên thường gặp khó khăn trong quá trình lĩnh hội các khái niệm và các thao tác có liên quan đến khái niệm Học sinh dễ lẫn lộn các đối tượng có liên quan với nhau
Hoạt động phân tích, tổng hợp của học sinh còn kém, đặc điểm trí nhớ của học sinh tiểu học là ghi nhớ trực quan, hình ảnh phát triển hơn ghi nhớ từ ngữ lôgíc Học sinh thường ghi nhớ một cách máy móc không có nội dung
Sự chú ý có chủ định của học sinh còn yếu, sự chú ý đòi hỏi phải có động cơ gần thúc đẩy Khả năng điều chỉnh chú ý chưa mạnh nên dễ bỏ quên lời, sót từ, nhầm lẫn Đặc điểm tưởng tượng của học sinh tiểu học thường đứt đoạn nên khi tái hiện không có tính lôgíc hợp lí, chịu ảnh hưởng của ấn tượng trực tiếp Những đặc điểm này chi phối rất nhiều đến quá trình dạy học ở tiểu học nói chung và dạy môn toán lớp 5 nói riêng, đặc biệt là dạy nội dung “giải các bài toán về chuyển động đều” đòi hỏi học sinh phải tư duy tưởng tượng cao
Toán chuyển động đều chiếm một vị trí rất quan trọng trong chương trình toán lớp 5 Bài toán chuyển động đều là bài toán có chứa ba đại lượng: Quãng đường (s), vận tốc (v), thời gian (t) liên hệ với nhau bởi quan hệ:
s = v t ( Hoặc v = s : t hay t = s : v)
Nhờ các tình huống chuyển động đều hết sức đa dạng trong đời sống mà các mối quan hệ không hề đơn giản lúc ẩn, lúc hiện; biến hóa khôn lường trong các tình huống khác nhau Chính vì thế mà ta có thể nói toán chuyển động đều là loại toán phong phú bậc nhất ở bậc tiểu học Việc giải các bài toán chuyển động đều rất tốt trong việc phát triển tư duy, sáng tạo cho các em học sinh Mặt khác, vì toán chuyển động đều liên quan trực tiếp đến số đo thời gian nên toán chuyển động đều còn có tác dụng rất lớn trong việc thực hành, củng cố kiến thức về số đo thời gian
2.2 Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm:
Trong chương trình Tiểu học, toán chuyển động đều được học ở lớp 5 là loại toán mới, lần đầu tiên học sinh được học Nhưng thời lượng chương trình dành cho loại toán này nói chung là ít: 3 tiết bài mới, 3 tiết luyện tập sau mỗi bài mới, 3 tiết luyện tập chung Sau đó phần ôn tập cuối năm một số tiết có bài toán nội dung chuyển động đều đan xen với các nội dung ôn tập khác
Trang 4Với loại toán khó, đa dạng, phức tạp như loại toán chuyển động đều mà thời lượng dành cho ít như vậy, nên học sinh không được củng cố và rèn luyện kĩ năng nhiều chắc chắn không tránh khỏi những vướng mắc, sai lầm khi làm bài
Qua nhiều năm thực dạy lớp 5, bản thân tôi thấy trong dạy và học toán chuyển động đều giáo viên và học sinh có những tồn tại vướng mắc như sau:
- Chưa củng cố rèn luyện kĩ năng giải loại toán này một cách hệ thống, sâu sắc, việc mở rộng hiểu biết và phát triển khả năng tư duy, trí thông minh, óc sáng tạo cho học sinh còn hạn chế
- Học sinh chưa được rèn luyện giải theo hệ thống dạng bài nên khả năng nhận dạng bài, và vận dụng phương pháp giải cho từng dạng bài chưa sâu Dẫn đến học sinh lúng túng, chán nản khi gặp loại toán này
- Đa số giáo viên chưa nghiên cứu để khai thác hết kiến thức, dạy máy móc, chưa chú trọng làm rõ bản chất toán học, nên học sinh chỉ nhớ công thức và vận dụng công thức làm bài, chứ chưa có sự sáng tạo trong từng bài toán tình huống chuyển động cụ thể có trong cuộc sống
- Khi làm bài nhiều em không đọc kĩ đề bài, suy nghĩ thiếu cẩn thận, hấp tấp nên bỏ sót dữ kiện đề bài cho
- Nhiều học sinh không nắm vững kiến thức cơ bản, tiếp thu bài máy móc, chỉ làm theo mẫu chứ chưa tự suy nghĩ để tìm cách giải
Cuối năm học 2015-2016, để chuẩn bị cho dạy năm học tới (năm học 2016 - 2017) tôi đã cho học sinh làm một bài kiểm tra, với thời gian làm bài 20 phút
Bài 1: Quãng đường từ nhà chị Hoa đến Thị trấn là 43 km Trên đường đi từ
nhà đến Thị Trấn, chị Hoa đi bộ 7 km rồi mới đi xe máy trong một giờ rưỡi thì tới nơi Tính vận tốc xe máy?
Bài 2: Một người đi xe máy đi từ A lúc 7 giờ 20 phút với vận tốc 42 km/giờ,
đến B lúc 11 giờ Tính độ dài quãng đường AB
Kết quả thu được: (Tổng số học sinh được làm bài: 25 em)
Những tồn tại cụ thể trong bài làm của học sinh:
Bài 1: Học sinh làm sai do không đọc kĩ đề bài, bỏ sót dữ kiện cho của bài
toán “chị Hoa đi bộ 7 km rồi mới đi xe máy” nên đã vận dụng công thức tính
ngay vận tốc ô tô là: 43 : 1,5 = 28,66 (km/giờ)
Bài 2: Học sinh sai vì một số em khi tìm ra thời gian đi là:
11 giờ – 7 giờ 20 phút = 3 giờ 40 phút
Vì vận tốc cho được tính bằng đơn vị km/giờ, thì thời gian tương ứng phải
là giờ Nhưng do không chú ý đến điều này nên đã đổi:
Đổi: 3 giờ 40 phút = 220 phút Rồi vận dụng công thức tính quãng đường là:
42 220 = 9240 (km)
4
Trang 52.3 Các giải pháp đã sử dụng để giải quyết vấn đề
Từ thực trạng trên, để giúp các em học sinh nắm được cách giải và thực hành giải được các bài tập về chuyển động đều, tôi có mạnh dạn đưa ra một số biện pháp sau:
2.3.1 Biện pháp1: Dạy học giúp học sinh nắm chắc kiến thức cơ bản, làm rõ bản chất mối quan hệ giữa các đại lượng: vận tốc, quãng đường, thời gian.
Để làm được điều này thì ngay trên lớp, khi dạy bài mới tôi đã chú trọng giúp học sinh hiểu rõ bản chất toán học, hiểu rõ ý nghĩa, bản chất của nội dung kiến thức Hướng dẫn học sinh tự tìm hiểu kiến thức bằng hiểu biết của mình dựa trên những gợi ý, rồi tôi mới hướng dẫn học sinh chốt kiến thức
Để học sinh hiểu rõ, nắm chắc bản chất của vận tốc, bằng các ví dụ cụ thể
sách giáo khoa, giúp học sinh hiểu: Nếu đem chia quãng đường đi được cho thời gian đi quãng đường đó thì sẽ được vận tốc trung bình của động tử Hay gọi tắt là
vận tốc của động tử Vận tốc = Quãng đường : thời gian
Để học sinh hiểu rõ ý nghĩa của vận tốc là chỉ rõ sự chuyển động nhanh hay
chậm của động tử tôi đã lấy 1 ví dụ để hướng dẫn học sinh như sau:
Ví dụ: Hai người cùng xuất phát một lúc từ A đi đến B Mỗi giờ người thứ
nhất đi được 25 km, người thứ hai đi được 20 km Hỏi ai đến B trước?
Bằng sơ đồ đoạn thẳng:
QĐ trong 1 giờ: 25 km
QĐ trong 1 giờ : 20 km
Từ sơ đồ học sinh dễ dàng nhận thấy người đến B trước là người đi nhanh
hơn Qua đó học sinh hiểu rõ bản chất “Vận tốc chính là quãng đường đi được trong một đơn vị thời gian.”
Trong quá trình dạy học hình thành quy tắc, công thức tính tôi đặc biệt lưu ý học sinh những vấn đề sau để học sinh tránh được những nhầm lẫn khi làm bài
- Đơn vị vận tốc thường phụ thuộc vào đơn vị quãng đường và đơn vị thời gian Chẳng hạn:
- Đơn vị thời gian phụ thuộc vào đơn vị quãng đường và vận
tốc Chẳng hạn: s km
v km/giờ t giờ
- Đơn vị quãng đường phụ thuộc vào đơn vị vận tốc và thời gian.
- Các đơn vị của đại lượng khi thay vào công thức phải tương ứng với nhau Số đo thời gian khi thay vào công thức phải viết dưới dạng số tự nhiên, số thập phân, phân số.
2.3.2 Biện pháp 2: Phân dạng các bài toán chuyển động đều.
Trong thực tế, các tình huống chuyển động vô cùng phong phú, chính vì sự phong phú đó mà các bài toán chuyển động đều cũng rất đa dạng về nội dung
Trang 6Việc phân chia dạng toán để giúp các em nhận dạng là vô cùng quan trọng Nó giúp các em nắm phương pháp giải một cách có hệ thống và giúp các em rèn luyện
kĩ năng được nhiều hơn Trong quá trình giảng dạy, củng cố kiến thức và bồi dưỡng học sinh năng khiếu về loại toán chuyển động đều tôi đã thực hiện phân dạng như sau:
* Dạng 1: Các bài toán có 1 chuyển động tham gia.
- Loại 1: Các bài toán giải bằng công thức cơ bản.
Các công thức vân dụng là: v = s : t t = s : v s = v t
Đối với loại toán này thì việc nhận dạng rất đơn giản Các em chỉ cần đọc kĩ
đề bài, xác các định yếu tố đã cho, yếu tố cần tìm có thể xác định được cách làm
Ví dụ 1: Một người chạy được 60m trong 10 giây Tính vận tốc chạy của
người đó
Ví dụ 2: Một người đi từ A lúc 6 giờ 30 phút, đến B lúc 9 giờ, dọc đường
người đó nghỉ 30 phút Hỏi:
a) Người đó đi từ A đến B (không kể thời gian nghỉ) mất bao lâu?
b) Người đó đi với vận tốc là bao nhiêu?
Ví dụ 3: Một ca nô đi với vận tốc 15,2 km/giờ Tính quãng đường đi được
của ca nô trong 3 giờ
Ví dụ 4: Trên quãng đường 23,1 km, một người đi xe đạp với vận tốc 13,2
km/giờ Tính thời gian đi của người đó
Ví dụ 5: Tìm vận tốc của một ô tô, biết ô tô đó đi được 120 km trong 2 giờ
30 phút
Ví dụ 6: Bình đi xe đạp với vận tốc 15 km/giờ từ nhà đến bến xe hết nửa giờ.
Hỏi nhà Bình cách bến xe bao nhiêu ki-lô-mét?
- Loại 2: Các bài toán vận dụng 3 tính chất trong toán chuyển động đều
Để có thể đưa một số bài toán chuyển động đều về các dạng toán điển hình thì trong quá trình dạy hình thành công thức tính vận tốc, quãng đường, thời gian tôi hướng dẫn để học sinh nhận ra mối quan hệ tỉ lệ giữa 3 đại lượng đó như sau:
+ Trong cùng t thì s đi được và v là hai đại lượng tỉ lệ thuận;
+ Trên cùng một s thì v và t là hai đại lượng tỉ lệ nghịch;
+ Với cùng một v, s và t là hai đại lượng tỉ lệ thuận.
Các bài toán chuyển động, nhiều bài khi mới đọc đề tưởng như rất khó, rất phức tạp nhưng biết chuyển về dạng toán này thì việc giải bài toán trở nên dễ dàng hơn rất nhiều
Một số bài toán chuyển động đều có thể đưa về các dạng toán điển hình nhờ vào mối quan hệ tỉ lệ giữa các đại lượng như:
+ Tìm 2 số khi biết tổng (hiệu) và tỉ số của chúng.
+ Tìm 2 số khi biết tổng và hiệu của chúng.
Ví dụ 1: Một người đi bộ từ A đến B, trên nửa quãng đường đầu mỗi giờ đi
được 6 km, trên nửa quãng đường sau mỗi giờ đi được 4 km Tìm vận tốc của trung bình của người ấy khi đi trên cả quãng đường AB
Tóm tắt:
v = 6 Km/giờ v = 4 Km/giờ
A C B
Trang 7Thời gian trung bình của người ấy đi được 1 km trên quãng đường AC là:
1:6= 1 (giờ)
6
Thời gian trung bình của người ấy đi được 1 km trên quãng đường CB là:
1:4= 1 (giờ)
4
Thời gian trung bình để người ấy đi được 2 km trên quãng đường AB là:
6 4 12 (giờ)
Vận tốc trung bình của người ấy đi trên cả quãng đường AB là:
2 : 5 = 4,8 (km/giờ)
12 Đáp số: 4,8 km/giờ
Ví dụ 2: Lúc 6 giờ sáng, một người đi xe máy từ A với vận tốc 35 km/giờ để
tới B dự họp Đi được 1 quãng đường, người ấy phải dừng lại 20 phút sau đó tiếp
3
tục đi với vận tốc 45 km/giờ để tới B kịp giờ đã định Tính quãng đường từ A đến B?
v = 35 Km/giờ
20 phút Giải
v = 45 Km/giờ
Tỉ số giữa vận tốc định đi và thực đi là 35 = 7 Trên cùng một quãng đường
vận tốc và thời gian là hai đại lượng tỉ lệ nghịch Vậy tỉ số giữa thời gian định đi
7
Ta có sơ đồ:
Thời gian định đi:
? phút Thời gian thực đi là:
20 : (9 - 7) 7 = 70 (phút)
7 Quãng đường từ A đến C là:
45 76 = 52,5 (km)
Quãng đường AB dài là:
52,5 : 2 3 = 78,75 (km)
Đáp số: 78,75 km
Trang 8Ví dụ 3: Một người đi xe máy từ A sau khi đi 1 giờ người ấy giảm tốc độ bằng 53 vận tốc ban đầu thì đến B chậm hai giờ Nếu người ấy đi thêm 50 km nữa
sau đó mới giảm vận tốc như trên thì tới B chậm 1 giờ 20 phút Tính quãng đường
từ A đến B? Cách giải:
- Hướng dẫn học sinh tóm tắt bài toán dưới dạng sơ đồ đoạn thẳng:
1 giờ
A
Với bài toán này tôi đã hướng dẫn học sinh nhận dạng và đưa về dạng toán điển hình như sau:
+
Tỉ số giữa vận tốc thực đi và vận tốc định đi trên quãng đường CD là 53 +
Tỉ số giữa thời gian thực đi và thời gian định đi là: 53
+
Hiệu giữa thời gian định đi và thực đi trên quãng đường CD là:
2 giờ - 1 giờ 20 phút = 40 phút
- Xác định dạng toán điển hình rồi giải toán: Ở bài toán này ta đã biết tỉ số hai
thời gian là 53 , hiệu giữa hai thời gian là 40 phút Đây chính là dạng toán điển
hình “Tìm hai số khi biết hiệu và tỉ số của 2 số đó”. Học sinh sẽ dễ dàng giải được bài toán này như sau:
Thời gian thực đi:
Thời gian định đi: 40 phút
? phút Thời gian thực đi trên quãng đường là:
40 : (5 – 3) 5 = 100 (phút)
100 phút = 5 giờ
3
Thời gian định đi là: 100phút – 40phút = 60 phút
60 phút = 1 giờ Vận tốc người ấy định đi là: 50 : 1 = 50 (km/giờ)
Theo đề bài ta có tỉ số giữa vận tốc thực đi và vận tốc định đi trên quãng đường CB là 53
Tỉ số giữa thời gian thực đi và thời gian định đi là: 53
Ta có sơ đồ: Thời gian thực đi:
? giờ
Thời gian người ấy định đi trên quãng đường CB là:
2 : (5 – 3) 3 = 3 (giờ) Quãng đường AB dài là: 50 1 + 50 3 = 200 (km)
8
Trang 9Đáp số: 200 (km)
* Dạng 2: Toán về hai chuyển động cùng chiều
Sau khi học sinh được làm quen với 3 đại lượng: vận tốc, quãng đường, thời gian Học sinh biết cách tính một trong 3 đại lượng khi biết 2 đại lượng còn lại
Sách giáo khoa có cùng chiều đuổi nhau ở 2 tiết luyện tập chung (Bài 1 – T144);
Khi hướng dẫn học sinh giải bài toán này tôi đã giúp học sinh giúp học sinh rút ra nhận xét quan trọng như sau:
Hai động tử chuyển động cùng chiều với vận tốc v1 và v2 (v1 > v2), cùng xuất phát một lúc, ở cách nhau một đoạn đường s thì thời gian để chúng gặp nhau là:
tgn = s : (v1 - v2) ( tgn : Thời gian để 2 động tử gặp nhau)
- Loại 1: Hai động tử chuyển động trên cùng một quãng đường, khởi
hành cùng một lúc
a) Ví dụ: Lúc 7 giờ sáng một ô tô khởi hành từ A với vận tốc 60 km/giờ đi về phía
B Cùng thời điểm đó tại một điểm C (trên đường từ A đến B và cách A 25 km) một người đi xe máy với vận tốc 45 km/giờ về phía B Hỏi: Lúc mấy giờ thì hai xe gặp nhau? Chỗ gặp nhau cách nhau bao xa Biết rằng quãng đường AB dài 120 km
Đối với các bài toán loại toán này cần hướng dẫn học sinh nhận dạng được
bài toán rồi vận dụng công thức suy luận được rút ra ở trên để giải Tôi đã hướng dẫn học sinh nhận dạng bằng cách:
+ Xác định xem bài toán có mấy chuyển động
+ Biểu diễn các chuyển động trên sơ đồ đoạn thẳng
+ Xét xem các động tử đó chuyển động cùng chiều hay ngược
chiều + Vận dụng công thức để tính
b)Bài tập vận dụng:
Bài 1: Quãng đường AB dài 180 km Một ô tô đi từ A đến B với vận tốc 54
km/giờ, cùng lúc đó một xe máy đi từ B đến A với vận tốc 36 km/giờ Hỏi kể từ lúc bắt đầu đi, sau mấy giờ ô tô gặp xe máy ?
Bài 2: Quãng đường AB dài 276 km Hai ô tô khởi hành cùng một lúc, một
xe đi từ A đến B với vận tốc 42 km/giờ, một xe đi từ B đến A với vận tốc 50 km/giờ Hỏi kể từ lúc bắt đầu đi, sau mấy giờ hai ô tô gặp nhau ?
Bài 3: Một ô tô và một xe máy khởi hành cùng một lúc và đi ngược chiều
nhau Ô tô đi từ A với vận tốc 48,5 km/giờ, xe máy đi từ B với vận tốc 33,5 km/giờ Sau 1 giờ 30 phút ô tô và xe máy gặp nhau tại C Hỏi quãng đường AB dài bao nhiêu km?
- Loại 2: Hai động tử chuyển động trên cùng một quãng đường, khởi
hành không cùng một lúc.
a) Ví dụ: Lúc 8 giờ sáng, một người đi xe đạp từ A với vận tốc 15 km/giờ về
phía B 40 phút sau một người đi xe máy với vận tốc 35 km/giờ đuổi theo người đi
xe đạp Hỏi:
Trang 102 xe gặp nhau lúc mấy giờ?
Chỗ gặp nhau cách nhau bao xa? Biết rằng quãng đường AB dài 20 km
Đối với loại toán này cần hướng dẫn học sinh phân tích đề bài và nhận dạng toán như sau:
1) Xác định xem bài toán có mấy chuyển động.
2) Biểu diễn các chuyển động trên sơ đồ đoạn thẳng.
3) Xác định thời gian xuất phát của các động tử và thuộc loại chuyển động cùng chiều hay ngược chiều (ở ví dụ này thời gian chuyển động không cùng một lúc, và là chuyển động cùng chiều nhau)
4) Chuyển bài toán về loại toán 2 động tử chuyển động xuất phát cùng một lúc (ở ví dụ này đưa về cùng thời điểm xuất phát của động tử chuyển động sau.
Từ đó tính được khoảng cách giữa 2 xe lúc 8 giờ 40 phút)
b) Bài tập vận dụng:
Bài 1: Một người đi xe đạp từ A đến B với vận tốc 12 km/giờ Sau 3 giờ một
xe máy cũng đi từ A đến B với vận tốc 36km/giờ Hỏi kể từ lúc xe máy bắt đầu đi, sau bao lâu xe máy đuổi kịp xe đạp?
Bài 2: Một xe máy đi từ A lúc 8 giờ 37 phút với vận tốc 36 km/giờ Đến 11
giờ 7 phút một ô tô cũng đi từ A đuổi theo xe máy với vận tốc 54 km/giờ Hỏi ô tô đuổi kịp xe máy lúc mấy giờ?
Bài 3: Lúc 6 giờ, một ô tô chở hàng đi từ A với vận tốc 45 km/giờ Đến 8
giờ, một ô tô du lịch cũng đi từ A với vận tốc 60 km/giờ và đi cùng chiều với ô tô chở hàng Hỏi đến mấy giờ thì ô tô du lịch đuổi kịp ô tô chở hàng?
* Dạng 3: Toán về chuyển động ngược chiều
SGK giới thiệu bài toán về 2 động tử chuyển động ngược chiều gặp nhau
Bài 1 – trang 145).
Khi hướng dẫn học sinh giải bài toán này tôi đã giúp học sinh rút ra nhận xét quan trọng như sau:
- Hai động tử chuyển động ngược chiều với vận tốc v1 và v2, cùng xuất phát một lúc, ở cách nhau một đoạn s thì thời gian để chúng gặp nhau là:
tgn = s : (v1 + v2) ( tgn : Thời gian để 2 động tử gặp nhau)
Đối với dạng toán về hai chuyển động ngược chiều, tôi chia thành các trường
Trường hợp 1:
Nếu tại cùng một thời điểm vật thứ nhất xuất phát từ A với vận tốc V1 đi về phía
B Vật thứ hai xuất phát từ B với vận tốc V2 đi về phía A thì thời gian để hai vật chuyển động đến chỗ gặp nhau trên đường đi được xác định bởi công thức: t = s :
(v1 + v2)
10