TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA VẬT LÝ CÔNG THỊ KHÁNH HUYỀN CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG VÀ ỨNG DỤNG TRONG GIẢI CÁC BÀI TOÁN DAO ĐỘNG Chuyên ngành: Vật lý đại cương KHÓA
Trang 1TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA VẬT LÝ
CÔNG THỊ KHÁNH HUYỀN
CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG
VÀ ỨNG DỤNG TRONG GIẢI CÁC BÀI TOÁN DAO ĐỘNG
Chuyên ngành: Vật lý đại cương
KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC
HÀ NỘI, 2018
Trang 2TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
KHOA VẬT LÝ
CÔNG THỊ KHÁNH HUYỀN
CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG
VÀ ỨNG DỤNG TRONG GIẢI CÁC BÀI TOÁN DAO ĐỘNG
Chuyên ngành: Vật lý đại cương
KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC
Người hướng dẫn khoa học
PGS.TS LÊ ĐÌNH TRỌNG
Trang 3LỜI CẢM ƠN
Lời đầu tiên em xin được bày tỏ lòng biết ơn sâu sắc tới thầy giáo – PGS.TS Lê Đình Trọng người đã hướng dẫn, tận tình chỉ bảo, giúp đỡ em trong suốt quá trình học tập cũng như nghiên cứu để hoàn thành đề tài khóa luận này
Em xin chân thành cảm ơn các quý thầy cô giáo khoa Vật lý trường Đại học sư phạm Hà Nội 2 đã giúp đỡ, tạo điều kiện cho em trong suốt thời gian thực hiện khóa luận này
Trong quá trình nghiên cứu em đã hết sức cố gắng và nỗ lực để thực hiện đề tài một cách hoàn thiện nhất Song do mới làm quen với công tác nghiên cứu khoa học nên không tránh khỏi một vài thiếu sót Em rất mong nhận được sự góp ý của các thầy cô giáo và các bạn đọc để khóa luận này được hoàn thiện hơn
Em xin chân thành cảm ơn!
Hà Nội, ngày… tháng 5 năm 2018
Sinh viên
Công Thị Khánh Huyền
Trang 4LỜI CAM ĐOAN
Tôi xin cam đoan Khóa luận xét tốt nghiệp với đề tài “Các phương pháp biểu
diễn dao động và ứng dụng trong giải các bài toán dao động” được hoàn thành với
sự cố gắng của bản thân cùng với sự giúp đỡ tận tình của thầy giáo PGS.TS Lê Đình Trọng, tôi xin cam đoan khóa luận này không trùng khớp với kết quả của một công trình nghiên cứu nào khác đã được công bố
Trong quá trình thực hiện khóa luận, tôi có tham khảo những thành tựu của các nhà nhà nghiên cứu đi trước với sự trân trọng và biết ơn sâu sắc
Hà Nội, ngày… tháng 5 năm 2018
Sinh viên
Công Thị Khánh Huyền
Trang 5MỤC LỤC
MỞ ĐẦU 1
1 L Ý DO CHỌN ĐỀ TÀI 1
2 M ỤC ĐÍCH NGHIÊN CỨU 1
3 Đ ỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU 2
4 N HIỆM VỤ NGHIÊN CỨU 2
5 P HƯƠNG PHÁP NGHIÊN CỨU 2
6 Đ ÓNG GÓP CỦA ĐỀ TÀI 2
NỘI DUNG 3
CHƯƠNG 1 CƠ SỞ LÝ THUYẾT 3
1.1 D AO ĐỘNG 3
1.1.1 Một số khái niệm tổng quát về dao động 3
1.1.2 Dao động điều hòa 3
1.2 C ÁC HỆ DAO ĐỘNG 5
1.2.1 Hệ dao động điều hòa 5
1.2.2 Hệ dao động riêng tắt dần 9
1.2.3 Hệ dao động riêng duy trì 11
1.2.4 Hệ dao động cưỡng bức 11
1.3 C ÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG 12
1.3.1 Phương pháp lượng giác 12
1.3.2 Phương pháp hình học 12
1.3.3 Phương pháp số phức 13
CHƯƠNG 2: VẬN DỤNG CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG VÀO GIẢI BÀI TOÁN DAO ĐỘNG 15
2.1 B ÀI TOÁN TỔNG HỢP HAI DAO ĐỘNG CÙNG TẦN SỐ 15
2.1.1 Hai dao động cùng phương, cùng tần số nhưng biên độ và pha ban đầu khác nhau: 15 2.1.2 Hai dao động cùng tần số, phương vuông góc nhau, biên độ và pha
Trang 6ban đầu khác nhau 27
2.2 B ÀI TOÁN TỔNG HỢP HAI DAO ĐỘNG KHÁC TẦN SỐ 30
2.2.1 Tổng hợp hai dao động điều hòa cùng phương, tần số hơi khác nhau (hiện tượng phách) 31 2.2.2 Tổng hợp hai dao động có phương vuông góc nhau, tần số bội nguyên lần 35
KẾT LUẬN 37 TÀI TIỆU THAM KHẢO 38
Trang 7MỞ ĐẦU
1 Lý do chọn đề tài
Dao động học là một trong những phần kiến thức rất quan trọng trong vật lý nói riêng cũng như trong khoa học kỹ thuật và đời sống nói chung Kiến thức về dao động
là những nội dung lớn trong chương trình vật lý lớp 12, nó chiếm một lượng lớn trong
hệ thống kiến thức thi THPT Quốc gia, đồng thời nó là học phần không thể thiếu của sinh viên khoa Vật lý, do vậy tầm quan trọng của nó càng được chú trọng Không những vậy, hệ thống bài tập về dao đông vô cùng phong phú cả về các dạng lẫn cách biểu diễn, phương pháp giải các bài tập
Khi nghiên cứu dao động, nhiều phương pháp biểu diễn dao động có thể được
sử dụng như: phương pháp lượng giác, phương pháp hình học, phương pháp số phức Mỗi phương pháp có những ưu điểm và hạn chế riêng Để giải các bài toán dao động nhanh gọn, hiệu quả, phù hợp với xu thế đổi mới của ngành giáo dục là giảng dạy và kiểm tra đánh giá theo hướng trắc nghiệm khách quan, đòi hỏi học sinh bên cạnh nắm chắc kiến thức cần phải có phản ứng nhanh đối với các dạng bài toán thì việc hiểu rõ
và vận dụng tốt các phương pháp biểu diễn dao động vào giải các bài toán dao động
cụ thể là rất cần thiết
Qua quá trình học tập, nghiên cứu vật lý ở đại học, tìm hiểu những phương pháp giải bài tập vật lý hiệu quả và đặc biệt ở phần dao động, thì tôi cho rằng để giải bài toán nhanh gọn, hiệu quả thì cần phải chọn phương pháp phù hợp nhất với từng trường hợp bài toán cụ thể Bên cạnh đó, để có cái nhìn tổng quan hơn về dao động thì chúng
ta cần khai thác một vấn đề theo nhiều khía cạnh Bằng những trải nghiệm thực tế của
bản thân ở trường THPT và xuất phát từ nhu cầu thực tiễn, tôi chọn đề tài nghiên cứu:
“Các phương pháp biểu diễn dao động và ứng dụng trong giải các bài toán dao động” làm đề tài khóa luận xét tốt nghiệp đại học của mình
2 Mục đích nghiên cứu
Nghiên cứu các phương pháp biểu diễn dao động từ đó làm nổi bật ưu và nhược điểm của từng phương pháp và ứng dụng trong giải các bài toán dao động
Trang 83 Đối tượng và phạm vi nghiên cứu
- Đối tượng: Các phương pháp biểu diễn dao động: phương pháp lượng giác, phương pháp hình học, phương pháp số phức
- Phạm vi nghiên cứu: Các phương pháp biểu diễn dao động và ứng dụng các phương pháp biểu diễn dao động trong việc giải các bài toán dao động
4 Nhiệm vụ nghiên cứu
- Nghiên cứu cơ sở lý thuyết của các phương pháp biểu diễn dao động: phương pháp lượng giác, phương pháp hình học, phương pháp số phức
- Tổng hợp kiến thức và hệ thống bài tập dao động
- Trên cơ sở kiến thức toán học đã được trang bị ở cấp học phổ thông và đại học
sư phạm vật lý, qua việc vận dụng từng phương pháp, chỉ ra ưu và hạn chế và đề xuất việc vận dụng từng phương pháp vào giải các dạng bài toán dao động sao cho phù hợp
5 Phương pháp nghiên cứu
Phương pháp nghiên cứu chủ đạo là lý thuyết:
- Nghiên cứu, phân tích, tổng hợp các tài liệu có liên quan đến dao động và các phương pháp biểu diễn dao động
- Vận dụng các phương pháp biểu diễn dao động trong nghiên cứu dao động trên cơ sở đó phân tích, tổng hợp đưa ra những nhận xét, đánh giá một cách tổng quát
Trang 9NỘI DUNG
Chương 1 CƠ SỞ LÝ THUYẾT
1.1 Dao động
1.1.1 Một số khái niệm tổng quát về dao động
Hiện tượng tuần hoàn: Trong thiên nhiên, trong đời sống, trong khoa học và kỹ
thuật có nhiều hiện tượng diễn ra lặp đi lặp lại như cũ sau những khoảng thời gian nhất định đó là những hiện tượng tuần hoàn Ví dụ: nhịp tim của động vật, các mùa trong năm,
Quá trình tuần hoàn là những quá trình liên tục trong đó sự biến thiên của một
số đại lượng nào đó đặc trưng cho quá trình biến đổi như vận tốc, gia tốc, áp suất, nhiệt độ, khoảng cách,… được lặp lại như cũ sau những khoảng thời gian xác định
Dao động: Trong một số quá trình tuần hoàn những đại lượng biến thiên đặc
trưng cho quá trình chỉ thay đổi giá trị xung quanh một giá trị trung bình được gọi là một dao động tuần hoàn Mỗi lần các đại lượng biến thiên của quá trình lặp lại những giá trị như cũ ta nói rằng nó đã thực hiện được một dao động
Chu kì dao động: Chu kì dao động (T) là khoảng thời gian xác định không đổi
để quá trình biến đổi thực hiện được một dao động
Nếu f (t+T) =f (t) là một đại lượng biến đổi tuần hoàn theo thời gian thì với chu kì
T ta luôn có:
f (t+T) =f (t) Chúng ta gặp những dao động tuần hoàn không những trong quá trình cơ học
mà ngay cả trong các quá trình điện học, nhiệt học, quang học, quá trình diễn ra trong các nguyên tử hạt nhân,…
1.1.2 Dao động điều hòa
1.1.2.1 Khái niệm dao động điều hòa
Dao động điều hòa là loại dao động đơn giản nhất và quan trọng nhất Các dao động trong tự nhiên và trong kĩ thuật thường có tính chất rất gần với dao động điều
Trang 10hòa và một dao động bất kỳ đều có thể được biểu diễn như là tổng hợp của các dao động điều hòa
Một dao động tuần hoàn mà các đại lượng biến đổi đều được biểu diễn bởi các phương trình dạng sin hoặc cosin được gọi là dao động điều hòa
1.1.2.2 Phương trình động học dao động điều hòa
Dao động điều hòa được biểu diễn bởi phương trình:
• Lượng ( t + được gọi là pha của dao động điều hòa, cho phép xác định )
li độ, vận tốc, gia tốc của chất điểm t bất kì
• Lượng α được gọi là pha ban đầu của dao động điều hòa, cho phép xác định
li độ, vận tốc, gia tốc tại thời điểm ban đầu t = 0 (trạng thái ban đầu của dao động)
• Lượng T 2
=
là chu kì của dao động điều hòa Trong dao động điều hòa, li
độ, vận tốc, gia tốc đều biến thiên với một chu kì chung T 2
=
Nghịch đảo của chu kì T, được gọi là tần số của dao động điều hòa Thứ nguyên của tần số:
[] = T-1 Đơn vị của tần số (trong hệ SI) là Hec (Hz): 1Hz = 1 s-1
Trang 11thay đổi điều kiện ban đầu ,
2
= − Hai cách biểu diễn đó là tương đương nhau
1.2 Các hệ dao động
1.2.1 Hệ dao động điều hòa
Ví dụ một số hệ dao động điều hòa: Hệ dao động của con lắc lò xo chuyển động không ma sát trên mặt phẳng nằm ngang, hệ dao động của con lắc lò xo treo thẳng đứng, dao động của con lắc vật lý, hoặc trong mạch điện lý tưởng không có điện trở,…
1.2.1.1 Lực hồi phục
Lực hồi phục là lực có độ lớn tỷ lệ thuận với độ dời của vật khỏi vị trí cân bằng
và luôn lướng về vị trí cân bằng của vật
1.2.1.2 Phương trình động lực học
Xét chuyển động của một vật theo phương trục x, chịu tác dụng của lực hồi phục
Fhp = -kx.Phương trình Định luật II Newton cho chuyển động của vật:
x + = x 0 (1.2) (1.2) là phương trình vi phân tuyến tính cấp hai có hệ số là hằng số Nghiệm tổng quát của (1.2) có dạng:
x=Acos( t + ), (1.3a) hoặc:
2
(1.3b)
Trang 12Nghiệm này biểu diễn một dao động điều hòa
Giá trị của biên độ A và pha ban đầu được xác định dựa vào điều kiện ban đầu của bài toán
Sau đây, ta sẽ đi xét một vài ví dụ cụ thể:
Trường hợp 1: Xét trường hợp một vật nặng
khối lượng m treo dưới một lò xo có hệ số cứng k
và khối lượng không đáng kể (Hình 1.1)
Chọn gốc tọa độ tại vị trí cân bằng (VTCB)
của vật, trục Ox hướng từ trên xuống dưới Ở
VTCB, trọng lực P tác dụng lên vật cân bằng với
lực đàn hồi F0 của lò xo Ta có:
0
P+F =0, suy ra:
P−F = =0 P F = k l,
với l là độ biến dạng của lò xo khi vật ở VTCB
Kéo vật xuống phía dưới một đoạn rồi buông
ra, vật sẽ dao động xung quanh vị trí cân bằng Xét chuyển động của vật, tại vị trí bất
kỳ có tọa độ (ly độ) x, khí đó hình chiếu hợp lực tác dụng lên vật trên trục Ox là:
Như vậy, chuyển động của con lắc lò xo là một dao động điều hòa với tần số vòng
0
k m
= (rad/s) (1.5)
Trường hợp 2: Xét con lắc toán học (Hình 1.2), các lực tác dụng lên con lắc
gồm trọng lực và lực căng Áp dụng ĐL II Newton, ta có:
Hình 1.1: Con lắc lò xo
Trang 13P+ =T ma Chiếu lên phương tiếp tuyến với quỹ đạo chuyển động ta được:
= , (1.7)
ta nhận được:
2 0
s + = s 0 (1.8) Phương trình này giống với phương trình (1.2) Vậy, dao động của con lắc toán học trong trường hợp góc lệch nhỏ là dao động điều hòa
Trường hợp 3: con lắc vật lý (Hình 1.3), áp dụng ĐLII Newton ta có:
M=md = g IChiếu lên chiều dương là chiều hợp với chiều tăng của
góc lệch theo quy tắc nắm tay phải, ta được
0 I
+ = (1.9) Phương trình (1.9) có dạng giống với phương trình (1.2) Ta kết luận dao động của
Hình 1.2: Con lắc toán học
Hình 1.3: Con lắc vật lý
Trang 14con lắc vật lý là dao động điều hòa với tần số góc
0
mgd I
= (rad/s) (1.10)
Trường hợp 4: Trong dao động điện, ta xét mạch LC (Hình 1.4)
Dòng điện trong mạch liên hệ với điện tích trên các bản tụ điện bởi biểu thức:
dq i dt
= Dòng điện biến thiên tạo suất diện động cảm ứng E
trong cuộn dây là:
2 2
C + dt = + LC = (1.11) Đây là phương trình điện động lực học của dao động điện trong mạch LC Phương trình (1.11) có dạng giống phương trình (1.2) ta kết luận dao động trong mạch lý tưởng không có điện trở là dao động điều hòa với tần số góc
0
1LC
= (1.12)
1.2.1.3 Nhận xét
Ở trên ta đã xét dao động điện trong mạch LC và dao động cơ điều hòa bằng việc giải phương trình động lực học Có thể thấy hiện tượng dao động của con lắc lò
xo, con lắc toán học, con lắc vật lý hay sự biến đổi của các đại lượng điện trong mạch
LC bị chi phối bới những định luật vật lý khác nhau nhưng chúng tuân theo một phương trình vi phân Nhìn chung từ phương trình của các dao động này đều cho ta
Hình 1.4: Mạch LC
Trang 15nghiệm tổng quát có dạng là một dao động điều hòa:
0
x=A cos( + t ) Trong đó tần số vòng 0 khác nhau ứng với các trường hợp dao động khác nhau
Vậy để một hệ vật tham gia chuyển động là một dao động điều hòa thì hệ phải chịu tác dụng của một lực hồi phục Lực hồi phục có thể là lực đàn hồi hoặc lực chuẩn đàn hồi
Đặc điểm:
Khi chuyển động của vật là một dao động điều hòa thì biên độ dao động và tần
số dao động không đổi theo thời gian
A = const và
0
2 T= = const
Nguyên nhân: Đối với dao động cơ, do sức cản môi trường dẫn đến sự tổn hao năng cơ năng; Đối với dao động điện, do có mặt của điện trở gây ra hiệu ứng Jun- Lenxơ làm hao hụt năng lượng điện từ
- Đặc điểm của hệ dao động riêng tắt dần:
Trang 16Biên độ dao động sẽ giảm dần theo thời gian và chu kỳ của dao động tắt dần sẽ lớn hơn chu kỳ dao động điều hòa
Phương trình dao động của hệ dao động riêng tắt dần là:
t 0
x=A e− cos( t + ) Chu kỳ dao động tắt dần:
0
Trong đó: : tần số dao động riêng tắt dần,
0tần số dao động của vật khi dao động điều hòa,
là hệ số tắt dần của dao động
Hình 1.6: Sự phụ thuộc li độ dao động tắt dần vào thời gian
Trường hợp 1: Đối với dao động cơ tắt dần 0 k
m
2m
= với r: hệ số cản của môi trường
Trường hợp 2: Đối với dao động điện tắt dần
và chu kỳ dao động không chỉ phụ thuộc vào
các đại lượng đặc trưng cho hệ mà còn phụ thuộc vào các đại lượng đặc trưng cho sự
Hình 1.7: Mạch dao động RLC
Trang 17tiêu hao năng lượng dao động của hệ như hệ số cản của môi trường, điện trở của mạch,… Hệ số tắt dần càng lớn và chu kì của dao động càng lớn, dao động tắt dần càng nhanh
1.2.3 Hệ dao động riêng duy trì
Như đã tìm hiểu ở trên, để dao động không bị tắt dần theo thời gian, ta cần bù vào phần năng lượng tiêu hao, người ta bổ sung thêm năng lượng bên ngoài vào cho
hệ để mà không làm thay đổi tần số dao động Khi ấy hệ được gọi là hệ dao động riêng duy trì
Ví dụ: muốn duy trì dao động của con lắc đồng hồ, cần có năng lượng bù thêm của dây cót đồng hồ, con lắc dừng lại khi hết dây cót
1.2.4 Hệ dao động cưỡng bức
Mặt khác, muốn duy trì dao động của hệ để không bị tắt dần, ta cung cấp năng lượng bằng việc tác dụng vào hệ một lực F biến thiên tuần hoàn theo thời gian, hoặc đối với mạch điện thì ta mắc vào mạch một nguồn điện xoay chiều Khi đó dao động của hệ sẽ không tắt dần nhưng tần số dao động của hệ bị thay đổi Hệ khi ấy được gọi
là hệ dao động cưỡng bức
Trong dao động cưỡng bức, pha ban đầu và biên độ dao động không phụ thuộc vào điều kiện ban đầu mà phụ thuộc vào mối tương quan giữa tần số của lực cưỡng bức và tần số dao động riêng của hệ Cụ thể, hệ sẽ dao động với tần số bằng tần số của ngoại lực tác dụng Đây là đặc điểm để phân biệt dao động cưỡng bức với dao động riêng duy trì
Ví dụ:
Đối với dao động cơ ta tác dụng một ngoại lực biến thiên tuần hoàn, khi đó hệ
sẽ dao động với tần số bằng tần số ngoại lực
Đối với dao động điện ta đặt vào hệ một nguồn điện xoay chiều, khi đó cường
độ dòng điện, hiệu điện thế sẽ dao động cưỡng bức với tần số bằng tần số của nguồn xoay chiều
Hệ quả của dao động cưỡng bức là gây ra hiện tượng cộng hưởng Hiện tượng
cộng hưởng là hiện tượng biên độ dao động đạt giá trị cực đại
Trang 18Hiện tượng cộng hưởng có thể xảy ra trong dao động cơ, dao động điện từ,… Trong thực tế, hiện tượng cộng hưởng vừa có lợi vừa có hại, tuy nhiên nó được ứng dụng rất rộng rãi trong cuộc sống
1.3 Các phương pháp biểu diễn dao động
Để biểu diễn dao động tuần hoàn tùy từng trường hợp cụ thể mà chúng ta có thể sử dụng một trong ba phương pháp sau: phương pháp lượng giác, phương pháp
số phức, phương pháp hình học
1.3.1 Phương pháp lượng giác
Phương pháp lượng giác là phương pháp biểu diễn dao động tuần hoàn với các phương trình lượng giác dạng sin hoặc cosin mà trên đây ta đã sử dụng:
x=Asin( t + ), hoặc
x=Acos( t + ) Gải sử một vật tham gia đồng thời hai dao động điều hòa có cùng phương, biên
độ và tần số khác nhau có phương trình dao động lần lượt là:
x =A cos( + t )
x =A cos( + t )Phương trình dao động tổng hợp hai dao động trên là:
Phương pháp hình học (hay phương pháp Frexnen hay phương pháp giản đồ
véctơ quay) áp dụng tính chất: Vết chiếu P ’ của một chất điểm P chuyển động tròn
Trang 19đều trên một đường kính là một dao động điều hòa
Trên quỹ đạo tròn, ta chọn điểm C bất kì
làm gốc Chọn trục Ox có gốc tại tâm quỹ đạo
chuyển động của P và đi qua điểm C (Hình 1.8)
Từ O đặt một vectơ A tạo với trục Ox một
góc bằng pha ban đầu, có độ dài tỉ lệ với biên
độ A của dao động Ađược gọi là vectơ biên độ
Cho vectơ biên độ quay quanh O theo chiều
dương (ngược chiều kim đồng hồ) với vận tốc
góc bằng Vết chiếu của điểm đầu mút vectơ biên độ A trên trục Ox sẽ dao động xung quanh với điểm O với biên độ bằng độ dài của vectơ biên độ, với tần số bằng vận tốc quay của vectơ biên độ, và với pha ban đầu bằng góc tạo bởi vectơ biên độ với trục Ox tại thời điểm ban đầu theo phương trình:
x=Acos( t + ) Như vậy, một dao động điều hòa có thể được biểu diễn bằng một vectơ có độ dài bằng biên độ dao động, tại thời điểm bắt đầu hướng của vectơ hợp với trục Ox một góc bằng pha ban đầu của dao động Chính vì lý do như vậy mà pha ban đầu còn được gọi là góc pha và còn được gọi là tần số vòng
1.3.3 Phương pháp số phức
Một số phức a có thể được biểu diễn dưới dạng:
a Ae A i A iA Trong đó:
a = (A cos ) +(A sin ) là mô đun của số phức a
được gọi là argumen của số phức a, thỏa mãn điều kiện a= a(cos+isin )Một dao động điều hòa có thể biểu diễn dưới dạng x=Acos( t + )có thể được
Hình 1.8
Trang 20biểu diễn bởi phần thực của số phức = i( t+ )
c= + , a bthì phần thực của số phức c biểu diễn tổng hợp của hai dao động nói trên
Trong trường hợp đặc biệt, tích một số phức i( t )
a=Ae + với số liên hợp phức của nó a* =Ae− +i( t )là:
* i( t ) i( t ) 2
a.a =Ae +.Ae− + =A Với A là biên độ dao động đó
Ở trên ta xét, dao động điều hòa được biểu diễn bởi phần thực hoặc phần ảo của
só phức, tuy nhiên khi xét dao động điều hòa được biểu diễn bởi cả phần thực và phần
ảo của số phức thì khi đó để thuận tiện, ta đưa vào khái niệm mặt phẳng phức
❖ Mặt phẳng phức
Giả sử trên mặt phẳng R2 cho một hệ tọa độ vuông góc xOy Như vậy mỗi điểm
M(x,y) R2 được xác định bởi hoành độ và tung độ của nó Điều này cho phép ta
lập được tương ứng một và chỉ một giữa các điểm của mặt phẳng R2 với các số phức
z C
Mặt phẳng R2 cùng với một tương ứng như vậy gọi là mặt phẳng phức
Như vậy một điểm M(x,y) R2 có thể coi là một số phức nếu đồng nhất nó với
z= +x i.y
Trang 21
Chương 2: VẬN DỤNG CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG
VÀO GIẢI BÀI TOÁN DAO ĐỘNG
2.1 Bài toán tổng hợp hai dao động cùng tần số
2.1.1 Hai dao động cùng phương, cùng tần số nhưng biên độ và pha ban đầu
Cách 1: Phương pháp lượng giác
Chuyển động của vật sẽ là tổng hợp của hai dao động:
Trang 22tiếp tục biến đổi thích hợp
i( t ) 2
1 2