Hàm số nghịch biến trên R.. Hàm số đồng biến trên R... Hỏi vận động viên ném được bao xa và cao nhất bao nhiêu feet ?kết quả làm tròn bốn chữ số thập phân A... C.Hàm số nghịch biến trên
Trang 1Trang 1/2 - Mã đề thi 132
SỞ GD-ĐT AN GIANG
TRƯỜNG THCS-THPT PHÚ TÂN
(Đề gồm có 2 trang)
ĐỀ KIỂM TRA 1 TIẾT Môn: Đại số 10 chương 1+2
Thời gian làm bài: 45 phút;
(14 câu trắc nghiệm và 3 câu tự luận)
Họ, tên thí sinh:
(Thí sinh không được sử dụng tài liệu)
I.Phần trắc nghiệm:(7,0 điểm)
Câu 1: Tìm tọa độ giao điểm giữa 2 đường thẳng d y x1: 3 và d2:y x 3
A 0;3 B 3;0 C 0; 3 D 3;0
Câu 2: Hàm số y2x4có đồ thị là đường thẳng .Khẳng định nào sau đây là sai?
A cắt trục tung tại B(0; 4). B cắt trục hoành tại A(2;0)
C Hàm số nghịch biến trên R D Hàm số đồng biến trên R
Câu 3: Cho hai tập hợp A1;2003;2018; 2019 vàB0;2003; 2018; 2020 Tìm tập hợp A B
A A B 0; 2020 B A B 1; 2019
C A B 2003; 2018 D A B 0;1; 2003; 2018; 2019; 2020
Câu 4: Cho tập A 2;5 vàB0;.Tìm A B
A A B 0;5 B A B 2;0 C A B 2; D A B 5;
Câu 5: Hàm số nào sau đây là hàm số chẵn?
Câu 6: Xác định hàm số bậc haiy ax 2 x cbiết đồ thị đi qua A(1; 2) vàB(2;3)
A y3x2 x 4 B y2x2 x 3 C y x 23x5 D y x2 4x3
Câu 7: Bảng biến thiên của hàm số y 2x24x1 là bảng nào sau đây?
A
2
1
x
y
1
3
x y
C
2 1
x
y
1 3
x y
Câu 8: Tìm tham số mđể hàm số y (1 m x) 3nghịch biến trênR
Câu 9: Cho hai tập hợpA1; 4 vàB 2;8 Tìm A B\
A A B\ 2; 4 B A B\ 4;8 C A B\ 1;8 D A B\ 1; 2
Câu 10: Tìm trục đối xứng của (P): y x 24x3
Câu 11: Tìm tập xác điịnh của hàm số 2
1
y x
Trang 2A D R \ 0 B D R \ 1 C D R D D1;.
Câu 12: Một quả tạ được ném lên từ một vận động viên ném tạ chuyển động với phương trình
2
y = - x + +x trong đó x là độ xa và y là độ cao (tính bằng feet) Hỏi vận động viên ném được bao xa và cao nhất bao nhiêu feet ?(kết quả làm tròn bốn chữ số thập phân)
A x =20, 7469 ; =15,8734y B x =15, 8734 ; =46, 4410.y
C x =51, 3582 ; =41, 5238.y D x =46, 4410 ; =15, 8734.y
Câu 13: Cho tập hợp Ax R x / 26x 8 0 Hãy viết lại tập hợp Abằng cách liệt kê các phần
tử
A A 4; 2 B A 2; 4 C A D A 2; 4
Câu 14: Tìm tham sốnđể đồ thị hàm sốy x 3n2đi qua A( 2;2).
2
3
n
II.Phần tự luận:(3,0 điểm)
Câu 1: Tìm tập xác định của hàm số: y 2x6
-
Câu 2: Xác định tọa độ đỉnh,giao điểm với trục tung,giao điểm với trục hoành của (P):
Câu 3: Tìm tham số mđể (P): y x 22x cắt đường thẳng y m tại hai điểm phân biệt
- HẾT -
Trang 3Trang 3/7 - Word Toan
BẢNG ĐÁP ÁN
LỜI GIẢI CHI TIẾT Câu 1 Tìm tọa độ giao điểm giữa hai đường thẳng d1:y và x 3 d2:y x 3
Lời giải Chọn A
Tọa độ giao điểm giữa hai đường thẳng d và 1 d là nghiệm của hệ: 2
Vậy, tọa độ giao điểm giữa hai đường thẳng d và 1 d là 2 (0;3)
Câu 2 Cho hàm số y2x4 có đồ thị là đường thẳng Khẳng định nào sau đây là sai?
A. cắt trục tung tại B(0; 4) B. cắt trục hoành tại A(2;0)
C.Hàm số nghịch biến trên D.Hàm số đồng biến trên
Lời giải Chọn C
Đồ thị hàm số là đường thẳng cắt trục tung tại điểm x 0 y4 A đúng
Đồ thị hàm số là đường thẳng cắt trục hoành tại điểm y 0 x2 B đúng
Hàm số y2x4 có a 20 hàm số đồng biến trên Suy ra, D đúng, C sai
Câu 3 Cho hai tập hợp A 1; 2003; 2018; 2019 và B 0; 2003; 2018; 2020 Tìm tập hợp AB
A. AB0; 2020 B AB1; 2019
C. AB2003; 2018 D. AB0;1; 2003; 2018; 2019; 2020
Lời giải Chọn C
Ta có AB2003; 2018
Câu 4 Cho tập A 2;5 và B 0; Tìm AB
A. AB0;5 B. AB 2; 0 C AB 2; D AB5;
Lời giải Chọn C
Trang 4Ta có AB 2; .
Câu 5 Hàm số nào sau đây là hàm số chẵn?
A. yx2 x 1 B. yx3 x C. yx2 1 D. y 2x
Lời giải Chọn C
yx không phải là hàm số chẵn, không phải là hàm số lẻ x
3
yx là hàm số lẻ x
2 1
yx là hàm số chẵn
2
y x không phải là hàm số chẵn, không phải là hàm số lẻ
Câu 6 Xác định hàm số bậc hai yax2 biết đồ thị đi qua x c A1; 2 và B2;3
A. y3x2 x 4 B. y2x2 x 3 C. yx23x 5 D. y x24x 3
Lời giải Chọn B
Gọi P :yax2 x c
A P a c
2;3 4 5 2
Giải hệ 1 và 2 ta được 2
3
a c
Vậy y2x2 x 3
Câu 7 Bảng biến thiên của hàm số y 2x24x là bảng nào sau đây? 1
Trang 5Trang 5/7 - Word Toan
Hàm số y 2x24x có 1 a , 2 b 4 1
2
b x a
Do a 0 nên hàm số đồng biến trên khoảng ;1 và nghịch biến trên khoảng 1;
Vì vậy bảng biến thiên trong câu D là của hàm số đã cho
Câu 8 Tìm tham số m để hàm số nghich biến trên ?
y m x
Lời giải Chọn B
Hàm số nghịch biến trên a 1 m0m1
Câu 9 Cho hai tập hợp A 1; 4 và B 2;8 Tìm A B \
A. A B \ 2; 4 B. A B \ 4;8 C. A B \ 1;8 D. A B \ 1; 2
Lời giải Chọn D
1; 4
A
2;8
B
\ 1; 2
A B
Câu 10 Tìm trục đối xứng của (P): y x24x 3
Lời giải Chọn A
Ta có: a1; b4; c 3 Trục đối xứng là: 4 2
b x a
Câu 11 Tìm tập xác định D của hàm số 2
1
y x
A. D \{0} B. D \ {1} C. D D. D [1;)
Lời giải
1
y x
xác định khi và chỉ khi x 1 0 x 1 Vậy tập xác định là D \ {1}
Câu 12 Một quả tạ được ném lên từ một vận động viên ném tạ chuyển động với phương trình
2
0, 0241 5, 5
y x x trong đó x là độ xa và y là độ cao (tính bằng feet) Hỏi vận động viên ném được bao xa và cao nhất bao nhiêu feet? (kết quả làm tròn bốn chữ số thập phân)
Trang 6A. x20, 7469;y15,8734 B. x15,8734;y46, 4410.
C. x51, 3582;y41, 5238 D. x46, 4410;y15,8734
Lời giải Chọn D
Gọi A là giao điểm có hoành độ dương của parabol ( )P : y 0, 0241x2 x 5, 5 với trục hoành và B là điểm cao nhất của đồ thị ( )P (như hình vẽ)
Bài toán quy về tìm hoành độ x của A và tung độ y của B
Phương trình hoành độ giao điểm của ( )P và trục hoành: 2
0, 0241x x 5,5 0
nghiệm, trong đó nghiệm dương là x 46, 4410
Vì B là đỉnh của ( )P nên B có hoành độ 5000
B
b x
a
, do đó B có tung độ 15,8734
A x x x Hãy viết lại tập hợp A bằng cách liệt kê các phần tử
A. A 4; 2 B. A 2; 4 C. A D. A 2; 4
Lời giải Chọn D
4
x
x
Vậy A 2; 4
Câu 14 Tìm tham số n để đồ thị hàm số y x 3n2 đi qua A 2; 2
2
Trang 7Trang 7/7 - Word Toan
Chọn B
Đồ thị hàm số y x 3n2 đi qua A 2; 2 khi 2 2 3n2n 2
Vậy n 2
Câu 1 (Tự luận) Tìm tập xác định của hàm số y 2x6
Lời giải
Hàm số xác định khi 2x 6 02x6x3
Vậy tập xác định làD3;
Câu 2 (Tự luận) Xác định tọa độ đỉnh, giao điểm với trục tung, giao điểm với trục hoành của
P yx x
Lời giải
Parabol có dạng 2
yax bx c với a1;b 1;c 6
Ta có: b24ac25
+ Tọa độ đỉnh:
1
25
b
a
a
;
+ Cắt trục tung tại tại điểm có hoành độ x A 0 y A 6A0; 6
+ Cắt trục hoành tại điểm có tung độ 0 2 6 0 2
3
x
x
B2;0 ; C3;0
Lời giải Câu 3 (Tự luận) Tìm tham số m để P :y x22xcắt đường thẳng ym tại hai điểm phân biệt
Lời giải
P cắt đường thẳng ym tại hai điểm phân biệt
2
2
có hai nghiệm phân biệt
2
có hai nghiệm phân biệt
Kết luận: m thì 1 P cắt đường thẳng ym tại hai điểm phân biệt