Giải bài toán bằng cách lập phương trình hoặc hệ phương trình Một ca nô xuôi dòng 78km và ngược dòng 44 km mất 5 giờ với vận tốc dự định.. Biết rằng, nếu ca nô xuôi dòng 13 km và ngược d
Trang 1TRƯỜNG THPT CHUYÊN
HÀ NỘI – AMSTERDAM
TỔ TOÁN – TIN
ĐỀ ÔN TẬP TỔNG HỢP PHÒNG DỊCH n-CoV
Năm học: 2019 – 2020 MÔN TOÁN LỚP 9 Thời gian làm bài: 120 phút
Đề số 1 Bài 1 (2,0 điểm)
Cho biểu thức: 2 2
x A
6 3
B
với x0, x 9.
1) Tính giá trị B khi x 4
2) Rút gọn biểu thức A
3) Tìm giá trị của x để 2 1
2
A
Bài 2 (2,0 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Một ca nô xuôi dòng 78km và ngược dòng 44 km mất 5 giờ với vận tốc dự định Biết rằng, nếu ca nô xuôi dòng 13 km và ngược dòng 11 km, trên cùng dòng sông đó, với cùng vận tốc dự định đó thì mất 1 giờ; vận tốc của dòng nước không đổi và thời gian để ca nô quay đầu là không đáng kể Tính vận tốc riêng của ca nô và vận tốc dòng nước
Bài 3 (2,0 điểm)
1) Cho phương trình x2m1x m 2 , với m là tham số m 2 0
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm trái dấu với mọi m
b) Gọi hai nghiệm của phương trình đã cho là x x1, 2 Tìm m để biểu thức
A
đạt giá trị lớn nhất
2) Cho hệ phương trình 1
x m y m
(m là tham số).
Tìm m để hệ phương trình đã cho có nghiệm duy nhất sao cho x y đạt giá trị nhỏ nhất Bài 4 (3,5 điểm)
Cho đường tròn tâm O , bán kính R , có hai đường kính AB và CD vuông góc với nhau Lấy điểm M bất kỳ thuộc đoạn OA ( M khác O A ) Tia , DM cắt lại đường tròn ( )O tại N 1) Chứng minh rằng bốn điểm O M N C cùng thuộc một đường tròn; , , ,
2) Chứng minh rằng khi M thay đổi trên đoạn OA, thì tích DM DN không đổi
3) Đường tròn tâm M bán kính MC cắt CA CB lần lượt tại , E F E F C, ( , ) Tính
CECF theo bán kính R
4) Nối B với N cắt OC tại P Xác định vị trí của điểm M trên đoạn OA sao cho
AM CP đạt giá trị nhỏ nhất
Bài 5 (0,5 điểm)
1) Xét hai số thực ,x y thỏa mãn điều kiện x2y và 3 x Tìm giá trị nhỏ nhất của biểu 0 thức
2
2
2
x y
x
2) Cho a b c, , thỏa mãn a2b2c21 Chứng minh rằng: 2 2 2 3
bc ca ab
- Hết -
Trang 2TRƯỜNG THPT CHUYÊN
HÀ NỘI – AMSTERDAM
Tổ Toán – Tin học
ĐỀ ÔN TẬP TỔNG HỢP TUẦN 3 THÁNG 2 NĂM 2020
Năm học 2019 – 2020 Môn: Toán 9 Thời gian làm bài: 120 phút Ngày 17/02/2020 Bài 1 Cho hai biểu thức 1 2
A
, 1
x B x
với x 0; x 1.
1) Tính giá trị biểu thức B khi x 4
2) Rút gọn biểu thức A
3) Tìm tất cả các giá trị của x để P A
B
nhận giá trị nguyên dương
Bài 2 Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Một phòng họp có 300 ghế ngồi, được xếp thành một số hàng có số ghế bằng nhau Buổi họp hôm
đó có 378 người đến dự họp nên ban tổ chức đã kê thêm 3 hàng ghế và mỗi hàng phải xếp thêm 1 ghế mới đủ chỗ ngồi Hỏi ban đầu phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế, biết rằng số hàng ghế ban đầu không vượt quá 20
Bài 3
1) Giải hệ phương trình
2 3
3
2 3
y x
y x
y
2) Trong mặt phẳng tọa độ Oxy cho parabol 1 2
( ) :
2
P y x và đường thẳng ( ) : d y 2 mx 4.
a) Chứng minh rằng ( ) d luôn cắt ( ) P tại hai điểm phân biệt với mọi giá trị của m
b) Gọi x x1, 2 là hoành độ các giao điểm của ( ) d và ( ) P Tìm số dương m để x1 2 x2 8.
Bài 4 Cho đường tròn tâm O có hai đường kính AB, CD vuông góc với nhau Gọi M là một điểm di động trên đoạn OB (M O B , ) Tia CM cắt BD tại P và đường tròn tại N ( N ) Gọi Q là giao điểm của C
AN và CD
1) Chứng minh rằng tứ giác DQPN nội tiếp và PQ AB
2) Chứng minh rằng ACQ ~ MAC và diện tích tứ giác ACMQ không đổi khi M thay đổi trên OB 3) Chứng minh rằng
2
4) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác CQN luôn nằm trên một đường thẳng cố định khi M thay đổi trên đoạn OB
Bài 5 Cho các số thực a b , không âm, thỏa mãn a b a 2 b
Tìm giá trị nhỏ nhất và lớn nhất của biểu thức P a 2b22(a1)(b 1) 8 4 a b
- Hết -
Trang 3TRƯỜNG THPT CHUYÊN ĐỀ ÔN TẬP TỔNG HỢP TUẦN 4 THÁNG 2 NĂM 2020
TỔ TOÁN – TIN HỌC Thời gian làm bài : 120 phút
Ngày 24/02/2020
Bài 1 Cho các biểu thức 1
1
x A
x
và
:
B
1) Tính giá trị của biểu thức A khi x 16.
2) Rút gọn biểu thức B
3) Tìm x để B A nhận giá trị nguyên
Bài 2 Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Trong một kì thi tuyển sinh vào THPT, hai trường A và B có tổng cộng 350 học sinh dự thi Kết quả hai trường đó có 338 học sinh trúng tuyển Theo thống kê, trường A có 97% số học sinh dự thi trúng tuyển và trường B có 96% số học sinh dự thi trúng tuyển Hỏi mỗi trường có bao nhiêu học sinh dự thi
Bài 3
1) Giải hệ phương trình:
2
| y 2 | 1
.
9
| 6 3 | 1
x x
y x
2) Cho parabol P y x : 2 và đường thẳng d : y mx 3
a) Chứng minh rằng d luôn cắt P tại hai điểm phân biệt với mọi giá trị của m
b) Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có tọa độ ( ; )x y1 1 và ( ; )x y2 2 sao cho y1 y2 11 4 x1 4 x2
Bài 4
Cho đường tròn O và đường thẳng d, không đi qua O, cắt đường tròn O tại hai điểm A và B phân biệt Trên d lấy điểm C nằm bên ngoài đường tròn sao cho CB CA Kẻ hai tiếp tuyến CM CN , với đường tròn O (M thuộc cung AB lớn) Gọi H là trung điểm AB Các đường thẳng OH và CN cắt nhau tại K 1) Chứng minh 5 điểm M, H, O, N, C cùng nằm trên một đường tròn
2) Các đường thẳng ON và AB cắt nhau tại J Chứng minh KN KC KH KO và KJ MN
3) Đoạn thẳng CO cắt đường tròn O tại I Chứng minh rằng I cách đều các đường thẳng CM, CN và MN 4) Vẽ đường thẳng qua O và song song với MN, tương ứng cắt các tia CM và CN tại E và F Tìm vị trí của C trên d sao cho diện tích tam giác CEF đạt giá trị nhỏ nhất
Bài 5 Cho các số dương a, b, c thỏa mãn abc2 Chứng minh rằng
a b c a b c b c a c a b - HẾT -