1. Trang chủ
  2. » Giáo Dục - Đào Tạo

SKKN rèn kỹ năng giải toán điển hình cho học sinh lớp 4

17 122 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 71 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Sáng kiến này do tôi nghiên cứu qua quá trình trực tiếp giảng dạy cho học sinh giỏi lớp 4, 5, sáng kiến có những điểm mới sau: Hướng dẫn học sinh giải các bài toán có tính chất chuẩn bị

Trang 1

1 PHẦN MỞ ĐẦU

1.1 Lý do chọn đề tài

Trong chương trình toán tiểu học, việc giải các bài toán chiếm một vị trí rất quan trọng Phần lớn các biểu tượng, khái niệm, quy tắc, tính chất toán học đều được học sinh tiếp thu qua con đường giải toán Việc giải toán giúp học sinh củng cố vận dụng các kiến thức, rèn luyện kỹ năng tính toán Thông qua giải toán học sinh sẽ tiếp nhận được những kiến thức về cuộc sống và có điều kiện để rèn luyện khả năng áp dụng các kiến thức vào cuộc sống Đồng thời qua việc giải toán cho học sinh mà giáo viên có thể dễ dàng phát hiện những mặt mạnh, mặt yếu của từng em về kiến thức, kỹ năng và tư duy Để từ đó giúp học sinh phát huy được tính chủ động, sáng tạo trong học tập

Hướng dẫn cho học sinh tìm ra lời giải đúng và hay là rất khó Đại đa số giáo viên chỉ hướng dẫn học sinh giải các bài toán trong sách giáo khoa, ít khi

đề cập đến các bài toán trong tài liệu tham khảo, tài liệu nâng cao Chính vì thế việc rèn kỹ năng giải toán điển hình còn có phần hạn chế

Nhận thức được tầm quan trọng của việc rèn kỹ năng giải toán điển hình đồng thời xuất phát từ thực tế giảng dạy của giáo viên trong các tiết bồi dưỡng toán cho học sinh tôi thấy cần phải rèn kỹ năng giải toán điển hình cho học sinh là rất quan trọng Song bản thân tôi không có tham vọng lớn mà chỉ

cố gắng nghiên cứu tìm tòi nhằm đáp ứng được phần nào trong việc nâng cao

dạy toán điển hình cho học sinh lớp 4 Vì lẽ đó tôi đã chọn sáng kiến “Rèn kỹ năng giải toán điển hình cho học sinh lớp 4” để nghiên cứu và áp dụng vào

Trang 2

giáo viên đang trực tiếp giảng dạy lớp 4, giáo viên bồi dưỡng học sinh giỏi lớp 4 và những ai quan tâm đến vấn đề này

Sáng kiến này do tôi nghiên cứu qua quá trình trực tiếp giảng dạy cho học sinh giỏi lớp 4, 5, sáng kiến có những điểm mới sau:

Hướng dẫn học sinh giải các bài toán có tính chất chuẩn bị cơ sở cho việc giải loại toán sắp học

Giúp học sinh tập trung vào khâu nhận dạng bài toán và rút ra được cách giải quyết tổng quát Đây là điểm rất quan trọng

Hướng dẫn học sinh giải các bài toán phức tạp dần từ các bài toán chuẩn

bị cơ sở đến các bài toán nâng cao

Rèn trí thông minh và óc sáng tạo của học sinh qua việc giải một bài toán bằng nhiều cách, không thể bằng lòng với kết quả tìm được

Giúp học sinh tiếp xúc với những bài toán có dữ kiện thừa hoặc thiếu Dựa vào đề của bài toán để đặt điều kiện cho bài toán

Những điểm mới trên nhằm giải quyết một số vấn đề đó là:

Những bài toán có tính chất cơ sở tạo tiền đề giúp các em làm quen với dạng toán sắp học Nếu những bài toán cơ sở này được chuẩn bị tốt thì việc giải các bài toán sắp học thật dễ dàng

Đối với những bài toán khó thì bước nhận dạng để tìm ra hướng giải quyết là khâu cơ bản nhất Học sinh thường nhầm lẫn từ dạng toán này sang dạng toán khác Nếu các em chắc chắn trong bước nhận dạng thì việc giải bài toán sẽ thành công

Để giải được những bài toán khó thì học sinh phải bắt đầu từ những bài toán đơn giản, những bài toán cơ sở nâng dần đến những bài toán phức tạp

Trang 3

Có như vậy việc nắm bắt, tiếp cận kiến thức mới dễ dàng Đối với những học sinh giỏi thì phải tập cho các em đừng tự bằng lòng với kết quả của mình tìm được mà có thể tìm các cách giải khác để chọn ra cách dễ hiểu, ngắn gọn nhất Với những bài toán cần đặt điều kiện thì học sinh phải hiểu, nắm chắc yêu cầu của đề bài, nhất là những bài toán dạng cấu tạo số Nếu không đọc kỹ, nắm vững đề bài thì không thể đặt được điều kiện cho bài toán và dẫn đến bài toán thiếu điều kiện, không chặt chẽ

1.2 Phạm vi áp dụng của sáng kiến:

Sáng kiến này áp dụng để giảng dạy các bài toán điển hình cho học sinh lớp 4 trong lĩnh vực toán học

Trang 4

2 PHẦN NỘI DUNG

2.1 Thực trạng của nội dung cần nghiên cứu

Những năm học trước việc giải toán điển hình đối với học sinh lớp 4, thậm chí những học sinh giỏi lớp 5 cũng rất khó khăn khi gặp phải những bài toán điển hình, chất lượng các hội thi học sinh giỏi thấp

Các em còn lẫn lộn giữa dạng toán này sang dạng toán khác (tổng - tỷ, hiệu - tỷ, tổng - hiệu)

Kỹ năng tóm tắt bài toán còn yếu, năng lực tư duy trừu tượng còn kém Học sinh phân vân không biết tính cái gì trước, cái gì sau dẫn đến bài toán bị lẫn lộn, tẩy xóa, sửa bỏ

Những em học khá cũng tự bằng lòng với kết quả làm được, chưa chịu khó tìm cách giải khác

Chưa có thói quen thử lại kết quả đúng hay chưa đúng

Kỹ năng biểu thị bài toán bằng sơ đồ cũng rất yếu, chưa điền được các

dữ kiện lên sơ đồ hay điền chưa đúng, đủ

Phần lý luận để trình bày bài toán một cách mạch lạc hầu như chưa có, các em chỉ biết ghi lời giải rồi đến phép tính, thậm chí có những lời giải sai hay chưa đúng trọng tâm

Hầu hết các dạng toán điển hình trong chương trình các em nắm rất mơ

hồ nên trong các bài kiểm tra thì phần bài giải thường bị điểm thấp

* Nguyên nhân dẫn đến tình hình trên là:

Trong quá trình dạy học, người giáo viên còn chưa có sự chú ý đúng mức tới việc làm thế nào để đối tượng học sinh nắm vững được lượng kiến thức, đặc biệt là các bài toán điển hình Nguyên nhân là do giáo viên dạy

Trang 5

nhiều môn, thời gian dành để nghiên cứu tìm tòi những phương pháp dạy học phù hợp với đối tượng học sinh trong lớp còn hạn chế Do vậy chưa lôi cuốn được sự tập trung chú ý nghe giảng của học sinh Bên cạnh đó nhận thức về vị trí, tầm quan trọng của các bài toán điển hình trong môn Toán cũng chưa đầy

đủ Từ đó dẫn đến tình trạng dạy học chưa trọng tâm, kiến thức còn dàn trải Trong giảng dạy giáo viên chưa yêu cầu cao đến kỹ năng giải toán đặc biệt là các bài toán điển hình, giáo viên còn coi nhẹ việc hướng dẫn học sinh đọc kỹ đề bài để hiểu rõ nội dung, yêu cầu của bài toán Việc nhận dạng bài toán, rèn kỹ năng tóm tắt bài toán bằng sơ đồ hay hình vẽ chưa được chú trọng

Đa số học sinh tiểu học kỹ năng hiểu đề qua đọc bài toán còn yếu, đọc hấp tấp, không chịu khó tìm hiểu đề bài phân tích bài toán dựa trên các giả thiết để tìm ra các mối quan hệ chính trong bài toán nhằm nhận dạng bài toán (vì mỗi dạng toán có cách giải khác nhau)

Các em chỉ biết làm phép tính mà chưa biết chuyển hình thức câu hỏi sang câu lời giải mang tính khẳng định một phần do tư duy ngôn ngữ còn yếu Tất cả những yếu tố trên đã làm ảnh hưởng đến kết quả chất lượng giải toán điển hình cho học sinh tiểu học nói chung và học sinh lớp 4 nói riêng

2.2 Các giải pháp:

Để nâng cao chất lượng giải toán điển hình cho học sinh lớp 4 Là một giáo viên giảng dạy môn Toán lớp 4 tôi xin đưa ra một số giải pháp sau:

* Xác định các bước giải toán điển hình:

a Bước 1:

Trang 6

Cho học sinh giải các bài toán có tính chất chuẩn bị cơ sở cho việc giải loại toán sắp học Các bài toán có tính chất chuẩn bị này nên có số liệu không lớn lắm để học sinh có thể tính miệng được dễ dàng nhằm tạo điều kiện cho các em tập trung suy nghĩ vào các mối quan hệ toán học và các từ mới chứa trong đề bài toán

Ví dụ 1: Để chuẩn bị cho việc học loại toán “Tìm số trung bình cộng”

có thể cho học sinh giải bài toán đơn sau:

“Anh Hải điều khiển máy xay lúa Trong 8 giờ anh xay được 72 tạ lúa Hỏi trung bình mỗi giờ anh xay được máy tạ thóc?”

Ví dụ 2: Để chuẩn bị cho việc học loại toán “Tìm hai số khi biết tổng và

tỷ số của chúng” có thể cho học sinh giải bài toán sau:

“Mẹ có 30 cái kẹo chia thành 3 gói bằng nhau Mẹ cho chị 1 gói, em 2 gói Hỏi chị được mấy cái kẹo?”

b Bước 2:

Cho học sinh phân tích và giải bài mẫu về loại toán điển hình đó Những bài toán được chọn làm mẫu này nên có số liệu không lớn quá và có dạng tiêu biểu nhất chứa đựng tất cả những đặc điểm chung của loại toán điển hình cần học để học sinh có thể tập trung chú ý được vào khâu nhận dạng bài toán và rút ra được cách giải tổng quát

Ví dụ 3: Dạy phần bài mới của bài “Bài toán tìm 2 số biết tổng và hiệu của chúng”

* Giáo viên đọc đề toán: “Mẹ cho hai anh em tất cả 10 cái kẹo, biết em nhiều hơn anh 2 cái Hỏi mẹ cho anh bao nhiêu cái kẹo, em bao nhiêu cái kẹo”

Trang 7

+ Giáo viên có thể tổ chức làm việc trên đồ dùng học tập như sau:

- Mỗi học sinh lấy 10 que tính (hoặc nắp bia) tượng trưng cho 10 cái kẹo, khoanh phần trên mặt bàn thành 2 vòng: vòng lớn chứa số kẹo của em, vòng nhỏ chứa số kẹo của anh

- Em được nhiều hơn anh 2 cái, vậy ta lấy 2 cái kẹo cho em trước rồi chia đôi phần còn lại Hãy lấy 2 cái kẹo cho em trước (học sinh đặt 2 nắp bia vào vòng lớn)

- Còn lại mấy cái kẹo? (10 - 2 = 8 cái)

Bây giờ chia đều cho hai anh em, vậy mỗi người được mấy cái? (8 : 2

-4 cái) Học sinh bỏ vào vòng, mỗi vòng -4 nắp bia

- Vậy anh được máy cái? (4 cái)

- Còn em được mấy cái? (4 + 2 = 6 cái)

+ Giáo viên hướng dẫn nhận dạng trên sơ đồ tóm tắt:

Bài toán yêu cầu tìm hai số: trong này có một số lớn (số kẹo của em) và một số bé (số kẹo của anh) Ta biểu thị số lớn bằng một đoạn thẳng dài, số bé bằng một đoạn thẳng ngắn:

Số lớn:

Số bé:

- Bài toán cho biết gì? (Có tất cả 10 cái kẹo, em nhiều hơn anh 2 cái) Đúng vậy Có tất cả 10 cái kẹo nghĩa là tổng của hai số là 10 Em nhiều hơn anh 2 cái nghĩa là hiệu của 2 số đó là 2 (giáo viên vẽ tiếp vào tóm tắt để

Trang 8

Giáo viên nêu: ta có bài toán tìm hai số biết tổng của chúng là 10, hiệu của chúng là 2

* Hướng dẫn học sinh giải trên sơ đồ:

Giáo viên lấy thước che “đoạn 2” đi rồi hỏi: Nếu bớt 2 ở số lớn thì hai số như thế nào? (bằng nhau)

- Vậy 2 lần số bé là bao nhiêu? (10 - 2 = 8)

- Tìm số bé bằng cách nào? (8 : 2 = 4)

- Tìm số lớn bằng cách nào? (4 + 2 = 6)

Giáo viên lần lượt ghi từng phần bài giải lên bảng làm mẫu cho học sinh

* Hướng dẫn rút ra quy tắc giải:

Cách giải này gồm mấy bước: (3 bước)

Bước 1: Tìm 2 lần số bé bằng cách lấy tổng trừ đi hiệu

Bước 2: Tìm số bé bằng cách chia đôi kết quả trên

Bước 3: Tìm số lớn bằng cách lấy số bé + hiệu (hoặc lấy tổng trừ đi số bé)

Song song với việc hướng dẫn, giáo viên có thể ghi thêm vào lời giải như sau:

Hai lần số bé là: 10 - 2 = 8

Tổng hiệu

(tổng - hiệu): 2

Số lớn là: 4 + 2 = 6

Số bé + hiệu

Vậy tìm số bé ta làm như thế nào?

Trang 9

Muốn tìm số lớn ta làm như thế nào?

Cho vài học sinh nhắc lại

* Làm tương tự để hướng dẫn cách giải thứ hai

Bước 3: Học sinh giải một số bài toán tương tự với bài mẫu song thay đổi văn cảnh và số liệu để học sinh có khả năng nhận dạng loại toán và giải bài toán

Bước 4: Cho học sinh giải các bài toán phức tạp dần

Chẳng hạn bài toán có thêm câu hỏi hay có câu hỏi khác với câu hỏi bài mẫu để sau khi giải như bài mẫu học sinh phải làm thêm 1 đến 2 phép tính nữa mới ra đáp số

Thay đổi dữ liệu để học sinh phải giải trước những bước trung gian rồi mới áp dụng được cách giải như bài mẫu

Bước 5: Cho H giải xen kẽ 1, 2 bài toán thuộc loại khác đã học nhưng có dạng na ná tương tự như loại toán đang học (tương tự về nội dung, về cách nêu dữ liệu hoặc về một bước giải nào đó) để tránh cách suy nghĩ máy móc, rập khuôn

Bước 6: Cho học sinh tự lập đề toán thuộc loại toán điển hình đang học

* Rèn kỹ năng cho học sinh sau khi đã biết cách giải

Số bé = (tổng - hiệu) : 2

Số lớn = số bé + hiệu

Trang 10

Cụ thể: Các loại bài rèn kỹ năng dạng toán “Tìm hai số khi biết tổng và hiệu của 2 số đó”

* Giải các bài toán nâng dần mức độ phức tạp trong mối quan hệ giữa số

đã cho và số phải tìm

Bài toán 1: Tuổi chị và em cộng là được 32 tuổi Em kém chị 8 tuổi Hỏi

em bao nhiêu tuổi, chị bao nhiêu tuổi?

Tóm tắt bài toán như sau:

Tuổi chị:

Tuổi em:

Bài giải Hai lần tuổi em là

32 - 8 = 24 (tuổi) Tuổi em là

24 : 2 = 12 (tuổi) Tuổi chị là

12 + 8 = 20 (tuổi)

Đáp số: chị: 20 tuổi; em: 12 tuổi Bài toán 2: Một vườn trường hình chữ nhật có chu vi 480m Tính diện tích của vườn biết rằng nếu viết thêm chữ số 2 vào trước số đo chiều rộng thì được số đo chiều dài

Tóm tắt bài toán:

Chiều dài:

Chiều rộng:

8 tuổi

32 tuổi

Trang 11

GV hướng dẫn HS: Theo đề ra thì số đo chiều rộng phải là số có hai chữ

số Vì nếu một chữ số thì chu vi của vườn sẽ nhỏ hơn 480m Nếu có 3 chữ số thì chu vi vườn sẽ lớn hơn 480m

Khi ta viết thêm số 2 vào trước số đo chiều rộng thì tức là chiều dài hơn chiều rộng 200m Đây là bài toán dạng tìm hai số khi biết tổng và hiệu

Giải Nửa chu vi vườn trường là:

480 : 2 = 240(m) Chiều rộng vườn trường là:

(240 - 200): 2 = 20(m) Chiều dài vườn trường là

200 + 20 = 220(m) Diện tích vườn trường là

220 x 20 = 4400(m2)

Đáp số: 4400m2

* Một số điểm cần lưu ý:

Khắc sâu kiến thức đã học, ôn lại kiến thức cũ Gọi học sinh nhắc lại công thức tính diện tích hình chữ nhật

Học sinh tính nữa chu vi hình chữ nhật để tính tổng chiều dài và chiều rộng

Khi viết thêm chữ số 2 vào một số có 2 chữ số thì có ý nghĩa gì?

* Biện pháp khắc phục:

Gọi học sinh nêu công thức tính chu vi, diện tích HCN

Trang 12

SHCN = a x b

Đưa bài toán về dạng cơ bản

+ Biết nữa chu vi tức là ta biết được gì (tổng của chiều dài và chiều rộng) + Viết thêm chữ số 2 vào chiều rộng thì được chiều dài chứng tỏ chiều dài như thế nào với chiều rộng? (chiều dài hơn chiều rộng 200 đơn vị)

* Giải bài toán có nhiều cách giải khác:

Để rèn trí thông minh và óc sáng tạo của học sinh thì phải tập cho học sinh có thói quen không nên tự bằng lòng với kết quả của mình đã giải được, tìm ra đáp số đúng Giáo viên giúp học sinh nên tiếp tục suy nghĩa để tìm ra cách giải khác có tính chất sáng tạo nhằm khắc sâu thêm kiến thức bài và phát huy được khả năng tư duy của học sinh, đặc biệt đây là một trong những biện pháp để bồi dưỡng cho học sinh giỏi

Ví dụ 1: Một vườn trồng hoa có chu vi 28m Cạnh đó là một vườn rau hình vuông có chu vi gấp đôi chu vi vườn hoa Tính diện tích vườn rau

Với bài toán này, có thể hướng dẫn học sinh qua các cách như sau:

Cách thứ nhất:

Bài giải Chu vi vườn rau là: 28 x 2 = 56 (m) Cạnh vườn rau là: 56 : 4 = 14 (m) Diện tích vườn rau là: 14 x 14 = 196 (m2)

Cách thứ hai:

Bài giải Cạnh vườn hoa là: 28 : 4 = 7 (m) Cạnh vườn rau là: 7 x 2 = 14 (m)

Trang 13

Diện tích vườn rau là: 14 x 14 = 196 (m2)

Cách thứ ba:

Cạnh vườn hoa là: 28 : 4 = 7(m) Diện tích vườn hoa là: 7 x 7 = 49 (m2) Diện tích vườn rau là: 49 x 2 x 2 = 196 (m2)

Ở bài toán này giáo viên lưu ý cho học sinh: Chu vi và cạnh của hình vuông là hai đại lượng tỉ lệ thuận Khi chu vi hình vuông tăng gấp đôi thì cạnh của nó cũng tăng lên gấp đôi

Khi cạnh hình vuông tăng lên gấp đôi thì diện tích tăng lên gấp 4

Ví dụ:

Ví dụ 2: Tìm hai số chẵn liên tiếp có tổng bằng số chẵn lớn nhất có hai chữ số

Theo đề ra ta thấy hai số chẵn liên tiếp thì có hiệu là 2 Đưa về dạng bài toán tìm hai số khi biết tổng và hiệu

Giải Cách 1:

Hai lần số chẵnbé là: 98 - 2 = 96

Số chẵn bé là: 96 + 2 = 48

Số chẵnlớn là: 48 + 2 = 50 Cách 2:

Hai lần số chẵnlớn là: 100 : 2 = 50

Số chẵn bé là: 50 - 2 = 48 Cách 3:

Trang 14

Số chẵn lớn là: 49 + 1 = 50

Số chẵn bé là: 49 - 1 = 48

Đáp số: 48 và 50

* Tiếp xúc với các bài toán thừa dữ kiện, thiếu dữ kiện hoặc điều kiện của bài toán

Ví dụ 1: Tuổi của hai bố con là 50 tuổi Hỏi tuổi bố và tuổi con

Bài toán này giải có được không? (không)

Vì sao không giải được? (vì chỉ biết tổng số tuổi của hai bố con)

Muốn giải được bài toán này thì ta cần thêm yếu tố gì? (hiệu giữa tuổi bố

và tuổi con)

Ví dụ: thêm vào cha hơn con là 25 tuổi (26, 27…<50) hoặc tuổi của hai

bố con là 50, biết bố sinh con vào năm bố 29 tuổi Hỏi tuổi bố và tuổi con

Ví dụ 2: Cả hai lớp 4 A và 4B trồng được 485 cây Lớp 4A trồng được ít hơn lớp 4B là 45 cây Lớp 4C trồng được nhiều hơn lớp 4D là 2 cây Hỏi lớp 4A, 4B trồng được bao nhiêu cây?

Để ý ta thấy rằng đầu bài hỏi gì về lớp 4C không? (không) Vậy ta có cần tìm 2 lớp đó không? (không) Vậy đó là dữ kiện thừa

* Giải bài toán trong đó phải xét đến khả năng xảy ra của bài toán để chọn một khả năng thỏa mãn bài toán

Bài toán: Cho ab + ba = 132

a - b = 4 Tìm ab ?

Giải Điều kiện: a, b # 0, a 5

Ngày đăng: 22/06/2020, 19:40

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w