Tính thể tích V của khối lăng trụ tứ giác đều nội tiếp hình trụ.. Tính thể tích V của khối chóp S.ABC... Tính thể tích khối chóp tứ giác R.ABQP theo V... Viết phương trình đường thẳng
Trang 21 Chuyên Lam Sơn - Thanh Hóa - File word có lời giải (Đã tải).doc
2 Chuyên ĐH Vinh - Lần 3 - File word có lời giải (Đã tải).doc
3 CHUYÊN VỊ THANH, HẬU GIANG - File word có lời giải (Đã tải).doc
4 Sở GD & ĐT Thanh Hóa - Lần 1 - File word có lời giải.doc
Trang 464 THPTQuynhLuu_NgheAn.doc
65 THPT Chuyên Quang Trung_Bình Phước - File word có lời giải (Đã tải).doc
Trang 5Trang 1
LUYỆN ĐỀ TRƯỚC KỲ THI THQG 2017
ĐỀ CHUYÊN LAM SƠN - Thời gian làm bài: 90 phút Câu 1: Trong không gian với hệ tọa độ Oxyz, cho điểm A 1; 2; 2 Viết phương trình đường thẳng đi qua A cắt Oz tại điểm B sao cho OB2OA
d : ym x2m tại 3 điểm phân biệt có hoành độ x , x , x thỏa mãn 1 2 3
a
b
log a 1 log xab
A (II) đúng, (I) sai B (I), (ii) đều sai
C (I), (II) đều đúng D (I) đúng, (II) sai
Trang 6Câu 7: Trên quả địa cầu, vĩ tuyến 30 độ Bắc chia đôi khối cầu thành hai phần Tính tỉ số thể
tích giữa phần lớn và phần bé của quả cầu đó
A 27
27
24
9.8
Câu 8: Tìm tất cả các giá trị thực của tham số m để hàm số ymxm 1 x 2 1nghịch biến trên D2;
A m 0 B m 1 C m 1 D 2 m 1
Câu 9: Cho hàm số ylog 3x Mệnh đề nào dưới đây là mệnh đề sai?
A Hàm số đã cho có tập xác định D \ 0
B Hàm số đã cho đồng biến trên tập xác định
C Đồ thị hàm số đã cho có một tiệm cận đứng là trục Oy
D Đồ thị hàm số đã cho không có tiệm cận ngang
Câu 10: Cho phương trình 3 2
Câu 11: Cho một hình trụ có bán kính đáy bằng R và thiết diện qua trục là hình vuông Tính
thể tích V của khối lăng trụ tứ giác đều nội tiếp hình trụ
A V3R 3 B V2R 3 C V4R 3 D V5R 3
Câu 12: Cho số phức z 1 3i. Tính mô đun của số phức 2
wz iz
A w 146 B w 5 2 C w 10 D w 50
Câu 13: Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy, tam giác SBC đều cạnh
a, góc giữa mặt phẳng (SBC) và mặt phẳng đáy là 30 Tính thể tích V của khối chóp S.ABC o
Trang 7C Điểm M1; 2 là điểm biểu diễn của số phức z 1 2i.
D Mô đun của số phức z a bi a, b là a2b 2
Câu 15: Diện tích hình phẳng giới hạn bởi các đường y 2x , y 4 x và trục Ox được tính bằng công thức:
;
PA QB 3 R là trung điểm cạnh '
CC Tính thể tích khối chóp tứ giác R.ABQP theo V
A V
V
3V
2V
Trang 8Câu 24: Một tỉnh A đưa ra quyết định về giảm biên chế cán bộ công chức, viên chức hưởng
lương từ ngân sách nhà nước trong giai đoạn 2015 – 2021 (6 năm) là 10,6% so với số lượng hiện có năm 2015 Theo phương thức ra 2 vào 1 (tức là khi giảm đối tượng hưởng lương từ ngân sách nhà nước được 2 người thì được tuyển dụng 1 người) Giả sử tỉ lệ giảm và tuyển dụng mới hằng năm so với năm trước đó là như nhau Tính tỉ lệ tuyển dụng mới hằng năm (làm tròn đến 0,01%)
Câu 25: Cho các điểm A, B, C nằm trong mặt phẳng phức lần lượt biểu diễn các số phức
1 3i; 2 2i; 1 7i. Gọi D là điểm sao cho tứ giác ADCB là hình bình hành Điểm D biểu diễn số phức nào trong các số phức dưới đây?
Trang 9Trang 5
A z 4 6i B z 2 8i C z 2 8i D z 4 6i
Câu 26: Tìm tất cả các giá trị thực của tham số m để phương trình 4xm.2x2m 5 có 0hai nghiệm trái dấu
1 m ln t
dt 0,t
các giá trị tìm được của m sẽ thỏa mãn điều kiện nào sau đây?
C d1 cắt và không vuông góc d2 D d1 song song d2
Câu 30: Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng
P : x 2y z 1 0; Q : x 2y z 8 0; R : x 2y z 4 Một đường thẳng d thay 0
đổi cắt 3 mặt phẳng P , R , Q lần lượt tại A, B, C Đặt T AB2 144
AC
Tìm giá trị nhỏ nhất của T
A min T 108. B 3
min T72 3 C 3
min T72 4 D minT96
Trang 10Viết phương trình đường thẳng '
d là hình chiếu của d lên mặt phẳng Oxy
A 37102 (nghìn đồng) B 51238 (nghìn đồng)
C 48238 (nghìn đồng) D 51239 (nghìn đồng)
Câu 34: Đường cong dưới là đồ thị của một trong 4 hàm số được liên kết ở bốn phương án
A, B, C, D bên dưới Hỏi hàm số đó là hàm số nào?
Trang 11Câu 36: Người ta dự đinh thiết kế một cống ngầm thoát nước qua đường với chiều dài 30m,
thiết diện thẳng của cống có diện tích để thoát nước là 4 m (gồm 2 phần: nửa hình tròn và 2hình chữ nhật) như hình minh họa, phần đáy cống, thành cống và nắp cống được sử dụng vật liệu bê tông Tính bán kính R (tính gần đúng với đơn vị m , sai số không quá 0,01) của nửa hình tròn để khi thi công tốn ít vật liệu nhất?
Trang 12Câu 39: Cho hàm số f x là hàm số liên tục trên đoạn a; b ab và F x là một nguyên
hàm của f x trên a; b Mệnh đề nào dưới đây đúng?
a a
f 2x3 dxF 2x3
B Diện tích S của hình phẳng giới hạn bởi hai đường thẳng xa, x đồ thị hàm số b; f x
và trục hoành được tính theo công thức SF b F a
A m0 1 B 1 m0 3 C m0 0 D m0 1
Trang 13Câu 47: Cho hàm số yx33x2 Mệnh đề nào sau đây là đúng? 1.
A Hàm số nghịch biến trên 0;1 B Hàm số nghịch biến trên 1; 2
C Hàm số nghịch biến trên ;0 D Hàm số nghịch biến trên 1;
Câu 48: Cho hàm số yf x có đồ thị như hình vẽ dưới đây
Phương trình f x có bao nhiêu nghiệm thực phân biệt?
Câu 49: Có bao nhiêu số phức z thỏa mãn đồng thời các điều kiện z.z z 2, z 2
Câu 50: Trong không gian với hệ tọa độ Oxyz, cho điểm I 2; 4;1 và mặt phẳng
P : x Tìm phương trình mặt cầu y z 4 0 S có tâm I và S cắt P theo một đường tròn có đường kính là 2
Trang 14Trang 10
Đáp án 1- D 2- B 3- C 4- D 5- C 6- A 7- B 8- B 9- A 10- D 11- C 12- A 13- B 14- D 15- B 16- B 17- A 18- A 19- B 20- D 21- B 22- C 23- C 24- C 25- A 26- D 27- D 28- C 29- C 30- A 31- C 32- B 33- D 34- A 35- D 36- A 37- B 38- B 39- D 40- A 41- D 42- D 43- C 44- C 45- A 46- B 47- A 48- D 49- C 50- C
LỜI GIẢI CHI TIẾT
Trang 15Gọi điểm B là vị trí nằm trên vĩ tuyến 30 độ Bắc BOM60 o
Xét BMO vuông tại M, có sin BOM BM BM sin 60 Ro R 3
Trang 16Chiều cao của khối lăng trụ tứ giác đều nội tiếp hình trụ là h2R.
Độ dài cạnh đáy của lăng trụ tứ giác đều là a R 2 DT hình vuông là 2 2
Sa 2R Thể tích của khối lăng trụ cần tính là VhS2R.2R2 4R 3
Gọi M là trung điểm của BC, SBC đều SMBC
Mà SAABCSABC và SMBC suy ra BCSAM
Trang 18Gọi chiều cao của hình hộp chữ nhật là h
Diện tích toàn phần của hình hộp chữ nhật là S 2a2 4ha 8a2 h 3a
Trang 201 2
b 3ac 00
c 02b
b 03a
x x 0
c02a
Trang 21 M là hình chiếu của I trên mặt phẳng (P)
Ta có: IM P u IM 3; 3; 2 và đi qua điểm x 1 y 2 z 2
Điểm A d A t 2; t 1; 2t và điểm 2 AOxy t 1 A3;0;0
Điểm B2;1; 2 d C2;1;0 là hình chiếu của B lên mặt phẳng Oxy
Câu 34: Đáp án A
Dựa vào đồ thị hàm số ta thấy:
• Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang lần lượt là x 2, y 3.
• Đồ thị hàm số đi qua các điểm có tọa độ 3
Trang 220,30,3 R 0, 6R 0, 6h 0,18
Trang 233 3
LP
93
Trang 24Câu 48: Đáp án D
PT f x là phương trình hoành độ giao điểm của hàm số y f x và đường thẳngy song song với trục hoành Hai đồ thị có bao nhiêu giao điểm thì phương trình
f x có bấy nhiêu nghiệm
Dựa vào đồ thị hai hàm số như hình bên, ta thấy đường y cắt đồ thị y f x tại 6 điểm phân biệt
Suy ra phương trình f x có 6 nghiệm thực phân biệt
Trang 25Trang 1
Đề thi thử THPT QG 2017 – Trường ĐH Vinh – Lần 3
Môn : Toán Câu 1: Cho hàm số yf x xác đi ̣nh, liên tu ̣c trên đoa ̣n 1;3 và có đồ thi ̣ như hình vẽ bên Khẳng định nào sau đây đúng?
A Hàm số có hai điểm cực đại là x 1; x 2
B Hàm số có hai điểm cực tiểu là x0, x 3
C Hàm số đạt cực tiểu tại x , cực đa ̣i ta ̣i 0 x2
D Hàm số đạt cực tiểu tại x , cực đa ̣i ta ̣i 0
x 1
Câu 2: Cho hàm số yf x có đồ thị như hình vẽ bên
Biết rằng f x là một trong bốn hàm số được đưa ra trong
các phương án A, B, C, D dưới đây Tìm f x
A Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng a; b
B Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn a; b
C Hàm số đã cho có cực trị trên đoạn a; b
D Phương trình f x có nghiệm duy nhất thuộc đoạn 0 a; b
Trang 26Câu 9: Cho z là một số phức tùy ý khác 0 Khẳng định nào sau đây sai?
A z z là số ảo B z z là số thực C z.z là số thực D z
2
2 log xx
log
log x y log x2log y
Câu 11: Gọi M và N lần lượt là điểm biểu diễn của các số phức z , z kha1 2 ́c 0 Khi đó khẳng
đi ̣nh nào sau đây sai?
A z2 ON
B z1z2 MN
C z1z2 MN
D z2 OM
Trang 27Câu 14: Cho hàm số 4 2
yx 2x Khẳng đi ̣nh nào sau đây đúng? 3
A Hàm số đồng biến trên 1;0 B Hàm số đồng biến trên ; 0
C Hàm số nghịch biến trên 1;1 D Hàm số nghịch biến trên 0;
Câu 15: Trong không gian với hệ tọa độ Oxyz, cho đườ ng thẳng :x 1 y 2 z
Câu 16: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng P : 2x ay 3z 5 0
và Q : 4x y a 4 z 1 0 Tìm a để (P) và (Q) vuông góc với nhau
A a 0 B a 1 C a 1
3
D a 1
Câu 17: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2x2y z 6 Tìm 0
tọa đô ̣ điểm M thuô ̣c tia Ox sao cho khoảng cách từ M đến (P) bằng 3
Trang 28Câu 21: Cho biểu thứ c 4 3
P x x vớ i x là số dương khác 1 Khẳng đi ̣nh nào sau đây sai?
A Px x2 3 x B Px x2 3 C
13 6
bằ ng 2 2
A C 5; 2; 4 B C 3; 1;3 C C1;0; 2 D C 1;1;1
Câu 23: Cho hình nón đỉnh S Xét hình chóp S.ABC có đáy ABC là tam giác ngoa ̣i tiếp đường tròn đáy của hình nón và có AB BC 10a,AC 12a , góc ta ̣o bởi hai mă ̣t phẳng (SAB) và (ABC) bằng 0
45 Tính thể tích khối nón đã cho
30
Trang 29B Các điểm O, M, N, P cùng thuô ̣c mô ̣t mă ̣t phẳng
C Trung điểm củ a NP là I 3;7; 4
D M, N, P là ba đỉnh của mô ̣t tam giác
Câu 29: Cho hàm số 4 2
yax bx có đồ thi ̣ như hình vẽ bên cKhẳng định nào sau đây đúng ?
Câu 31: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AA' a 3 Gọi I là giao điểm của
AB’ và A’B Cho biết khoảng cách từ I đến mă ̣t phẳng (BCC’B’) bằng a 3
2 Tính thể tích khố i lăng trụ ABC.A’B’C’
Trang 30Câu 34: Biết rằ ng phương trình 2
z bz c 0 b, c có mô ̣t nghiê ̣m phức là z1 1 2iKhi đó
A b c 0 B b c 3 C b c 2 D b c 7
Câu 35: Tất cả đường tiê ̣m câ ̣n của đồ thi ̣ hàm số
2 2
Câu 36: Thể tích khối tròn xoay thu đươ ̣c khi quay hình phẳng giới ha ̣n bởi các đường
y 2 x , y x, y0 xung quanh trục Ox đươ ̣c tính theo công thức nào sau đây?
Trang 31Trang 7
B Tập giá trị của hàm số là ;
C Đồ thị hàm số cắt đường thẳng yx
D Đồ thị hàm số cắt đường thẳng y ta ̣i hai điểm phân biê ̣t x 1
Câu 40: Cho số phứ c z thay đổi, luôn có z Khi đó tâ ̣p hợp điểm biểu diễn số phức 2
Tất cả các giá trị của m để phương trình f x có hai nghiê ̣m m
phân biệt là:
A m2 và m1
B 0 m 1
C m2 và m1
D 0 và m 1 m1
Câu 42: Cho hình chóp S.ABC có SC2a,SCABC Đáy ABC là tam giác vuông cânt
a ̣i B và có ABa 2 Mặt phẳng đi qua C và vuông góc với SA, cắt SA, SB lần lượt ta ̣i
D, E Tính thể tích khối chóp S.CDE
Câu 43: Ông B có một khu vườn giới hạn bởi đường parabol và một
đường thẳng Nếu đặt trong hệ tọa độ Oxy như hình vẽ bên thì parabol có
phương trình 2
yx và đường thẳng là y 25 Ông B dự đi ̣nh dùng một
mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua O và điểm
M trên parabol để trồng hoa Hãy giúp ông B xác định điểm M bằng cách
tính độ dài OM để diện tích mảnh vườn nhỏ bằng 9
2
A OM2 5 B OM3 10
C OM 15 D OM 10
Trang 32Trang 8
Câu 44: Một người thợ có một khối đá hình trụ Kẻ hai đường kính
MN, PQ của hai đáy sao cho MNPQ Người thợ đó cắt khối đá theo
các mặt cắt đi qua 3 trong 4 điểm M, N, P, Q để thu được một khối đá
có hình tứ diện MNPQ Biết rằng MN60cm và thể tích của khối tứ
diện MNPQ bằng 30dm Hãy tính thể tích của lượng đá bị cắt bỏ 3
Câu 45: Cho các số thực x, y thỏa mãn 2 2
x 2xy 3y Giá tri ̣ lớn nhất của biểu thức 4
P xy là:
A max P 8 B max P 12 C max P 16 D max P 4
Câu 46: Trong không gian với hệ tọa độ Oxyz, cho điểm A 1; 2; 3 và cắt mă ̣t phẳng
P : 2x 2y z 9 Đường thẳng đi qua A và có vecto chỉ phương 0 u3; 4; 4 cắ t (P)
tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoa ̣n AB dưới mô ̣t góc 0
90 Khi đô ̣ dài
MB lớ n nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A J3; 2;7 B H 2; 1;3 C K 3;0;15 D I 1; 2;3
Câu 47: Tất cả các giá tri ̣ của m để phương trình x
e m x 1 có nghiê ̣m duy nhất là:
A m1 B m0, m 1 C m0, m 1 D m1
Câu 48: Bạn có một cốc thủy tinh hình trụ, đường
kính trong lòng đáy cốc là 6 cm chiều cao trong lòng
cốc là 10 cm đang đựng một lượng nước Bạn A
nghiêng cốc nước, vừa lúc khi nước chạm miệng cốc
thì ở đáy mực nước trùng với đường kính đáy Tính
thể tích lượng nước trong cốc
A 15 cm 3 B 60 cm 3
C 60cm 3 D 70cm 3
Câu 49: Cho tứ diê ̣n ABCD có AB 4a,CD 6a, các ca ̣nh còn la ̣i đều bằng a 22 Tính
bán kính mă ̣t cầu ngoa ̣i tiếp tứ diê ̣n ABCD
Trang 33LỜI GIẢI CHI TIẾT Câu 1: Đáp án C
Từ đồ thị hàm số ta suy ra hàm số đạt cực tiểu tại x , cực tiểu ta ̣i 0 x2
Trang 34 nên ta chưa thể
khẳng định đươ ̣c z
Trang 36Trang 12
Gọi I là tâm đường tròn nô ̣i tiếp tam giác ABC cũng là tâm
đường tròn đáy của hình nón
Gọi E là trung điểm của AC khi đó 2 2
Gọi H là trung điểm ca ̣nh AD khi đó SH a 3 và SH AD Mặt
khác SAD ABCD
Suy ra SHABCD Dựng HKBC suy ra SKHBC
Trang 38Kí hiê ̣u H la1 ̀ hình phẳng giới ha ̣n bởi các đường y x, y 0, x 1
Kí hiê ̣u H la2 ̀ hình phẳng giới ha ̣n bởi các đường y 2 x , y 0, x2
Khi đó thể tích V cần tính chính bằng thể tích V cu1 ̉ a khối tròn xoay thu được khi quay hình
H xung quanh tru1 ̣c Ox cô ̣ng với thể tích V cu2 ̉ a khối tròn xoay thu được khi quay hình
H2 xung quanh trục Ox
Ta có
1
2 1
Trang 39Đồ thi ̣ hàm số y f x gồ m 2 phần
Phần 1: Lấy phần củ a (C) nằm trên Ox
Phần 2: Lấy đố i xứ ng phần đồ thi ̣ (C) dưới tru ̣c Ox qua Ox
Dựa vào đồ thi ̣ ta thấy f x có 2 nghiê ̣m khi và chỉ m
Trang 40M a; a suy ra phương trình OM : y ax
Khi đó diê ̣n tích khu vườn là a 2 3 3
2 0
Vì B d B 3b 1; 4b 2; 4b 3 kết hợp B P , thay vào tìm được b 1 B 2; 2;1
Gọi A’ là hình chiếu của A lên mă ̣t phẳng (P), mă ̣t phẳng (P) có vecto pháp tuyến
Trang 41 tiệm câ ̣n ngang y 0
Số nghiệm của phương trình x
e m x 1 là số điểm chung giữa đường thẳng ym và đồ thị hàm số yf x Dựa vào bảng biến thiên hàm số yf x , m và 0 m1 là giá tri ̣ cần
Gọi M, N là trung điểm của AB, CD Dễ dàng chứng minh (DMC)
và (ANB) là lần lượt mặt phẳng trung trực của đoạn thẳng AB và
CD Tâm mặt cầu ngoại tiếp tứ diện ABCD là I nằm trên đường
MN DM DN DB BM DN 3a