Bài tập chương 3 : Rủi ro lãi suất Mô hình ARIMA Dự báo Lãi suất r: ARIMA(p,d,q) 3 tham số xđ dựa trên cơ sở + d : kiểm định tính dừng, dừng => ổn định Chuỗi r dừng => dừng bậc 0, ký hiệu I(0) Chuỗi r không dừng => lấy sai phân bậc 1 là rt – rt1 => nếu dừng : gọi là dừng bậc 1, I(1) nếu không dừng lấy sai phân bậc 2 = rt2rt1+rt2 => tiếp tục + p,q: lược đồ tương quan riêng (PAC : p) và lược đồ tự tương quan (AC : q) Dừng => dự báo p,q
Trang 1Bài tập chương 3 : Rủi ro lãi suất - Mô hình ARIMA
- Dự báo Lãi suất r:
ARIMA(p,d,q) 3 tham số xđ dựa trên cơ sở
+ d : kiểm định tính dừng, dừng => ổn định
Chuỗi r dừng => dừng bậc 0, ký hiệu I(0)
Chuỗi r không dừng => lấy sai phân bậc 1 là r t – r t-1 => nếu dừng : gọi là dừng bậc 1, I(1)/ nếu không dừng lấy sai phân bậc 2 = r t -2r t-1 +r t-2 => tiếp tục
+ p,q: lược đồ tương quan riêng (PAC : p) và lược đồ tự tương quan (AC : q)
Dừng => dự báo p,q
Bài 1 Cho kết quả kiểm định ADF và lược đồ tự tương quan của chuỗi chỉ số giá năng lượng (EPI) và
sai phân của nó là D(EPI) như sau
Test Stat 0.801 1% Critical Value* -3.541
5% Critical Value -2.910 10% Critical Value -2.592
Test Stat 4.201 1% Critical Value* -4.036
5% Critical Value -2.816 10% Critical Value -2.92
(a) Kiểm định tính dừng với chuỗi EPI và sai phân của nó
(b) Lược đồ tự tương quan cho biết thông tin gì về chuỗi EPI và sai phân của nó : nhận xét p và q (nếu đề bài không nói gì thì nhận xét p và q khi chuỗi đó dừng => nx AC và PAC ở D(EPI)) (c) Với lược đồ tự tương quan của chuỗi D(EPI), hãy nêu một mô hình phụ để dự báo cho D(EPI), giải thích tại sao?
Bài giải :
a, Kiểm định tính dừng với chuỗi EPI
Cặp giả thuyết:
H0: Chuỗi EPI là không dừng
H1: Chuỗi EPI dừng
Trang 2Thống kê: : 𝜏qs =0.801
EPI là không dừng => lấy sai phân
Kiểm định tính dừng với sai phân của nó
Cặp giả thuyết:
H0: Chuỗi D(EPI) là không dừng
H1: Chuỗi D(EPI) dừng
Thống kê: : 𝜏qs = 4.201 ;α = 5% -> 𝜏5% = −2.816
|𝜏qs| > |𝜏0.05| ➔ bác bỏ H0, Chuỗi D(EPI) là chuỗi dừng => Chuối EPI dừng sai phân bậc 1,d=1, I(1)
b, Lược đồ tự tương quan cho biết
Nhận xét :
EPIt và EPIt-1 tương quan riêng với nhau (0.890)
- AC : Chuỗi EPIt tương quan Ut-1, Ut-2 …Ut-9
Chuối k dừng => K nói gì đến ước và ước lượng bằng phương trình nào
- PAC : Chuỗi D(EPI) tương quan với trễ bậc
1, trễ bậc 2
- AC : Chuỗi D(EPI)t tương quan Ut-1, Ut-2 …U t-4
- AC giảm theo quy luật hình mũ
dần) => chỉ cần láy p=1, q=1
lược đồ nằm ngoài phần gạch => tương quan
Nằm bên trái : tương quan âm, bên phải : tương quan dương : giá thời kỳ trước tăng => thời kỳ sau cũng tăng
c Với lược đồ tự tương quan của chuỗi D(EPI), hãy nêu một mô hình phụ để dự báo cho D(EPI), giải thích tại sao?
Trang 3Ước lượng ARIMA(2,1,4) : ước lượng D(EPI) => D(EPI)t-1 ,D(EPI)t-2 ,Ut-1 , Ut-2,…,Ut-4
(thay công thức trong note vào)
Bài 2 Cho đồ thị và kết quả kiểm định với chuỗi tỷ giá hối đoái EXG như sau
0
4
8
12
16
20
X
Kiểm định không hệ số chặn, không xu thế
Test Statistic -0.371583 1% Critical Value* -2.6026
5% Critical Value -1.9462 10% Critical Value -1.6187
Kiểm định có hệ số chặn, không có xu thế
Test Statistic -3.961119 1% Critical Value* -3.5457
5% Critical Value -2.9118 10% Critical Value -2.5932
Kiểm định có xu thế => có hệ số chặn
Test Statistic -3.901491 1% Critical Value* -4.1219
5% Critical Value -3.4875 10% Critical Value -3.1718
Xu thế: Có xu thế tăng lên hay giảm xuống hay k,
Hệ số chặn: điểm gốc bắt nguồn tại 0 => k có hệ số chặn/ nếu bắt nguồn từ điểm khác 0 => có
hệ số chặn
(a) Trong ba kiểm định trên, nên dùng kiểm định nào, vì sao ?
(b) Với kiểm định đã lựa chọn, cho kết luận về tính dừng của chuỗi EXG ?
(c) Có thể dùng mô hình nào để mô hình hóa và dự báo cho chuỗi EXG ?
Bài giải
(a) Trong ba kiểm định trên, nên dùng kiểm định nào, vì sao ?
Chọn kiểm định có xu thế và có hệ số chặn
(b) Với kiểm định đã lựa chọn, cho kết luận về tính dừng của chuỗi EXG ?
xu thế, hệ số chặn
(c) Có thể dùng mô hình nào để mô hình hóa và dự báo cho chuỗi EXG ?
EXG -> hồi quy theo T (do có yếu tố xu thế) và có hệ số chặn
EXG = β1 + β2.T + U
Bài 3 Cho kết quả ước lượng sau với chuỗi GGSP là tăng trưởng sản phẩm ngành dịch vụ
Dependent Variable: GGSP Convergence achieved after 4 iterations Variable Coefficient Std Error t-Statistic Prob.
C 12.00524 2.997235 4.005437 0.0001 GGSP(-1) 0.872053 0.103288 8.442916 0.0000 GGSP(-2) 0.090510 0.101570 0.891109 0.3751 R-squared 0.958760 Mean dependent var 8.997107 Durbin-Watson stat 1.974107 Prob(F-statistic) 0.000000
Kiểm định ADF về phần dư của mô hình không hệ số chặn, không xu thế
Trang 4Test Statistic -0.871583 1% Critical Value* -2.7026
5% Critical Value -1.8462 10% Critical Value -1.5187
(a) Viết mô hình hồi quy
(b) Mô hình này có nên sử dụng hay không, tại sao ?
Bài giải :
a, Mô hình hồi quy :
^
b, Sai số : có thể sử dụng được nếu sai số là nhiễu trắng (OLS) : sai số thỏa mãn giả thiết của
OLS (trung bình =0, psai k đổi, k có tự tương quan)
thường thì mô hình hồi quy dừng =>phần dư dừng chuỗi nhiễu trắng dừng
𝜏qs = -0.871583 ;α = 5% -> 𝜏5% = -1.8462
|𝜏qs| < |𝜏0.05| ➔chưa bác bỏ H0, chuỗi phần dư của mô hình không dừng
Bài 4 Cho kết quả ước lượng sau với chuỗi GGSP là tăng trưởng sản phẩm ngành dịch vụ
Dependent Variable: GGSP Convergence achieved after 7 iterations Backcast: 0 1
Variable Coefficient Std Error t-Statistic Prob.
C 11.58307 2.790367 4.151094 0.0001 GGSP(-1) 0.096053 0.002093 45.88695 0.0000 MA(2) 0.028977 0.010492 2.761703 0.0000 R-squared 0.959923 Mean dependent var 8.912173 Durbin-Watson stat 2.145175 Prob(F-statistic) 0.000000
Kiểm định ADF về phần dư của mô hình không hệ số chặn, không xu thế, và kiểm định
BG về hiện tượng tự tương quan
Test Statistic -3.34543 1% Critical Value* -2.7026
5% Critical Value -1.8462 10% Critical Value -1.5187 Breusch-Godfrey Serial Correlation LM Test:
F-statistic 0.784425 Probability 0.394740 Obs*R-squared 1.065033 Probability 0.302070
Kiểm định tự tương quan
(a) Viết mô hình ước lượng và cho biết mô hình này có nên sử dụng để dự báo không ?
(b) Nếu biết năm 2013 tăng trưởng ngành dịch vụ là 10% thì dự báo năm 2014 sẽ tăng trưởng bao nhiêu % ?
a, Mô hình :
Trang 5Có nên sử dụng hay không : Kiểm định tính dừng, kiểm định tự tương quan
Mô hình không có tự tương quan (P-value lớn) , chuỗi dừng => nhiễu trắng , nên sử dụng
Thay số vào e =0
Bài 5.
Xét chuỗi thời gian FPI là chỉ số giá lương thực, số liệu theo quý, đã hiệu chỉnh mùa vụ
Khi dùng kiểm định DF với chuỗi FPI có xu thế thời gian, có kết quả sau
ADF Test Statistic -3.081013 1% Critical Value* -4.1162
5% Critical Value -3.4849 10% Critical Value -3.1703
Khi dùng kiểm định DF với chuỗi sai phân của FPI là D(FPI) có kết quả sau
ADF Test Statistic -6.455882 1% Critical Value* -3.5417
5% Critical Value -2.9101 10% Critical Value -2.5923
Cho lược đồ tương quan của FPI và sai phân của FPI như sau
(a) Kiểm định về tính dừng của chuỗi FPI
(b) Qua lược đồ tự tương quan, nhận xét về chuỗi FPI và D(FPI)
(c) Hãy nêu một mô hình phù hợp để mô hình hóa và dự báo chuỗi FPI
Giống bài 1
Bài 6.( giống thi) Với R là lãi suất, có các thông tin sau
Đồ thị và các kiểm định DF
Trang 66
7
8
9
10
11
10 20 30 40 50 60
R
Kiểm định không hệ số chặn, không xu thế
Test Statistic -0.371583 1% Critical Value* -2.6026
5% Critical Value -1.9462 10% Critical Value -1.6187
Kiểm định có hệ số chặn, không có xu thế
Test Statistic -3.961119 1% Critical Value* -3.5457
5% Critical Value -2.9118 10% Critical Value -2.5932
Kiểm định có xu thế
Test Statistic -3.901491 1% Critical Value* -4.1219
5% Critical Value -3.4875 10% Critical Value -3.1718
(a) Qua các thông tin trên, kết luận như thế nào về tính dừng của chuỗi lãi suất? k xu thế, có hệ số chặn
Cho kết quả ước lượng sau đây
Dependent Variable: R Included observations: 60 after adjusting endpoints Convergence achieved after 3 iterations
Variable Coefficient Std Error t-Statistic Prob.
C 7.419109 0.626832 7.049908 0.0000 R(-1) 0.167519 0.064867 2.582485 0.0104 R(-2) -0.045469 0.006487 -7.009632 0.0000 R-squared 0.432802 Mean dependent var 7.722083 Durbin-Watson stat 2.026359 Prob(F-statistic) 0.019212
(b) Hãy viết mô hình
(c) Nếu vào tháng 6/2014 có R bằng 7,2 và tháng 7/2014 có R bằng 7,8 thì dự báo lãi suất vào các tháng 8, 9, 10 năm 2014 bằng bao nhiêu?
Tương tự bài 4
Bài 7 Nhận xét về định dạng bậc ARMA qua các lược đồ của các chuỗi dừng sau :
Lược đồ 7.1 : p=2,3,4 / q= 2,3 => ARMA (5,3) (k dừng nên k có I)
Trang 7Lược đồ 7.2 p=1,2/ q= 1,2 => ARMA (2,2)
Lược đồ 7.3.tương tự
Lược đồ 7.4
Lược đồ 7.5