Tuynhiên trình độ nhận thức của các em không đồng đều, yêu cầu đặt ra khi giảitoán có lời văn cao hơn những lớp trước, các em phải đọc nhiều, viết nhiều bàilàm phải trả lời chính xác với
Trang 1A ĐẶT VẤN ĐỀ
I.LÝ DO CHỌN ĐỀ TÀI
Thực hiện Nghị quyết Đại hội Đảng và những văn kiện của Nhà nước làphải tiến tới: Đổi mới phương pháp giáo dục cho phù hợp với sự phát triển củađất nước để đào tạo ra những con người năng động sáng tạo có năng lực giảiquyết vấn đề, Bộ Giáo dục và Đào tạo đã có bước chuyển mình rõ rệt Một trongnhững bước chuyển đó là đổi mới Giáo dục Tiểu học Đổi mới Giáo dục Tiểuhọc là nhằm đáp ứng nhu cầu phát triển giáo dục của thời kì công nghiệp hóahiện đại hoá đất nước, từng bước đưa nền giáo dục nước ta hoà nhập với giáodục các nước trong khu vực và trên thế giới Luật phổ cập giáo dục Tiểu học có
ghi " Giáo dục Tiểu học là nền tảng của hệ thống giáo dục quốc dân có nhiệm
vụ xây dựng và phát triển tình cảm, đạo đức, trí tuệ, thẩm mĩ và thể chất của trẻ em nhằm hình thành cơ sở ban đầu cho sự phát triển toàn diện nhân cách con người Việt Nam xã hội chủ nghĩa" Để tiến kịp thời đại, phục vụ kịp thời
cho sự nghiệp công nghiệp hóa, hiện đại hóa đất nước, giáo dục Tiểu học đã vàđang trở thành mối quan tâm lớn của toàn xã hội Bậc Tiểu học được coi là nềnmóng của hệ thống giáo dục quốc dân
Trong trường Tiểu học,mỗi môn học đều góp phần vào việc hình thành vàphát triển những cơ sở ban đầu rất quan trọng của nhân cách con người ViệtNam Môn Toán ở Tiểu học với tư cách là một môn học độc lập, nó cùng vớicác môn học khác góp phần đào tạo nên những con người phát triển toàn diện
Trong các môn học ở Tiểu học, song song với môn Tiếng Việt thì mônToán có vị trí quan trọng bởi vì:
- Các kiến thức, kĩ năng của môn Toán ở Tiểu học có nhiều ứng dụngtrong đời sống: chúng rất cần thiết cho người lao động, rất cần thiết cho việc họccác môn học khác ở Tiểu học và học tập môn Toán ở trung học
-Môn Toán giúp học sinh hình thành các kĩ năng thực hành tính, đolường, giải bài toán có nhiều ứng dụng thiết thực trong đời sống Nhận biếtnhững mối quan hệ về số lượng, hình dạng và không gian của thế giới hiện thực.Nhờ đó mà học sinh có phương pháp nhận thức một số mặt của thế giới xungquanh và biết cách hoạt động có hiệu quả trong cuộc sống
- Môn Toán ở tiểu học bước đầu hình thành và phát triển năng lực trừutượng hóa, khái quát hóa, góp phần rất quan trọng trong việc phát triển năng lực
tư duy, khả năng suy luận hợp lí và diễn đạt đúng ( nói và viết) cách phát hiện
và giải quyết các vấn đề đơn giản, gần gũi trong cuộc sống ; kích thích trí tưởngtượng, chăm học và hứng thú học tập toán ; hình thành bước đầu phương pháp
tự học và làm việc có kế hoạch khoa học, chủ động, linh hoạt, sáng tạo Nó đónggóp vào việc hình thành các phẩm chất cần thiết và quan trọng của người laođộng như: cần cù, cẩn thận, ý thức vượt khó, làm việc có kế hoạch, có nề nếp và
có tác phong khoa học
Một trong những mục tiêu cơ bản của việc dạy học môn Toán lớp 5 lànhằm cung cấp cho học sinh một số kiến thức thiết thực về số học ( phân số- cácphép tính với phân số, số thập phân- các phép tính với số thập phân), giải toán
Trang 2liên quan đến tỉ lệ, đo lường, hình học, toán chuyển động đều, về giải toán có lờivăn
Trong dạy - học toán ở tiểu học, việc giải toán có lời văn chiếm một vị trírất quan trọng Trong giải toán, học sinh phải tư duy một cách tích cực và linhhoạt, huy động tích cực các kiến thức và khả năng đã có vào tình huống khácnhau, trong nhiều trường hợp phải biết phát hiện những dữ kiện hay điều kiệnchưa được nêu ra một cách tường minh Và trong chừng mực nào đó biết suynghĩ năng động, sáng tạo Vì vậy có thể coi giải toán có lời văn là một trongnhững biểu hiện năng động nhất của hoạt động trí tuệ của học sinh
Dạy học giải toán có lời văn ở tiểu học nhằm mục đích chủ yếu sau:
+ Giúp học sinh luyện tập củng cố vận dụng các kiến thức và thao tác thựchành đã học , rèn luyện kĩ năng tính toán, đây là bước tập dượt vận dụng kiếnthức và rèn luyện kĩ năng thực hành vào thực tiễn
+ Giúp học sinh từng bước phát triển năng lực tư duy rèn luyện phương pháp
và kĩ năng suy luận khêu gợi và tập dượt khả năng quan sát, phỏng đoán, tìm tòi + Rèn luyện cho học sinh những đặc tính và phong cách làm việc của ngườilao động như: Cẩn thận, chu đáo, cụ thể
Ở học sinh lớp 5, kiến thức toán đối với các em không còn là mới lạ, khảnăng nhận thức của các em được hình thành và phát triển ở các lớp trước, tư duy
đã bắt đầu có chiều hướng bền vững và đa dạng và đang ở giai đoạn phát triểnvốn sống, vốn hiểu biết thực tế bước đầu đã có những hiểu biết nhất định Tuynhiên trình độ nhận thức của các em không đồng đều, yêu cầu đặt ra khi giảitoán có lời văn cao hơn những lớp trước, các em phải đọc nhiều, viết nhiều bàilàm phải trả lời chính xác với phép tính, với các yêu cầu của bài toán đưa ra, nênthường vướng mắc về vấn đề trình bày bày bài giải: Một sai xót đáng kể khác làhọc sinh thường không chú ý phân tích theo các điều kiện của bài toán nên đãlựa chọn sai phép tính
Nội dung chủ yếu của dạy học giải toán có lời văn trong toán 5 là tiếp tụcgiải các bài toán đơn, toán hợp có dạng đã học từ lớp 1,2,3,4 và phát triển cácbài toán đó trên phân số, số thập phân và các bài toán về tỉ số phần trăm, toánchuyển động đều mới học, phù hợp với giai đoạn học tập sâu của học sinh lớp 5.Nội dung này được sắp xếp hợp lí, đan xen phù hợp với các nội dung số học,hình học, đại lượng và đo đại lượng Nội dung dạy học giải toán có lời văn ở lớp
5 tiếp tục được xây dựng theo định hướng chủ yếu giúp học sinh rèn luyệnphương pháp giải toán ( phân tích đề toán, tìm cách giải quyết vấn đề đặt ra củabài toán và trình bày bài giải bài toán) giúp học sinh khả năng diễn đạt ( nói vàviết) khi muốn nêu tình huống trong bài toán, trình bày được " cách giải" bàitoán, biết viết "câu lời giải" và "phép tính giải",
Nhận thức sâu sắc được vấn đề này cũng như thấy rõ vai trò cũng như thựctrạng dạy toán ở lớp 5, với mong muốn nâng cao chất lượng dạy học giải toán cólời văn cho học sinh tiểu học nói chung và học sinh lớp 5 nói riêng là rất quantrọng và rất cần thiết
Để thực hiện tốt mục tiêu đó, giáo viên cần phải nghiên cứu, tìm biện phápgiảng dạy thích hợp, giúp các em giải bài toán một cách vững vàng Hiểu sâuđược bản chất của vấn đề cần tìm, mặt khác giúp các em có phương pháp suy
Trang 3luận toán lôgíc thông qua cách trình bày, lời giải đúng, ngắn gọn, sáng tạo trongcách thực hiện Từ đó giúp các em hứng thú, say mê học toán Từ những căn cứ
trên tôi đã thực hiện đề tài: “Một số biện pháp rèn kỹ năng giải toán có lời văn cho học sinh lớp 5”
II MỤC ĐÍCH NGHIÊN CỨU.
1 Tìm hiểu nội dung, chương trình và những phương pháp đúng để giảngdạy toán có lời văn
2 Tìm hiểu những kĩ năng cơ bản cần trang bị để phục vụ việc giải toán
có lời văn cho học sinh lớp 5
3 Khảo sát và hướng dẫn giải cụ thể một số bài toán, một số dạng toán cólời văn ở lớp 5, từ đó đúc rút kinh nghiệm, đề xuất một số ý kiến góp phần nângcao chất lượng dạy học và bồi dưỡng học sinh có năng khiếu giải toán
Trên cơ sở tìm hiểu thực tế kĩ năng giải các bài toán hợp ( có lời văn ) của học sinh nói chung, học sinh lớp 5B nói riêng có chất lượng chưa cao như mong muốn, tôi đã tìm hiểu một số biện pháp rèn kĩ năng giải toán có lời văn cho họcsinh lớp 5
III ĐỐI TƯỢNG NGHIÊN CỨU, KHẢO SÁT
1 Đối tượng nghiên cứu: Biện pháp rèn kĩ năng giải toán có lời văn cho học sinh lớp 5
2 Đối tượng khảo sát: Học sinh lớp 5 Trường Tiểu học
IV NHIỆM VỤ NGHIÊN CỨU
1 Tìm hiểu những vấn đề chung về đổi mới phương pháp dạy học môn Toán
2 Điều tra thực trạng về kĩ năng giải toán có lời văn của học sinh lớp 5
3 Đề xuất một số biện pháp góp phần rèn luyện kĩ năng giải toán có lời văn cho học sinh lớp 5
V PHƯƠNG PHÁP NGHIÊN CỨU:
- Nghiên cứu tài liệu
- Phương pháp điều tra
Trang 41 Phạm vi nghiên cứu: Trong chương trình Toán 5 có rất nhiều kiến thức, dạng bài nhưng trong khuôn khổ của đề tài tôi chỉ đi sâu tìm hiểu và đề xuất một
số biện pháp rèn kĩ năng giải toán có lời văn cho học sinh lớp 5
2 Kế hoạch nghiên cứu:
Trong nhiều năm được phân công giảng dạy lớp 5, tôi đã tìm hiểu vấn đề và thực trạng dạy học giải toán có lời văn ở lớp 5, đề ra một số biện pháp rèn kỹ năng giải toán có lời văn trong chương trình Toán 5 thông qua một số hình thức sau:
- Nghiên cứu tài liệu: Đọc tài liêu liên quan đến vấn đề nghiên cứu
- Nghiên cứu thực tiễn: Dự giờ một số tiết dạy Toán của đồng nghiệp, khảosát chất lượng học sinh, đàm thoại trao đổi với đồng nghiệp
+ Năm học 2015- 2016 được phân công giảng dạy lớp 5B tôi đã áp dụng các biện pháp rèn kĩ năng giải toán có lời văn theo từng bước như sau:
* Tuần 3 tháng 9: Khảo sát chất lượng học sinh
* Tuần 4 tháng 9 : Dạy thực nghiệm; phân tích , đánh giá hiệu quả của việc áp dụng các biện pháp trong đề tài
* Tuần 1 tháng 10 và các tháng còn lại của năm học 2015-2016 : Áp dụng biện pháp trong đề tài vào thực tế giảng dạy các tiết Toán cũng như các bàitoán được lựa chọn giảng dạy nhằm phụ đạo học sinh yếu và bồi dưỡng học sinh
có năng khiếu toán trong các tiết hướng dẫn học
* Tiến hành kiểm tra đánh giá chất lượng học tập nội dung các bài toán (đề khảo sát phần phụ lục) định kì vào các tháng 1/2016; 4/2016
Trang 5B NHỮNG BIỆN PHÁP ĐỔI MỚI ĐỂ GIẢI QUYẾT VẤN ĐỀ
I CƠ SỞ LÝ LUẬN
1 Căn cứ khoa học của đề tài
Giải toán là một thành phần quan trọng trong chương trình giảng dạymôn toán ở bậc tiểu học Nội dung của việc giải toán gắn chặt một cách hữu cơvới nội dung của số học và số học tự nhiên, các số thập phân, các đại lượng cơbản và các yếu tố đại số , hình học có trong chương trình
Vì vậy, việc giải toán có lời văn có một vị trí quan trọng thể hiện ở cácđiểm sau:
a) Các khái niệm và các qui tắc về toán trong sách giáo khoa, nói chung đềuđược giảng dạy thông qua việc giải toán Việc giải toán giúp học sinh củng cốvận dụng các kiến thức, rèn luyện các kĩ năng tính toán đồng thời qua việc giảitoán của học sinh mà giáo viên có thể dễ dàng phát hiện ra những ưu điểm hoặcthiếu sót của các em về kiến thức, kĩ năng và tư duy để giúp các em phát huy vàkhắc phục
b) Việc kết hợp học và hành, kết hợp giảng dạy với đời sống được thực hiệnthông qua việc cho học sinh giải toán, các bài toán liên hệ với cuộc sống mộtcách thích hợp giúp học sinh hình thành và rèn luyện những kĩ năng thực hànhcàn thiết trong đời sống hằng ngày giúp các em biết vận dụng những kĩ năng đótrong cuộc sống
c) việc giải toán góp phần quan trong việc xây dựng cho học sinh những cơ
sở ban đầu của lòng yêu nước, tinh thần quốc tế vô sản, thế giới quan duy vậtbiện chứng: Việc giải toán với những đề tài thích hợp, có thể giới thiệu cho các
em những thành tựu trong công cuộc xây dựng chủ nghĩa xã hội ở nước ta vàcác nước bè bạn, trong công cuộc bảo vệ hoà bình của nhân dân thế giới, gópphần giáo dục các em bảo vệ môi trường, phát triển dân số có kế hoạch Việcgiải toán có thể giúp các em thấy được nhiều khái niệm toán học Ví dụ: các số,các phép tính, các đại lượng đều có nguồn gốc trong cuộc sống hiện thực,trong thực tiễn hoạt động của con người, thấy được các mối quan hệ biện chứnggiữa các dữ kiện, giữa cái đã cho và cái phải tìm
d) Việc giải toán góp phần quan trọng vào rèn luyện cho học sinh năng lực tưduy và những đức tính tốt của con người lao động mới Khi giải một bài toán, tưduy của học sinh phải hoạt động một cách tích cực vì các em cần phân biệt cái gì
dã cho và cái gì cần tìm, thiết lập mối quan hệ giữa các giữ kiện của bài toángiữa cái đã cho và cái phải tìm Suy luận, nêu lên những phán đoán, rút ra nhữngkết luận thực hiện phép tính cần thiết để giải quyết các vấn đề đặt ra Hoạt độngtrí tuệ có trong trong việc giải toán góp phần giáo dục cho các em ý trí vượt khókhăn, đức tính cẩn thận, chu đáo, làm việc có hiệu quả, có kế hoạch, thói quenxem xét có căn cứ, có thói quen tự kiểm tra kết quả công việc mình làm, có ócđộc lập, suy nghĩ sáng tạo, tự tìm ra những lời giải mới hay và ngắn gọn
Trang 62 Vị trí và tầm quan trọng của môn Toán ở Tiểu học
Bậc Tiểu học là bậc học nền tảng của hệ thống giáo dục phổ thông BậcTiểu học tạo những cơ sở ban đầu rất cơ bản và bền vững cho trẻ tiếp tục học lênnhững bậc học tiếp theo
Giai đoạn cuối của bậc Tiểu học (lớp 4-5) tạo cơ sở cho học sinh tiếp tục họclên lớp trên, vừa chuẩn bị kiến thức, kĩ năng cần thiết để các em có thể bước vàocuộc sống Do đó, việc dạy học toán ở giai đoạn này vừa phải quan tâm đến việc
hệ thống hóa, khái quát nội dung học tập: vừa phải chú ý đáp ứng những nhucầu của cuộc sống để học sinh dễ dàng thích nghi với đời sống hàng ngày Trong
đó lớp 4- 5 lại là lớp đầu của giai đoạn quan trọng này Chính vì vậy, môn Toán
ở bậc Tiểu học có vị trí đặc biệt
Toán lớp 4-5 củng cố kĩ năng giải các bài toán hợp có lời văn, Các bàitoán có nội dung thực tế gần gũi với học sinh Học sinh biết trình bày bài giảiđầy đủ gồm các câu lời giải, các phép tính và đáp số Việc dạy giải toán có lờivăn cho học sinh lớp ( 4-5) giúp học sinh phải huy động toàn bộ tri thức, kĩnăng, phương pháp về toán Tiểu học Thông qua giải bài tập toán, học sinh thấyđược nhiều mặt của thực tế đời sống hàng ngày đồng thời góp phần quan trọngrèn học sinh có năng lực tư duy và những đức tính của con người lao động mớinhư: có ý chí vượt khó, làm việc có kế hoạch, nhẫn nại, cẩn thận, có nề nếp vàthói quen tác phong khoa học
II CƠ SỞ THỰC TIỄN
Ở chương trình tiểu học hiện nay, các bài toán được giải không phải bằngphương pháp đại số (Chỉ có thể áp dụng với học sinh giỏi và với những bài toánđơn giản có thể thay chữ thay số cần tìm để diễn đạt mối quan hệ trong bài toánbằng việc lập chương trình đơn giản thì có thể thực hiện được nhưng khi giảiphải giải theo phương pháp số học) Bởi lẽ hạt nhân của nội dung môn Toán ởtiểu học là số học Chính vì vậy mà ngay cả trong cuốn sách phương pháp dạy
học các môn học ở lớp 5 tập 1 có chỉ rõ:"Trong bốn mạch kiến thức cơ bản của Toán 5, mạch số học là trọng tâm, cốt lõi, thời lượng dành cho nội dung
số học khoảng 70 % tổng thời lượng của Toán 5"
Để giải được một bài toán, học sinh cần phải thực hiện được thao tác phântích được một liên hệ và phụ thuộc trong bài toán đó Muốn làm được việc nàyhọc sinh cần đọc kĩ đề bài để phân tích mối quan hệ phụ thuộc giữa "cái đã cho"
và " cái phải tìm" Muốn làm việc này, ta có thể dùng lời văn ngắn gọn hoặc sơ
đồ đoạn thẳng thay cho các số( số đã cho, số phải tìm trong bài toán) để minhhọa các quan hệ đó tạo ra một hình ảnh cụ thể giúp ta suy nghĩ, tìm tòi cáchgiải
Dạy giải toán có lời văn cho học sinh Lớp (4-5) thường tập trung vào cácbài toán điển hình dạng: Tìm số trung bình cộng; Tìm hai số khi biết tổng vàhiệu của hai số đó; Tìm hai số khi biết tổng và tỉ số của hai số đó; Tìm hai số khibiết hiệu và tỉ số của hai số đó Đây là những dạng toán cơ bản, trọng tâm củachương trình toán (4-5)
Trang 7Xuất phát từ những đặc điểm trên, khi hướng dẫn học sinh lớp 5 giảitoán có lời văn, giáo viên hướng dẫn học sinh tóm tắt bằng sơ đồ đoạn thẳng,bằng lời văn ngắn gọn chính là đã hướng dẫn các em cách thiết lập mối quan hệgiữa các dữ liệu trong bài toán Khi tóm tắt được bài toán, học sinh phải tìmhiểu kĩ đề bài, nhận rõ mối quan hệ của các yếu tố toán học trong đề bài Từ đócác em tìm ra hướng giải đúng, giải hay và nhiều cách giải khác nhau Chínhđiều đó làm cho bài toán trở nên sinh động hơn hấp dẫn hơn Đây cũng là mộthoạt động sáng tạo của học sinh tiểu học Nó giúp tư duy của học sinh về bàitoán rõ ràng hơn, cụ thể hơn
Trong thực tế, việc giải các bài toán có lời văn đòi hỏi học sinh phải huyđộng không chỉ các kiến thức về toán học như: công thức, khái niệm mà họcsinh còn phải huy động cả kiến thức của các môn học khác cũng như kiến thứcthực tế Đó thực sự là một hoạt động rèn luyện và phát triển tư duy, trí tuệ củahọc sinh nếu người giáo viên biết cách hướng dẫn một cách khéo léo và hợp lí
III THỰC TRẠNG CỦA VIỆC DẠY GIẢI TOÁN CÓ LỜI VĂN Ở LỚP 5.
1 Giáo viên :
a)Ưu điểm :
Giáo viên đã tìm hiểu kỹ bài dạy và truyền đạt đủ kiến thức cơ bản trongyêu cầu của sách giáo khoa Giáo viên đã kết hợp nhiều phương pháp trong mộttiết dạy ( giảng giải, trực quan, vấn đáp gợi mở) để dẫn dắt học sinh tìm ra kiếnthức, quan tâm đến việc dạy giải toán có lời văn
Giáo viên đã có sự chuẩn bị đồ dùng trực quan: Sơ đồ tóm tắt minh họa chobài toán
b) Một số tồn tại :
- Việc dạy giải toán có lời văn đã được quan tâm song chưa nhiều, khidạy thầy còn giảng và làm mẫu nhiều Do đó học sinh lĩnh hội một cách máymóc, thụ động
Trang 8toán từ 2 phép tính trở lên thì đa số học sinh yếu không làm được bởi một sốnguyên nhân sau:
* Nguyên nhân :
- Do trình độ ngôn ngữ, kỹ năng đọc hiểu của của học sinh còn kém Họcsinh đọc đề vội vàng, chưa biết tập trung vào những dữ kiện trọng tâm của đềtoán, không chịu phân tích đề toán
- Kĩ năng nhận dạng toán, nắm các bước giải trong từng dạng toán cònlúng túng Khả năng phân tích, tổng hợp, khái quát hóa vấn đề và tư duy của họcsinh còn hạn chế khi gặp những bài toán phức tạp Hầu hết, các em làm theokhuân mẫu của những dạng bài cụ thể mà các em thường gặp trong sách giáokhoa, khi gặp bài đòi hỏi tư duy, suy luận một chút các em không biết cách phântích dẫn đến lười suy nghĩ
- Chưa biết lập kế hoạch giải bài toán
- Kĩ năng đặt lời giải, kĩ năng tính toán của học sinh còn gặp nhiều khókhăn Một số em tìm ra phép tính đúng nhưng khi đặt lời giải thì còn lúng túng
và có khi đặt lời giải cho bài toán chưa hợp lý
- Việc tự học sinh tìm được sự liên quan giữa cái đã cho và cái phải tìmchưa tốt
- Học sinh thường dập khuôn theo mẫu, ít có sự sáng tạo trong giải toán
- Học sinh chưa được luyện tập thường xuyên nên thường hay nhầm lẫngiữa các dạng toán
- Khi giải xong bài toán, đa số học sinh bỏ qua bước kiểm tra lại bài, dẫnđến nhiều trường hợp sau sót do tính nhầm, do chủ quan
Đầu năm, khi tiếp nhận lớp 5B, để biết được chính xác mức độ nắm kiến thức kĩ năng giải toán của học sinh, tôi đã tiến hành khảo sát để biết chất lượng chung của lớp chủ nhiệm, đánh giá khả năng giải toán, thực hiện phân loại học sinh qua bài kiểm tra ( Đề bài phần phụ lục)
Từ những thực tế trên, tôi đã tiến hành áp dụng các biện pháp nhằm giúphọc sinh nâng cao kĩ năng giải toán có lời văn để góp phần nâng cao chất lượngdạy và học nói chung, giải toán có lời văn nói riêng cho học sinh lớp 5
Trang 9IV MỘT SỐ BIỆN PHÁP RÈN KỸ NĂNG GIẢI TOÁN CÓ LỜI VĂN CHO HỌC SINH LỚP 5.
Nội dung chủ yếu của môn Toán lớp 5 là tiếp tục củng cố và nâng cao kĩnăng giải các bài toán hợp (có lời văn) Các bài toán có nội dung thực tế gần gũivới học sinh, bồi dưỡng năng lực tư duy, một yêu cầu cơ bản về cách học ngàynay
Qua tìm hiểu lý luận dạy học giải toán và thực trạng dạy học đã nêu trên
của học sinh khi giải các bài toán có lời văn, tôi xin đề xuất " Một số biện pháp nhằm rèn kĩ năng giải toán có lời văn cho học sinh lớp 5" góp phần vào việc
nâng cao chất lượng giảng dạy môn Toán như sau :
1 Nghiên cứu kỹ nội dung chương trình sách giáo khoa Toán 5
Để có giờ dạy tốt, việc chuẩn bị bài của giáo viên đóng vai trò rất quantrọng Muốn giảng dạy tốt, trước khi lên lớp giáo viên cần nghiên cứu kĩ nộidung bài, phải nắm vững kiến thức, hiểu rõ ý đồ của sách giáo khoa, lựa chọnphương pháp, hình thức tổ chức dạy học tốt nhất nhằm phát huy tính tích cựcchủ động, sáng tạo của học sinh Giáo viên có nắm vững kiến thức, hiểu đốitượng học sinh thì mới có thể đưa ra phương pháp thích hợp và chuẩn bị tổ chứccho học sinh học tập hiệu quả
Từng mạch kiến thức Toán trong chương trình Toán 5 nói riêng trongchương trình Toán tiểu học nói chung đều có đặc điểm riêng Để dạy tốt nộidung giải các bài có lời văn, giáo viên cần nghiên cứu kĩ cấu trúc, nội dung,cách thể hiện nội dung dạy học giải toán trong sách giáo khoa về mức độ yêucầu ( chuẩn ) kiến thức và kĩ năng cơ bản của mạch kiến thức này Đây là cơ sởrất quan trọng để giáo viên tiến hành dạy học, kiểm tra, đánh giá kết quả họctoán của học sinh Từ đó tìm ra phương pháp dạy học thích hợp giúp học sinhchủ động nắm kiến thức
Toán 5 bao gồm các nội dung: Số học ( số và phép tính) ; đại lượng và đođại lượng ; các yếu tố hình học ; giải toán có lời văn ; một số yếu tố đại số vàyếu tố thống kê được tích hợp ở nội dung số học
Theo chương trình môn Toán ở lớp 5, nội dung Toán 5 chia thành 175 bàihọc hoặc bài thực hành, luyện tập, ôn tập, kiểm tra Mỗi bài thường được thựchiện trong một tiết học kéo dài khoảng 40 phút Để tăng cường luyện tập, thựchành, vận dụng các kiến thức và kĩ năng cơ bản, nội dung dạy học về lí thuyết
đã được tinh giảm, chủ yếu là các nội dung cơ bản và thiết thực Đặc biệt sáchgiáo khoa Toán 5 rất quan tâm đến ôn tập, củng cố, hệ thống hóa các kiến thức
và kĩ năng cơ bản của chương trình môn Toán ở tiểu học; hình thức ôn tập chủyếu thông qua luyện tập, thực hành
- Các nội dung lí thuyết ( bài học bổ sung, bài học mới ) : 72 tiết chiếm41.1% tổng thời lượng của Toán 5
- Các nội dung thực hành, luyện tập, ôn tập, kiểm tra : 103 tiết chiếm58.9% tổng thời lượng của Toán 5
Trang 10Các nội dung học tập của Toán 5 được xắp xếp thành 5 chương như sau:
Chương 1: + Ôn tập và bổ sung về phân số
+ Giải toán liên quan đến tỉ lệ
+ Bảng đơn vị đo diện tích
Chương 2 : + Số thập phân
+ Các phép tính với số thập phân
Chương 3 : Hình học
Chương 4 : + Số đo thời gian
+ Toán chuyển động đều
a) Nhóm 1: Các bài toán hợp mà quá trình giải không theo một phươngpháp thống nhất cho các bài toán đó
b) Nhóm 2: Các bài toán điển hình là các bài toán mà trong quá trình giải
có phương pháp riêng cho từng dạng bài toán Trong chương trình toán lớp 5 cónhững dạng toán điển hình sau:
-Tìm số trung bình cộng
-Tìm hai số khi biết tổng và hiệu của hai số đo
-Tìm hai số khi biết tổng và tỉ của hai số đó
-Tìm hai số khi biết hiệu và tỉ của hai số đó
-Bài toán liên quan đến đại lượng tỉ lệ
- Bài toán về tỉ số phần trăm
- Bài toán về chuyển động đều
- Bài toán có nội dung hình học.( Chu vi, diện tích, thể tích)
Người giáo viên phải nắm vững các dạng toán để có cách giải phù hợp.Giải toán là một hoạt động trí tuệ khó khăn, phức tạp hình thành kĩ nănggiải toán khó hơn nhiều so với hình thành kĩ năng tính Vì bài toán là sự kết hợp
đa dạng nhiều khái niệm, quan hệ toán học Giải toán không chỉ là nhớ mẫu đểrồi áp dụng, mà đòi hỏi phải nắm chắc khái niệm, quan hệ toán học, nắm ý nghĩacủa phép tính, đòi hỏi khả năng suy nghĩ độc lập của học sinh, đòi hỏi phải biếttính đúng
Các bước để giải một bài toán có lời văn ở tiểu học nói chung và lớp 5 nóiriêng đã được đề cập ở một số cách về phương pháp giải toán ở bậc tiểu học Ởđây tôi rút ra một số kinh nghiệm hướng dẫn: Phần đạy toán có lời văn ở lớp 5
Ở lớp 5, việc học phân số, học số thập phân, học về các đơn vị đo đạilượng cũng được kết hợp học các phép tính, học giải toán được kết hợp mộtcách hữu cơ để có tác dụng hỗ trợ lẫn nhau Việc dạy cho học sinh nắm đượccác phương pháp chung để giải toán được chú trọng ngay từ khi các em giải bàitoán đầu tiên ở bậc tiểu học và sau này vẫn được thường xuyên quan tâm Các
em luôn được rèn luyện trong việc tìm hiểu đề toán, trong việc phân tích cái gì
Trang 11đã cho, cái gì phải tìm trong việc suy nghĩ tìm ra cách giải và trong việc thựchiện cách giải
Sau đây là một số ví dụ về các dạng toán có lời văn ở lớp 5:
* Quan hệ tỉ lệ
Ví dụ 1: Một người làm trong 2 ngày được trả 72 000 đồng tiền công Hỏi
với mức trả công như thế, nếu làm trong 5 ngày thì người đó được trả bao nhiêutiền ?
( Bài 4- trang 20- Toán 5)
Ví dụ 2: 10 người làm xong công việc phải hết 7 ngày Nay muốn làm
xong công việc đó trong 5 ngày thì cần bao nhiêu người? ( Mức làm của mỗi người như nhau)
( Bài 1- trang -21 - Toán 5)
* Tỉ số phần trăm
Ví dụ 1: Một lớp học có 25 học sinh, trong đó có 13 học sinh nữ Hỏi số
học sinh nữ chiếm bao nhiêu phần trăm số học sinh của lớp học đó?
( Bài 3- trang 75- Toán 5)
Ví dụ 2: Lãi xuất tiết kiệm là 0,5 % một tháng Một người gửi tiết kiệm 5
000 000 đồng Hỏi sau một tháng cả số tiền gửi và số tiền lãi là bao nhiêu ?
( Bài 2- trang 77- Toán 5)
Ví dụ 3: Một cửa hàng bỏ ra 6 000 000 đồng tiền vốn Biết cửa hàng đó
lãi 15%, tính số tiền lãi
( Bài 2b- trang 79- Toán 5)
* Toán chuyển động đều
Ví dụ 1: Một người đi xe máy đi trong 3 giờ được 105km Tính vận tốc
của người đi xe máy
( Bài 1- trang 139 - Toán 5)
Ví dụ 2: Một người đi xe đạp trong 15 phút với vận tốc 12,5 km/giờ Tính
quãng đường đi được của người đó
( Bài 2- trang 141 - Toán 5)
Ví dụ 3: Quãng đường AB dài 180km Một ôtô đi từ A đến B với vận tốc
54km/giờ cùng lúc đó một xe máy đi từ B đến A với vận tốc 36km/giờ Hỏi kể
từ lúc bắt đầu đi, sau mấy giờ ôtô gặp xe máy?
(bài 1/ 144 – SGK Toán 5)
Ví dụ 4: Một người đi xe đạp từ A đến B với vận tốc 12 km/giờ Sau 3 giờ
một xe máy cũng đi từ A đến B với vận tốc 36 km/giờ Hỏi kể từ lúc xe máy bắtđầu đi, sau bao lâu xe máy đuổi kịp xe đạp ?
( Bài 1b- trang 146- Toán 5)
* Bài toán có nội dung hình học
Trang 12Ví dụ 1: Một thửa ruộng hình thang có đáy lớn 120m, đáy bé bằng 2
lớn Đáy bé dài hơn chiều cao 5m Trung bình cứ 100m² thu hoạch được 64,5kgthóc Tính số ki-lô-gam thóc thu hoạch được trên thửa ruộng đó
( Bài 2- trang 94- Toán 5)
Ví dụ 2: Miệng giếng nước là một hình tròn có bán kính 0,7m Người ta
xây thành giếng rộng 0,3m bao quanh miệng giếng Tính diện tích của thànhgiếng đó
( Bài 3 - trang 100 - Toán 5)
Ví dụ 3: Một cái thùng không nắp dạng hình hộp chữ nhật có chiều dài
1,5m, chiều rộng 0,6m và chiều cao 8dm Người ta sơn mặt ngoài của thùng.Hỏi diện tích quét sơn là bao nhiêu mét vuông?
( Bài 2 - trang 110 - Toán 5)
Nội dung dạy học giải toán có lời văn được xắp xếp hợp lí, đan xen phùhợp với quá trình học tập của học sinh ở các mạch số học, hình học, đại lượng
và đo đại lượng Nội dung được xây dựng theo định hướng chủ yếu giúp họcsinh rèn luyện phương pháp giải toán( phân tích đề toán, tìm cách giải quyết vấnđề( bài toán) và trình bày bài giải; giúp học sinh có khả năng diễn đạt khi muốnnêu "tình huống" trong bài toán, trình bày được " cách giải" bài toán, biết viết
"câu lời giải" và"phép tính giải"
Nắm vững được nội dung chương trình sách giáo khoa giúp tôi địnhhướng những kiến thức cần đạt được của môn học, từ đó xây dựng được hệthống các bài học ở các tiết hướng dẫn học theo vòng xoáy chôn ốc giúp họcsinh củng cố và nắm kiến thức, kĩ năng giải các dạng toán có lời văn( đặc biệt lànhững bài toán điển hình ) được học trong chương trình Toán 5 một cách có hệthống
2 Phân loại các dạng toán có lời văn ở lớp 5
Để nâng cao chất lượng dạy giải toán có lời văn, tôi nhận thấy việc phânloại từng dạng toán có lời văn là rất quan trọng Qua việc phân loại các dạngtoán giúp giáo viên nắm được nội dung kiến thức về " Giải toán có lời văn" ởlớp 5, từ đó lựa chọn phương pháp phù hợp cho từng loại bài, từng dạng toán Sau khi nghiên cứu tài liệu, sách giáo khoa, nội dung chương trình mônToán lớp 5, tôi đã phân loại một số dạng bài tập ( toán có lời văn) làm 9 dạngchủ yếu như sau:
* Dạng 1 - Bài toán tìm số trung bình cộng.
Ví dụ: Một người đi xe máy trong 3 giờ đi được 126.54km Hỏi trung bình
mỗi giờ người đó đi được bao nhiêu ki-lô-mét ?
( Bài 3- trang 64- Toán 5)
* Dạng 2- Bài toán về quan hệ tỉ lệ.
Ví dụ 1: Một người làm trong 2 ngày được trả 72 000 đồng tiền công Hỏi
với mức trả công như thế, nếu làm trong 5 ngày thì người đó được trả bao nhiêutiền ?
( Bài 4- trang 20- Toán 5)
Trang 13Ví dụ 2: 10 người làm xong công việc phải hết 7 ngày Nay muốn làm
xong công việc đó trong 5 ngày thì cần bao nhiêu người? ( Mức làm của mỗi người như nhau)
( Bài 1- trang -2 1 - Toán 5)
* Dạng 3- Bài toán về tỉ số phần trăm.
Ví dụ 1: Một lớp học có 25 học sinh, trong đó có 13 học sinh nữ Hỏi số
học sinh nữ chiếm bao nhiêu phần trăm số học sinh của lớp học đó?
( Bài 3- trang 75- Toán 5)
Ví dụ 2: Lãi xuất tiết kiệm là 0,5 % một tháng Một người gửi tiết kiệm 5
000 000 đồng Hỏi sau một tháng cả số tiền gửi và số tiền lãi là bao nhiêu ?
( Bài 2- trang 77- Toán 5)
Ví dụ 3: Một cửa hàng bỏ ra 6 000 000 đồng tiền vốn Biết cửa hàng đó lãi
15%, tính số tiền lãi
( Bài 2b- trang 79- Toán 5)
* Dạng 4- Bài toán Tìm hai số biết tổng và hiệu của hai số đó.
Ví dụ : Một người đi xe đạp trong ba giờ đi được 36km Giờ thứ nhất
người đó đi được 13,25km, giờ thứ hai người đó đi được ít hơn giờ thư nhất1,5km Hỏi giờ thứ ba người đó đi được bao nhiêu ki-lô-mét ?
( Bài 4- trang 55- Toán 5)
* Dạng 5- Bài toán Tìm hai số biết tổng và tỉ số của hai số đó.
Ví dụ: Tổng của hai số là 80 Số thứ nhất bằng 7
9 số thứ hai Tìm hai sốđó
( Bài 1a- trang 18- Toán 5)
* Dạng 6- Bài toán Tìm hai số biết hiệu và tỉ số của hai số đó.
Ví dụ: Một khu đất hình chữ nhật có chiều dài 200m, chiều rộng bằng 3
4
chiều dài Hỏi diện tích khu đất đó bằng bao nhiêu mét vuông, bằng bao nhiêuhéc-ta ?
( Bài 4- trang 30- Toán 5)
* Dạng 7 - Bài toán về chuyển động đều.
Ví dụ 1: Một người đi xe máy đi trong 3 giờ được 105km Tính vận tốc
của người đi xe máy
( Bài 1- trang 139 - Toán 5)
Ví dụ 2: Một người đi xe đạp trong 15 phút với vận tốc 12,5 km/giờ Tính
quãng đường đi được của người đó
( Bài 2- trang 141 - Toán 5)
Ví dụ 3: Quãng đường AB dài 180km Một ôtô đi từ A đến B với vận tốc
54km/giờ cùng lúc đó một xe máy đi từ B đến A với vận tốc 36km/giờ Hỏi
kể từ lúc bắt đầu đi, sau mấy giờ ôtô gặp xe máy?
(Bài 1/ 144 – SGK Toán 5)
Trang 14Ví dụ 4: Một người đi xe đạp từ A đến B với vận tốc 12 km/giờ Sau 3 giờ
một xe máy cũng đi từ A đến B với vận tốc 36 km/giờ Hỏi kể từ lúc xe máy bắtđầu đi, sau bao lâu xe máy đuổi kịp xe đạp ?
( Bài 1b- trang 146- Toán 5)
Ví dụ 5: Hai ô tô xuất phát từ A và B cùng một lúc và đi ngược chiều nhau,
sau 2 giờ chúng gặp nhau Quãng đường AB dài 180km Tìm vận tốc của mỗi ô
tô, biết vận tốc ô tô đi từ A bằng 2
3 vận tốc ô tô đi từ B
( Bài 3- trang 172 - Toán 5)
* Dạng 8 - Các bài toán có nội dung hình học.
Ví dụ 1: Một thửa ruộng hình thang có đáy lớn 120m, đáy bé bằng 2
lớn Đáy bé dài hơn chiều cao 5m Trung bình cứ 100m² thu hoạch được 64,5kgthóc Tính số ki-lô-gam thóc thu hoạch được trên thửa ruộng đó
( Bài 2- trang 94- Toán 5)
Ví dụ 2: Miệng giếng nước là một hình tròn có bán kính 0,7m Người ta
xây thành giếng rộng 0,3m bao quanh miệng giếng Tính diện tích của thànhgiếng đó
( Bài 3 - trang 100 - Toán 5)
Ví dụ 3: Một cái thùng không nắp dạng hình hộp chữ nhật có chiều dài
1,5m, chiều rộng 0,6m và chiều cao 8dm Người ta sơn mặt ngoài của thùng.Hỏi diện tích quét sơn là bao nhiêu mét vuông?
* Dạng 9 - Bài toán về: Tính tuổi
Ví dụ 1: Tuổi của con gái bằng 1
4 tuổi mẹ, tuổi của con trai bằng 1
5 tuổi
mẹ Tuổi của con gái cộng với tuổi của con trai là 18 tuổi Hỏi mẹ bao nhiêu tuổi
?
( Bài 1- trang 180- Toán 5)
Ví dụ 2: Năm nay tuổi bố gấp 4 lần tuổi con Tính tuổi của mỗi người, biết
bố hơn con 30 tuổi
( Bài 4- trang 32- Toán 5)
Việc phân loại một số dạng bài tập ( toán có lời văn) là rất quan trọng.Các bài toán này như là các bài "mẫu" để từ đó chúng ta có thể hướng dẫn họcsinh vận dụng và giải được các bài toán tương tự cùng dạng
3 Hình thành kĩ năng giải toán có lời văn theo các bước
Khi dạy giải toán có lời văn cần để học sinh cố gắng tự tìm ra cách giải bài
toán( hoặc phương pháp giải bài toán), giáo viên không nên làm thay hoặc ápđặt cách giải bài toán đối với học sinh Chính vì thế, trong quá trình dạy học tôiluôn chú ý khắc sâu quy trình giải toán theo các bước để dần dần hình thành thóiquen và trở thành kĩ năng tốt cho học sinh khi giải toán Khi giải một bài toán,các em không chỉ hiểu mà phải làm bài theo nhiều cách khác nhau Biết vậndụng vào thực tế một cách có hiệu quả Vì vậy, tôi xem xét kĩ và giúp đỡ các emtừng bước cụ thể:
Trang 15Để giải được các bài toán có lời văn, thông thường học sinh cần thực
hiện theo các bước sau:
- Bước 1: Phân tích đề toán (Tìm hiểu đề bài)
-Bước 2: Tóm tắt bài toán
-Bước 3: Tìm cách giải bài toán
-Bước 4: Trình bày bài giải
-Bước 5: Kiểm tra bài giải
Trong các bước trên, bước nào cũng có vai trò nhất định đối với việc giảitoán
3 1: Hướng dẫn phân tích đề toán (Tìm hiểu đề bài)
Việc tìm hiểu nội dung đề toán thường thông qua việc đọc bài toán dù bài
toán cho dưới dạng lời văn hoàn chỉnh hoặc bằng dạng tóm tắt( sơ đồ) Tập chohọc sinh có thói quen tự tìm hiểu đề toán Tránh tình trạng vừa đọc xong đã bắttay vào giải bài toán ngay mà phải xác định được dữ liệu dã cho và cái phải tìm.Nếu trong bài toán có thuật ngữ nào mà học sinh chưa hiểu rõ, giáo viên cầnhướng dẫn để học sinh hiểu được nội dung và ý nghĩa của từ đó trong bài toánđang làm, chẳng hạn từ " tiết kiệm", " năng suất", " sản lượng"
Ví dụ 1: Một lớp học có 28 học sinh, trong đó số học sinh nam bằng
5
2
số họcsinh nữ Hỏi lớp học đó có bao nhiêu em nữ, bao nhiêu em nam?
( Bài 1 - trang 22- Toán 5)
- Dữ liệu đã cho: Lớp học có 28 học sinh, trong đó số học sinh nam bằng 52
số học sinh nữ
- Yêu cầu phải tìm: Số học sinh nam, số học sinh nữ của lớp học đó
* Tuy nhiên, trong quá trình giải toán không phải tất cả các đề bài đều cho dữ liệu trước và yêu cầu phải tìm sau mà đôi khi ngược lại: Đưa ra câu hỏi trước rồi mới cho dữ liệu.
Ví dụ 2: Tính chu vi mảnh đất hình chữ nhật, biết chiều dài gấp 2 lần chiều
rộng và hơn chiều rộng 15m
( Bài 2 - trang 22- Toán 5)
- Dữ liệu đã cho: Chiều dài gấp 2 lần chiều rộng và hơn chiều rộng 15m
- Yêu cầu phải tìm: Chu vi mảnh đất hình chữ nhật
* Học sinh phải phân biệt rõ những gì thuộc về bản chất, những gì không
thuộc về bản chất của đề toán để hướng sự chú ý của mình vào những chỗ cần thiết, cụ thể.
Đối với mỗi bài toán có lời văn, tôi yêu cầu học sinh trước tiên phải đọc
thật kỹ đề toán, suy nghĩ về ý nghĩa bài toán, nội dung bài toán để hiểu được "giả thiết" và " kết luận" của bài toán
Trang 16Tôi yêu cầu học sinh không nôn nóng, vội làm bài khi chưa đọc kỹ đề bài.
Ví dụ: Số lít nước mắm loại I có nhiều hơn số lít nước mắm loại II là 12l.
Hỏi mỗi loại có bao nhiêu lít nước mắm, biết rằng số lít nước mắm loại I gấp 3lần số lít nước mắm loại II ?
( Bài 2- trang 18 - Toán 5)
Ở bài toán này, tôi yêu cầu học sinh đọc kỹ đề và trả lời câu hỏi:
+ Bài toán cho biết gì?( giả thiết)
+ Bài toán hỏi gì?( kết luận)
- Học sinh sẽ trả lời: Số lít nước mắm loại I nhiều hơn số lít nước mắm loại II là 12 lít và số lít nước mắm loại I gấp 3 lần số lít nước mắm loại II Hỏi mỗi loại có bao nhiêu lít nước mắm.
- Tôi hỏi tiếp để học sinh suy nghĩ trả lời:
+ Bài toán thuộc dạng toán nào? ( Dạng toán tìm hai số khi biết hiệu
và tỉ số của hai số đó)
+ Vì sao em biết ?(Số lít nước mắm loại I nhiều hơn số lít nước mắm
loại II là 12 lít(hiệu hai số) và số lít nước mắm loại I gấp 3 lần số lít nước mắmloại II( tỉ số của hai số)
Ở bước này câu hỏi của giáo viên đặt ra để học sinh phân tích đề toán rấtquan trọng Bởi học sinh thường bị phân tán vào các từ ngữ của bài toán như:xanh, đỏ, gái, trai mà không chú ý đến bản chất của đề toán
Sau khi học sinh đã phân tích được đề toán và hiểu bài toán cho biết gì,yêu cầu gì và bài toán thuộc dạng toán nào, tôi hướng dẫn các em cách tóm tắtbài toán
3.2 Hướng dẫn học sinh tóm tắt bài toán
Trong giải toán có lời văn, tóm tắt đề toán cũng là một việc rất cần thiết
và quan trọng Vì có tóm tắt được đề toán các em mới biết tìm ra mối quan hệgiữa cái đã cho và cái cần tìm để tìm ra cách giải bài toán
Mỗi bài toán đều có cách tóm tắt khác nhau, tuy nhiên các em cần lựa chọncách tóm tắt sao cho phù hợp với nội dung từng bài để dễ hiểu, đơn giản và ngắngọn nhất Có những bài toán tóm tắt bằng lời song cũng có nhiều bài toán nêntóm tắt sơ đồ hoặc vừa tóm tắt bằng sơ đồ vừa tóm tắt bằng lời cũng vẫn dễ hiểunhư nhau
Mục đích của tóm tắt bài toán là phân tích đề toán để làm rõ giả thiết( bàitoán cho biết gì) và kết luận( bài toán hỏi gì), thu gọn bài toán theo giả thiết, kếtluận của bài toán rồi từ đó tìm ra cách giải bài toán một cách hợp lý Bởi vậy,dạy tóm tắt bài toán trước khi giải bài toán là rất cần thiết Tuy vậy không nhấtthiết bắt buộc phải viết " tóm tắt" vào phần trình bày bài giải( tùy theo yêu cầucủa bài toán, tùy theo từng giai đoạn học tập của học sinh, giáo viên có thể chohọc sinh viết "tóm tắt" vào bài giải hoặc không) Riêng các bài toán về mối quan
hệ số học" tổng - tỉ" và " hiệu - tỉ" , một số bài toán về chuyển động đuổinhau như đã nêu ở trên thì cần phải vẽ sơ đồ đoạn thẳng vào phần trình bày giải
Trang 17bài toán.Khi vẽ sơ đồ phải chọn độ dài các đoạn thẳng và sắp xếp các đoạnthẳng đó một cách thích hợp để có thể dễ dàng thấy được mối quan hệ phụ thuộcgiữa các đại lượng, tạo ra một hình ảnh cụ thể giúp ta suy nghĩ tìm tòi cách giảimột bài toán
Ví dụ 1: Mua 5m vải hết 80 000 đồng Hỏi mua 7m vải loại đó hết bainhiêu tiền?
( Bài 1 trang 19- Toán 5) Sau khi hướng dẫn học sinh phân tích và hiểu bài toán, dạng toán trên, tôi yêu cầu học sinh nhớ lại cách tóm tắt dạng toán đã học ở lớp 4 và tóm tắt bài toán.
Học sinh đã nhớ lại và tóm tắt như sau:
5m: 80 000đồng
7m: đồng?
Ví dụ 2: ( Bài 2- trang 18 - Toán 5)
Sau khi hướng dẫn học sinh phân tích, xác định được bài toán thuộc dạng " Tìm hai số khi biết hiệu và tỉ số của hai số đó" Tôi hướng dẫn cách phân tích và tóm tắt như sau:
Số lít nước mắm loại I nhiều hơn số lít nước mắm loại II là 12 lít (hiệu haisố) và số lít nước mắm loại I gấp 3 lần số lít nước mắm loại II( tỉ số của hai số) Coi số lít nước mắm loại I là 3 phần thì số lít nước mắm loại II là 1 phầnnhư thế và số lít nước mắm loại I hơn số lít nước mắm loại II là 12 lít Ta có sơ
Có thể nói đây là một bước quan trọng vì đề toán được làm sảng tỏ: mốiquan hệ giữa các đại lượng trong bài toán được nêu bật, các yếu tố không cầnthiết được lược bỏ
?l
12l
?l
Trang 18Mỗi bài toán, mỗi dạng toán có cách tóm tắt khác nhau, trong quá trình dạytoán tôi đã khắc sâu cách tóm tắt từng dạng toán, dạng bài để học sinh dần dầnhình thành thói quen, kĩ năng tóm tắt bài toán vì việc tóm tắt được bài toánchính là chỗ dựa để học sinh đi tìm ra câu lời giải và phép tính đúng.
3 3 Hướng dẫn học sinh phân tích bài toán để tìm cách giải.
Để học sinh tự tìm ra cách giải bài toán, giáo viên cần hướng dẫn học sinh
phân tích mối quan hệ giữa các dữ kiện đã cho( Bài toán cho biết gì) với kếtluận( Bài toán hỏi gì)? Từ đó suy nghĩ xem từ các số đã cho và điều kiện củabài toán có thể biết gì? có thể làm gì? phép tính đó có thể giúp ta trả lời câu hỏicủa bài toán không? trên có sở đó, suy nghĩ để thiết lập trình tự giải bài toán Khi học sinh nêu ý kiến, giáo viên chưa vội kết luận ngay mà nên khuyếnkhích để các em tự làm theo ý hiểu của mình
Ví dụ 1: ( Bài 2- trang 18 - Toán 5)
Bài toán này thuộc dạng toán tìm hai số khi biết hiệu và tỉ số của hai số đó
đã học ở lớp 4
- Giáo viên hướng dẫn học sinh phân tích đề:
+ Bài toán cho biết gì? ( Số lít nước mắm loại I nhiều hơn số lít nước mắm loại II là 12l và số lít nước mắm loại I gấp 3 lần số lít nước mắm loại II)
+ Bài toán hỏi gì? ( Hỏi mỗi loại có bao nhiêu lít nước mắm)
+ Hãy vẽ đoạn thẳng biểu thị số lít mắm loại I và loại II
+ Muốn tìm số lít nước mắm loại I ta làm thế nào?
+ Muốn tìm số lít nước mắm loại II ta làm thế nào?
Sau khi học sinh đã phân tích đề toán và vẽ được sơ đồ Nhìn vào sơ đồhọc sinh có thể tìm ra cách giải bài toán như sau:
Bước 1: Tìm hiệu số phần bằng nhau.
Bước 2: Tìm số lít nước mắm loại I.
Bước 3: Tìm số lít nước mắm loại II.
Ví dụ 2: 10 người làm xong công việc phải hết 7 ngày Nay muốn làm xong
công việc đó trong 5 ngày thì cần bao nhiêu người? ( Mức làm của mỗi người như nhau)
( Bài 1- trang - 1 - Toán 5).
- Giáo viên hướng dẫn học sinh phân tích đề như sau:
+ Bài toán cho biết gì?
+ Bài toán hỏi gì ? Muốn trả lời được câu hỏi của bài toán thì cần biết những gì ? Trong những điều ấy, cái gì đã biết, cái gì chưa biết?
Trang 19Bài toán này thuộc dạng toán: " Bài toán liên quan đến rút về đơn vị " các
con đã được học ở lớp 3 và củng cố ở các bài toán của lớp 4 Sau khi hướng dẫnhọc sinh phân tích đề toán và tự tóm tắt được bài toán rồi, tôi gợi mở để học sinhnhớ lại cách giải dạng toán và tự tìm ra cách giải bài toán như sau:
+ Muốn tìm số người để làm xong công việc trong 5 ngày, con phải làm như thế nào? Học sinh trả lời : Trước hết ta phải tìm số người làm xong công việc đó trong 1 ngày, rồi tìm số người làm xong công việc trong 5 ngày.
Tiếp theo, tôi yêu cầu học sinh thiết lập trình tự giải toán- gọi học sinh
trình bày miệng Học sinh nêu được cách giải bài toán như sau:
Cách 1:
+ Bước 1: Tìm số người để làm xong công việc đó trong 1 ngày.
+ Bước 2 : Tìm số người để làm xong công việc đó trong 5 ngày.
Sau khi xác định được cách giải bài toán, giáo viên cho học sinh tìm câu lời
+ Số người làm công việc đó trong 5 ngày là bao nhiêu?
Tiếp theo , học sinh thiết lập trình tự giải toán theo cách " Tìm tỉ số" như sau: Cách 2:
+ Bước 1: Tìm tỉ số của 5 ngày so với 7 ngày.
+ Bước 2 : Tìm số người để làm xong công việc đó trong 5 ngày.
Ở bài toán trên có thể giải theo cách " Rút về đơn vị" hoặc " Tìm tỉ số" Tuy nhiên tôi hướng dẫn học sinh chọn cách giải cho phù hợp
Sau khi xác định được cách giải bài toán giáo viên cho học sinh tìm câulời giải và phép tính tương ứng để thực hiện các bước giải bài toán
Đây chính là bước quan trọng, nó giúp các em phát triển khả năng diễndạt, tư duy giải toán Chính vì vậy, với mỗi bài toán, tôi đều cho nhiều học sinhnêu câu lời giải và phép tính tương ứng của mình để học sinh khác lắng nghe,nhận xét rồi ghi nhớ và lựa chọn cách giải ngắn gọn, phù hợp với từng bài toán
3 4 Hướng dẫn học sinh trình bày bài giải
Bước trình bày bài giải là một trong những bước quan trọng nhất trong quá
trình giải toán có lời văn Dựa vào cách học sinh trình bày lời giải và phép tínhgiải, có thể thấy được mức độ nắm kiến thức của học sinh đến đâu để giáo viênkịp thời uốn nắn, bổ sung những thiếu sót
Sau khi học sinh đã biết cách giải bài toán giáo viên hướng dẫn học sinh
Trang 20+ Thực hiện các phép tính theo trình tự kế hoạch đã thiết lập để tìm ra đápsố.Mỗi khi thực hiện phép tính cần kiểm tra xem đã tính đúng chưa? Phép tínhđược thực hiện có dựa trên cơ sở đúng đắn không?
Sau khi học sinh tự trình bày bài giải vào vở, gọi học sinh lên bảng làm bài
Ví dụ: ( Bài 2- trang 18 - Toán 5)
Học sinh trình bày bài giải như sau:
+ Có học sinh trình bày:
Bài giảiTheo sơ đồ, hiệu số phần bằng nhau là:
+Có học sinh có cách trình bày khác như sau:
Theo sơ đồ, hiệu số phần bằng nhau là:
3 5: Hướng dẫn học sinh kiểm tra- thử lại bài giải đảm bảo phát huy tính sáng tạo, chủ dộng của học sinh khi học giải toán.
Thông thường, để có được đáp số đúng thì phải làm đúng các phép tính
trong bài giải Muốn thế thì học sinh phải nắm vững các quy tắc tính toán.Nhưng trong thực tế, ngay cả khi học sinh nắm vững những quy tắc tính toánvẫn có thể nhẫm lẫn, sai sót Để tránh những sai sót không đáng có ấy cần chúý:
Trang 21Mỗi khi thực hiện phép tính cần kiểm tra xem đã đúng chưa? Giải songbài toán phải thử xem đáp số đã tìm được có trả lời đúng câu hỏi của bài toán cóphù hợp với các điều kiện của bài toán không
Tôi hướng dẫn học sinh kiểm tra bài giải như sau:
+ Yêu cầu học sinh tự kiểm tra bài giải của mình xem trong quá trìnhtrình bày câu lời giải và phép tính tương ứng đã đúng chưa, kết quả phép tính đãchính xác chưa?
+ Yêu cầu học sinh nhận xét bài của bạn trên bảng
Giáo viên nhận xét, chốt đáp án đúng( cách giải hay, ngắn gọn nếu có)
+ Yêu cầu 2 học sinh ngồi cùng bàn đổi vở, tự kiểm tra chéo của nhau + Yêu cầu học sinh làm sai tự sửa lại bài của mình.( Câu lời giải, phéptính tương ứng, đáp số, cách trình bày bài giải)
Với việc hướng dẫn học sinh tự kiểm tra lại bài làm của mình, của bạn nhưtrên, dần dần giúp các em hình thành kĩ năng giải bài toán có lời văn, từ bài dễđến bài khó đều thực hiện một cách cẩn thận theo các bước Từ đó học sinhkhông quá khó để làm đúng các bài toán có lời văn Ngoài ra việc tự kiểm tra bàicòn giúp các em nhận rõ lỗi sai và tự sử lại, từ đó học sinh thêm ghi nhớ cáchlàm Đặc biệt điều này rất phù hợp với cách đánh giá học sinh theo thông tư 30của Bộ Giáo dục và Đào tạo mới ban hành
Tiểu kết: Với các bài toán nói chung, toán ( có lời văn) nói riêng tôi đều
hướng dẫn các em làm theo tuần tự các bước trên Từ đó thấy các em không cònthấy ngại tư duy ở những bài toán có lời văn và không quá khó để làm đúng cácbài toán đó
Tóm lại, để học sinh có kĩ năng giải toán có lời văn một cách thuần thụcthì việc giúp cho các em hiểu rõ ý nghĩa của từng dạng toán,loại bỏ những yếu
tố không quan trọng bằng tóm tắt , sau đó có thể mô hình hoá nội dung từngdạng bằng sơ đồ đoạn thẳng, từ đó giúp các em tìm ra cách giải bài toán là mộtviệc làm hết sức quan trọng Làm được việc này giáo viên đã đạt được mục tiêulớn nhất trong giảng dạy đó là việc không chỉ dừng lại ở việc “dạy toán” mà cònhướng dẫn học sinh “học toán sao cho đạt hiệu quả cao nhất”
4 Giúp học sinh nắm vững cách giải từng dạng toán có lời văn.
Ở lớp 4 học sinh đã được làm quen và giải các bài toán với các số tự nhiên,phân số, số đo đại lượng và các bài toán có lời văn điển hình Muốn học sinh cóthể nắm chắc và tạo thành kĩ năng giải các bài toán hợp( toán có lời văn) , điềuquan trọng là học sinh phải nắm vững được từng dạng toán Trong quá trình dạyhọc giải toán nếu là dạng toán đã học tôi yêu cầu học sinh tìm ra cách giải chungcủa dạng toán đó sau đó vận dụng vào giải các bài toán tương tự cùng dạng Khiluyện tập, thực hành giải toán tôi đưa ra một số bước giải nhằm khắc sâu từngdạng bài giúp học sinh làm bài tốt hơn
Trang 22Phạm vi bài viết không cho phép tôi liệt kê tất cả các dạng toán có lời vănđược học trong chương trình Toán 5, song cũng cố gắng trình bày một số dạngtoán cơ bản, điển hình trong chương trình Sau đây tôi xin nêu ra một số dạngtoán điển hình và cách giải như sau:
4.1 Dạng 1 Bài toán tìm số trung bình cộng.
Để phát huy trí lực của học sinh, đối với những dạng toán có lời văn điểnhình các em đã được học Tôi đặt ra một số câu hỏi nhằm giúp các em nhớ lạikiến thức và tự tư duy tìm hướng giải bài toán Cụ thể :
Ví dụ: Một vòi nước chảy vào bể Giờ đầu chảy được 2
15 bể, giờ thứ haichảy vào được 1
5 bể Hỏi trung bình mỗi giờ vòi nước đó chảy vào được baonhiêu phần của bể ?
( Bài 3- trang 32- Toán 5)
Đây là dạng toán có lời văn học sinh được học từ lớp 4 Ỏ dạng toán này
tôi yêu cầu học sinh :
+ Nhắc lại quy tắc:" Muốn tính trung bình cộng của nhiều số ta làm như thếnào" ?
- Học sinh trả lời: "Muốn tìm trung bình cộng của nhiều số, ta tính tổng các
số đó rồi chia tổng đó cho số các số hạng"
+ Muốn tìm trung bình mỗi giờ vòi nước đó chảy được bao nhiêu phần của
bể ta làm thế nào?
- Học sinh trả lời: Muốn tìm trung bình mỗi giờ vòi đó chảy được bao nhiêuphần của bể, ta lấy số phần giờ đầu chảy vào bể cộng số phần giờ thứ hai chảyvào bể, sau đó chia cho 2
Đối với các bài toán thuộc dạng này, tôi yêu cầu học sinh cần nắm chắc cáchtìm số trung bình cộng( của hai hay nhiều số)
Qua việc khai thác nội dung bài, trả lời vâu hỏi, làm bài của học sinh tôi đã
giúp khắc sâu cách giải dạng toán Tìm số trung bình cộng.
4.2 Dạng 2 Bài toán về quan hệ tỉ lệ.
Ví dụ : 10 người làm xong công việc phải hết 7 ngày Nay muốn làm xong
công việc đó trong 5 ngày thì cần bao nhiêu người? ( Mức làm của mỗi người như nhau)
( Bài 1- trang -2 1 - Toán 5)
Bước 1: - Hướng dẫn học sinh phân tích đề toán ( Tìm hiểu đề bài):
+ Bài toán cho biết gì?
+ Bài toán hỏi gì ? Muốn trả lời được câu hỏi của bài toán thì cần biết những gì ? Trong những điều ấy, cái gì đã biết, cái gì chưa biết?
Trang 23+ Muốn tìm số người để làm xong công việc trong 5 ngày, con phải làm như thế nào? Học sinh trả lời : Trước hết ta phải tìm số người làm xong công việc đó trong 1 ngày, rồi tìm số người làm xong công việc trong 5 ngày.
+ Vậy bài toán này thuộc dạng toán nào?.
Bước 2: Tóm tắt bài toán.
Tiếp theo, tôi yêu cầu học sinh thiết lập mối quan hệ giữa cái đã cho và
cái phải tìm bằng việc tóm tắt bài toán
7 ngày : 10 người
5 ngày : ? người
Bước 3: Lập kế hoạch giải.
Cách 1:
+ Bước 1: Tìm số người để làm xong công việc đó trong 1 ngày.
+ Bước 2 : Tìm số người để làm xong công việc đó trong 5 ngày.
Sau khi xác định được cách giải bài toán, giáo viên cho học sinh tìm câu lời
+ Số người làm công việc đó trong 5 ngày là bao nhiêu?
Tiếp theo , học sinh thiết lập trình tự giải toán theo cách " Tìm tỉ số" như sau: Cách 2:
+ Bước 1: Tìm tỉ số của 5 ngày so với 7 ngày.
+ Bước 2 : Tìm số người để làm xong công việc đó trong 5 ngày.
Ở bài toán trên có thể giải theo cách " Rút về đơn vị" hoặc " Tìm tỉ số" Tuy nhiên tôi hướng dẫn học sinh chọn cách giải cho phù hợp
Sau khi xác định được cách giải bài toán giáo viên cho học sinh tìm câulời giải và phép tính tương ứng để thực hiện các bước giải bài toán
Bước 4: Hướng dẫn học sinh trình bày bài giải.
Trang 24Yêu cầu học sinh tự kiểm tra bài giải của mình xem trong quá trình trìnhbày câu lời giải và phép tính tương ứng đã đúng chưa, kết quả phép tính đãchính xác chưa?
Yêu cầu học sinh nhận xét bài của bạn trên bảng
Giáo viên nhận xét, chốt đáp án đúng( cách giải hay, ngắn gọn )
Yêu cầu 2 học sinh ngồi cùng bàn đổi vở, tự kiểm tra chéo của nhau
Yêu cầu học sinh làm sai tự sửa lại bài của mình
Học sinh có thể chọn một trong hai cách giải tùy theo trình độ của từng em
4.3 Dạng 3 Bài toán về tỉ số phần trăm.
Đối với các dạng toán về tỉ số phần trăm, tôi yêu cầu học sinh nắm chắccách giải của 3 bài toán cơ bản về tỉ số phần trăm trong chương trình toán 5 Từ
đó vận dụng những bài toán "mẫu" đó để giải các bài toán có liên quan
Ví dụ 1:( Bài toán 1) Một lớp học có 25 học sinh, trong đó có 13 học
sinh nữ Hỏi số học sinh nữ chiếm bao nhiêu phần trăm số học sinh của lớp họcđó?
( Bài 3- trang 75- Toán 5)
Tỉ số phần trăm của số học sinh nữ và số học sinh của lớp là:
13 : 25 = 0,52 0,52 = 52%
Đáp số: 52%
Ngoài cách trên có thể lập tỉ số của số học sinh nữ và số học sinh củalớp đó
Ví dụ 2:( Bài toán 2) Lãi xuất tiết kiệm là 0,5 % một tháng Một người
gửi tiết kiệm 5 000 000 đồng Hỏi sau một tháng cả số tiền gửi và số tiền lãi làbao nhiêu ?
( Bài 2- trang 77- Toán 5)
Tiền lãi sau một tháng là:
5000000 x 0,5 : 100 = 25000 (đồng)
Sau một tháng cả số tiền gửi và số tiền lãi là:
5000000 + 25000 = 5025000 (đồng) Đáp số: 5 025 000 đồng
Ngoài cách trên có thể lập tỉ số của số tiền lãi và số tiền gửi
Ví dụ 3:(Bài toán 3) Một cửa hàng đã bán được 420kg gạo và số gạo đó
bằng 10,5% tổng số gạo của cửa hàng trước khi bán Hỏi trước khi bán cửa hàng
đó có bao nhiêu tấn gạo?
( Bài 3b- trang 79- Toán 5)
Trước khi bán cửa hàng có số tấn gạo là:
420 : 10,5 x 100 = 4000 (kg)Đổi: 4000kg = 4 tấn Đáp số: 4 tấn : Từ cách trình bày trên, có thể thấy: Bài toán 2 và bài toán 3 đều là bài toán
“ngược” với bài toán 1 Bài toán 2 : Biết tỉ số của hai số và số thứ hai Tìm số
Trang 25thứ nhất Bài toán 3 : Biết tỉ số của hai số và số thứ nhất Tìm số thứ hai Khigiải các bài toán về tỉ số phần trăm tôi hướng dẫn học sinh có thể đưa về cácdạng của ba bài toán cơ bản trên để giải
: Ví dụ : Giá gạo tháng ba tăng 10% so với tháng hai, giá gạo tháng tư giảm 10%
so với tháng ba Hỏi giá gạo tháng tư tăng hay giảm bao nhiêu phần trăm so vớitháng hai ?
4.4 Dạng 4 Tìm hai số biết tổng và hiệu của hai số đó
Đối với các bài toán dạng này, các em đã được học từ lớp 4 Vì vậy, tôiđặt ra hệ thống câu hỏi để giúp các em nhận ra dạng toán đã học Nhớ lại cáchgiải và tự giải bài toán
Bài toán: ( Bài 2 trang 170 sách giáo khoa Toán 5)
Một mảnh đất hình chữ nhật có chu vi 120m Chiều dài hơn chiều rộng 10m.
Tính diện tích mảnh đất đó
Bước 1: - Hướng dẫn học sinh phân tích đề toán ( Tìm hiểu đề bài):
+ Bài toán cho biết gì ? ( cho biết chu vi của hình chữ nhật)
+ Chu vi của hình chữ nhật là gì? Vậy nó chính là số đo chiều nào của hình chữ nhật ?( Hai lần số đo chiều dài và chiều rộng của hình chữ nhật ) + Bài toán hỏi gì?( Tính diện tích của hình chữ nhật)
+ Muốn tính được diện tích của hình chữ nhật ta cần biết gì ?( Số đo chiều dài và chiều rộng của hình chữ nhật )
+ Muốn tìm được số đo chiều dài và chiều rộng của hình chữ nhật ta làm thế nào ? ( Tìm nửa chu vi hay chính là tổng của chiều dài và chiều rộng hình chữ nhật)
Vậy bài toán này thuộc dạng toán nào? ( Giải bài toán về tìm hai số khi biếttổng và hiệu của hai số đó)
Bước 2: Tóm tắt bài toán.
Hướng dẫn học sinh tìm dữ kiện ẩn bằng cách:
Nửa chu vi của hình chữ nhật hay tổng của chiều dài và chiều rộng của hình chữ nhật là chữ nhật là:
Trang 26Bước 3: Lập kế hoạch giải.
Cách 1: Tìm chiều rộng trước ( tìm số bé trước)
Nhìn vào sơ đồ, yêu cầu học sinh nhận xét:
+ Nếu lấy tổng trừ đi hiệu, kết quả đó có quan hệ như thế nào với chiềurộng? Nhìn vào sơ đồ học sinh sẽ dễ dàng nhận thấy phần còn lại là 2 lần chiềurộng
+ Muốn tính chiều rộng của hình chữ nhật ta làm thế nào? ( Lấy số đocủa hai lần chiều rộng chia cho 2)
+ Muốn tính chiều dài hình chữ nhật ta làm thế nào ? ( Lấy số đo chiềurộng cộng thêm 10 hoặc lấy tổng trừ đi chiều rộng )
+ Muốn tính diện tích hình chữ nhật, ta làm thế nào ? ( Lấy số đo chiềudài nhân với số đo chiều rộng)
Bước 4: Hướng dẫn học sinh trình bày bài giải.
Chiều rộng mảnh đất là:
(60 – 10) : 2 = 25(m)Chiều dài của mảnh đất là:
25 + 10 = 35 (m)Hay: 60 – 25 = 35(m)Diện tích của mảnh đất hình chữ nhật là:
25 x 35 = 875 (m²) Đáp số : 875 (m²)
Bước 5: Kiểm tra bài giải
Yêu cầu học sinh tự kiểm tra bài giải của mình xem trong quá trình trìnhbày câu lời giải và phép tính tương ứng đã đúng chưa, kết quả phép tính đãchính xác chưa?
Yêu cầu học sinh nhận xét bài của bạn trên bảng
Giáo viên nhận xét, chốt đáp án đúng( cách giải hay, ngắn gọn )
Yêu cầu 2 học sinh ngồi cùng bàn đổi vở, tự kiểm tra chéo của nhau
Yêu cầu học sinh làm sai tự sửa lại bài của mình
Từ bài toán cơ bản trên yêu cầu học sinh nhắc lại quy cách giải bài toántìm hai số khi biết tổng và hiệu của 2 số đó