1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Ứng dụng giải thuật di truyền (GA) để tối ưu tham số hệ mờ trong phân lớp tín hiệu điện tim

8 63 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 433,02 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bài viết trình bày các bước xây dựng một mô hình phân lớp điện tim sử dụng hệ mờ không đơn trị (NSFLS). Đầu tiên, các tín hiệu điện tim được cho qua một khối tiền xử lý để loại nhiễu do môi trường ghi điện tâm đồ gây ra.

Trang 1

ỨNG DỤNG GIẢI THUẬT DI TRUYỀN (GA) ĐỂ TỐI ƯU THAM SỐ

HỆ MỜ TRONG PHÂN LỚP TÍN HIỆU ĐIỆN TIM

APPLICATION OF GA FOR OPTIMISING PARAMETERS OF FUZZY

SYSTEMS IN ECG CLASSIFICATION

Hoàng Thị Ngọc Diệp, Trần Duy Khánh, Hoàng Thị An

Email: hoangdiepdtth@gmail.com

Trường Đại Học Sao Đỏ

Ngày nhận bài: 16/2/2017 Ngày nhận bài sửa sau phản biện: 6/11/2017

Ngày chấp nhận đăng: 28/12/2017

Tóm tắt

Bài báo trình bày các bước xây dựng một mô hình phân lớp điện tim sử dụng hệ mờ không đơn trị (NSFLS) Đầu tiên, các tín hiệu điện tim được cho qua một khối tiền xử lý để loại nhiễu do môi trường ghi điện tâm đồ gây ra Tín hiệu sau khi xử lý nhiễu sẽ được phân tích và trích rút các đặc trưng thích hợp Các đặc trưng này là đầu vào của một hệ phân lớp mờ không đơn trị Sau khi xác định cấu trúc của mô hình phân lớp, xây dựng các tham số của mô hình qua một quá trình học dựa vào tập dữ liệu huấn luyện Cuối cùng, nhóm tác giả sử dụng giải thuật di truyền để tối ưu tham số hệ mờ nhằm thu được kết quả phân lớp tín hiệu điện tim tốt nhất

Từ khóa: Hệ mờ không đơn trị (NSFLS); giải thuật di truyền (GA); phân loại mẫu; phân lớp tín hiệu điện

tim (ECG).

Abstract

The paper presents a method to construct a non-singleton fuzzy logic system (NSFLS) for ECG arrhythmic classification The classifier is applied to distinguish normal sinus rhythm (NSR), ventricular fibrillation (VF) and ventricular tachycardia (VT) Two features of ECG signal, the average period and the pulse width, are inputs to the fuzzy classifier The rule base used in the fuzzy system is constructed from training data The generalized bell membership function is used to examine the performance of the classifier with different shapes of membership function The results of experiments with data from the MIT-BIH Malignant Ventricular Arrhythmia Database show the viability of a non-singleton fuzzy system in ECG classification Then, GA Optimisation of Non-Singleton Fuzzy Logic System for ECG Classification to obtain the best results

Keywords: Non-singleton fuzzy logic system (NSFLS); genetic algorithm (GA); pattern classification;

electrocardiogram (ECG).

1 GIỚI THIỆU

Trong thực tế có rất nhiều bài toán cần phân loại

mẫu như bài toán phân loại ảnh khuôn mặt, phân

loại văn bản, phát hiện lỗi trong các phân tích máy

móc và y tế, phân loại chữ viết… Có rất nhiều vấn

đề con người xử lý khá đơn giản Trái lại, trong

nhiều trường hợp, phương án sử dụng máy tính

đã chỉ ra mức độ khó của vấn đề Tuy gặp nhiều

khó khăn nhưng việc sử dụng máy tính trong các

bài toán nhận dạng mẫu ngày càng trở nên phổ

biến Mục đích chính của việc phân loại mẫu là tự

động trợ giúp con người khi phân tích khối lượng

dữ liệu cực lớn và từ đó trích chọn ra những tri

thức hữu ích Mặc dù có nhiều phương thức khi

phân loại nhưng chúng đều có chung cấu trúc nền tảng và các bước khi thiết kế Theo [8] các thành phần của một bộ phân loại và trình tự thiết kế bộ phân loại được chỉ ra trên hình 1

Bước trích chọn đặc trưng biến đổi dữ liệu đầu vào (trong không gian quan sát) thành các vectơ đặc trưng (trong không gian đặc trưng) Không gian đặc trưng có số chiều ít hơn nhiều so với không gian quan sát Bước tiếp theo là biến đổi

từ không gian đặc trưng sang không gian quyết định được định nghĩa bởi tập các lớp (xác định) Một bộ phân loại hay một thuật toán sẽ sinh ra một phân hoạch của không gian đặc trưng bởi các miền quyết định Sau khi thiết kế bộ phân loại với

Trang 2

hiệu năng mong muốn, ta có thể sử dụng nó để

phân loại các đối tượng mới Điều này có nghĩa

là bộ phân loại sẽ gán từng vectơ đặc trưng trong

không gian đặc trưng với một lớp trong không

gian quyết định

Trong bài toán phân loại mẫu, trích chọn đặc

trưng là nhiệm vụ khó khăn nhất, quyết định đến

độ chính xác của thuật toán Khi trích chọn đặc

trưng cần lựa chọn những đặc trưng hữu ích để

tìm ra thuật toán học hiệu quả cho bài toán phân

Đã có nhiều nghiên cứu để phân lớp tín hiệu điện

tim Theo [3] với mô hình mờ sử dụng logic mờ

loại 2 khoảng đơn trị thì khả năng làm việc với

nhiễu hiệu quả chưa cao Theo [9] sử dụng hệ mờ

loại hai khoảng và thuật toán VF - Filter Leakage

thì khả năng phân lớp chưa tối ưu hóa hàm thuộc

và cơ sở luật Do đó, hệ mờ không đơn trị được

chọn vì nó thích hợp hơn hệ mờ đơn trị khi làm

việc với nhiễu Giải thuật di truyền được dùng để

tối ưu hóa đồng thời hàm thuộc và cơ sở luật

Bài báo này trình bày khả năng của hệ mờ không

đơn trị và giải thuật di truyền để xử lý nhiễu trong

các bài toán phân loại mẫu Hiệu năng của các hệ

thống đơn trị và không đơn trị được so sánh với

nhau trong bài toán phân lớp điện tim Các kết

quả chỉ ra rằng giải thuật di truyền tốt hơn hệ mờ

loại mẫu và tiết kiệm chi phí tính toán Nếu những đặc trưng thừa hay không thích hợp ảnh hưởng đến hiệu năng cũng như chất lượng phân loại mẫu, thậm chí có thể dẫn tới việc phân loại sai

Do có nhiều cách lựa chọn thuật toán nên độ khó khi trích chọn đặc trưng cũng rất đa dạng Hơn nữa, trong các ứng dụng ta luôn phải đối mặt với nhiễu Nguyên nhân của chúng là do nhiễu điện trong các thiết bị trích chọn hoặc thao tác các thiết

bị không đúng

a) b)

Hình 1 a) Các thành phần của bộ phân loại; b) Trình tự thiết kế bộ phân loại sử dụng GA

đơn trị khi có nhiễu trong các đặc trưng được trích chọn Điều này rất hữu ích khi không thể tránh khỏi sự nhập nhằng trong dữ liệu đầu vào [8]

2 GIẢI THUẬT DI TRUYỀN ÁP DỤNG VÀO BÀI TOÁN ECG

2.1 Bài toán ECG

Bài toán phân lớp điện tim được mô tả theo sơ đồ như hình 2, trong đó:

- Đầu vào gồm hai đặc trưng: độ rộng xung (PW), chu kỳ xung (T)

- Đầu ra loại nhịp tim (phân làm ba lớp): NRS (nhịp tim bình thường), VF (chứng rung tâm thất) và VT (chứng tim đập nhanh)

Dữ liệu vào Cảm biến

Tiền xử lý

Trích chọn đặc t

Phân lớp

Quyết định a)

Thu thập dữ

Lựa chọn đặc

Lựa chọn lớp

Huấn luyện phân

Đánh giá hiệu

ấ Kết thúc b)

Thu nhập dữ liệu

Lựa chọn đặc trưng

Đánh giá hiệu suất Huấn luyện phân loại

Kết thúc Quyết định

Phân lớp

Tiền xử lý

Cảm biến

Dữ liệu vào

Lựa chọ lớp Trích chọn đặc trưng

Trang 3

Tín hiệu điện tim đầu vào

Loạn nhịp tim Phân lớp tín hiệu

Xử lý và trích rút đặc trưng của tín hiệu

Hình 2 Sơ đồ bài toán ECG

2.2 Giải thuật di truyền

Giải thuật di truyền sử dụng các mã hóa nhị phân,

mỗi cá thể là một chuỗi bit, thông qua các toán tử

di truyền: chọn lọc, lai ghép, đột biến, tái tạo

procedure Genetic_Algorithm;

begin

t ← 0;

Khởi tạo thế hệ ban đầu P(t);

Đánh giá P(t) (theo hàm thích nghi);

repeat

t ← t + 1;

Sinh ra thế hệ mới P(t) từ P(t-1) bởi

• Chọn lọc

• Lai ghép

• Đột biến

Đánh giá P(t);

until Điều kiện kết thúc được thỏa mãn;

end;

2.3 Giải thuật di truyền ứng dụng vào bài

toán ECG

Khi thiết kế một hệ mờ giải quyết bài toán ECG

dùng giải thuật di truyền, đầu tiên là xem xét chiến

lược trình bày và cách thức mã hóa hệ mờ vào

nhiễm sắc thể Trong thiết kế giải thuật di truyền

ở bài báo này có hai đầu vào và mỗi đầu vào gồm

hai biến x1 và x2 (có thể là độ rộng xung và chu

kỳ hoăc độ rộng xung và biên độ) được phân chia

thành ba hàm, do đó, có 12 tham số (vì 2 tham số

x 2 đầu vào x 3 chức năng thành viên = 12 tham

số) Giả sử không mất tính tổng quát và độ lệch

tiêu chuẩn của hàm tham gia là

i

l x

m

i

l x

σ , với

i = 1, 2 và l = 1, 2, 3 Ngoài ra có 9 luật (3x3) trong

các quy tắc cơ sở, thêm kết quả phụ 9 tham số,

rn trong đó n = 1, 2, …, 9 Do vậy, tổng cộng 21 tham số (3 chức năng thành viên × 2 tham số × 2 biến đầu vào + 9 quy tắc) cần thiết để giải thuật di truyền điều chỉnh

+ Mỗi tham số luật được mã hóa thành chuỗi nhị phân 2-bit

+ Mỗi tham số của hàm được mã hóa thành chuỗi nhị phân 8-bit

Do đó, chiều dài của chuỗi nhị phân là 114 bit (12x8+2x9=114 bit) Minh họa cấu trúc của nhiễm sắc thể (hình 3)

Hình 3 Cấu trúc của nhiễm sắc thể

Trong quá trình thẩm định thích hợp các tham số phải được giải mã (kiểu hình đại diện)

+ Tham số luật giải mã thành dãy số nguyên 0-4

+ Tham số hàm giải mã thành số thực bằng cách sử dụng phương trình lập bản đồ tuyến tính như dưới đây [3]:

1 2 )

min

×

− +

q q q p

A G

G G

trong đó: p và q: chuỗi gen tương ứng; gp biểu thị giá trị thực tế của các tham số qth; Aq biểu diễn các

số nguyên đại diện là chuỗi gen N-bit; Gqmax và

min

q

G biểu thị cho người dùng xác định giới hạn trên và dưới của gen tương ứng

3 CẤU TRÚC CỦA MÔ HÌNH PHÂN LỚP MỜ

SỬ DỤNG GA ĐỂ TỐI ƯU THAM SỐ

Về cơ bản, kiến trúc chung của mô hình GA giống với mô hình phân lớp loại hai khoảng Tuy nhiên trong cấu trúc có thêm khối tiền xử lý và giảm bớt khối giảm loại và khử mờ

Hình 4 Cấu trúc của một hệ phân loại mờ

sử dụng GA

Trang 4

3.1 Khái niệm hệ mờ không đơn trị

Kaufman và Gupta [7] định nghĩa phép mờ hóa

không đơn trị: Một bộ mờ hóa không đơn trị có

dạng µX i( ) 1( 1, , )x i′ = i= p và µX i(x i)giảm dần từ

1 khi xi xa dần x′i

3.2 Khối tiền xử lý

Xét một bộ phân loại, giả sử có thể có một số loại

nhiễu Đầu tiên, các đầu vào của bộ phân loại có

thể bị hỏng Các tín hiệu điện tim ghi được (đặc biệt

là tín hiệu điện tim đo trên bề mặt) rất nhạy cảm với

việc di chuyển cáp điện và các hoạt động của cơ

Ngoài ra, nhiễu từ mạng điện có thể sai lệch quá

trình ghi nhận tín hiệu Do đó, tín hiệu cần được

tiền xử lý để có thể thu được thông tin từ tín hiệu

chính xác hơn

Việc trích rút hai đặc trưng độ rộng xung, chu kỳ

xung của tín hiệu được thực hiện qua hai bước

Tín hiệu điện tim sau khi lọc được biến đổi thành

một chuỗi nhị phân để làm tăng khả năng trích

chọn đặc trưng Thuật toán biến đổi sử dụng trong

bài báo được cải tiến (nội dung của bước 2) từ

thuật toán trong [8] Bài báo sử dụng thuật toán

biến đổi hai bước thay vì thuật toán biến đổi một

bước của Zhang Tín hiệu điện tim sẽ được biến

đổi từng phần thành chuỗi nhị phân thay vì biến đổi

toàn bộ Điều này có thể làm giảm việc phát hiện

sai các đỉnh tích cực bằng cách khử đi tín hiệu

có biên độ nhỏ Sau bước này là bước biến đổi

hoàn toàn chuỗi nhị phân nhằm xác định ngưỡng

để cực đại hóa sự khác biệt giữa lớp NSR và lớp

VF/VT Sau đó, ta sẽ tính toán độ rộng xung, chu

kỳ xung trung bình của tín hiệu dựa vào chuỗi nhị

phân trên

VFDB - cơ sở liêu chứng loạn nhịp thất ác tính

của MIT-BIH CSDL điện tim MIT-BIH [10] với tập

dữ liệu trích từ cơ sở dữ liệu điện tim từ dự án

hợp tác giữa Học viện Kỹ thuật Massachusetts và

Bệnh viện Beth Israel (MIT-BIH) Đây là một cơ

sở dữ liệu điện tim phong phú đầy đủ, đã được

sử dụng rộng rãi trong nghiên cứu và học tập trên

thế giới

Các bước được trình bày như sau:

Thuật toán:

Bước 1: Chuyển mẫu tín hiệu (4s tín hiệu) ban đầu

thành chuỗi nhị phân

Với dữ liệu của VFDB, chọn 4s dữ liệu Tại tần số

250 Hz các tín hiệu rời rạc nên có tất cả 1000 điểm

dữ liệu trong cửa sổ dài 4s à ta có n = 1000 mẫu

có các giá trị Xi với i = 1, 2, , 1000

Lấy x[m] là trung bình cộng các phần tử của mảng {Xi} Tạo một mảng X’ bằng cách lấy giá trị của mỗi phần từ trừ đi Xm: X’i = {xi – xm}

Làm các công việc sau trên mảng X’:

- Tính giá trị âm nhỏ nhất Vn và giá trị dương lớn nhất Vp

- Tạo một phần chuỗi nhị phân: Nếu các phần

tử có giá trị trong khoảng (0<xi<0.2 Vp) hoặc (0.2 Vn<xi<0) thì x’(i) = 0

- Tính tham số Np và Nn Np là ký hiệu số lượng

dữ liệu xi>0 và Nn=n–Np.

- Chuyển một phần chuỗi nhị phân thành toàn bộ chuỗi nhị phân bằng cách xác định ngưỡng Tr Đây là bước quan trọng để tách biệt giữa các tín hiệu NSR, VF và VT

Nếu Np < 0.15n thì Tr = 0.7*Vp Nếu Np >= 0.15n thì Tr = 0

- Chuyển một phần chuỗi nhị phân thành chuỗi nhị phân hoàn toàn bằng cách so sánh x[i] với Tr:

Nếu x[i] <= Tr thì x[i] = 0 Nếu x[i] > Tr thì x[i] = 1 Sau bước này ta có chuỗi nhị phân tương ứng với mẫu tín hiệu: dãy số 1 liên tiếp trong chuỗi nhị phân biểu diễn xung QRS của tín hiệu ban đầu

Bước 2: Tính Pw và T từ chuỗi nhị phân:

Bước này sẽ tính độ rộng xung và chu kỳ xung trung bình trong khoảng 4s tín hiệu Độ rộng xung của mẫu 4s tín hiệu được tính bằng trung bình

độ rộng của tất cả các xung trong khoảng tín hiệu Độ rộng của một xung trong mẫu tín hiệu

là độ dài chuỗi số 1 liên tiếp trong chuỗi nhị phân tương ứng

1 ( )

N i

W

PW ms N

=∑ (2)

1

1 ( ) 1

N i

T

N

=

trong đó:

Wi: độ rộng xung thứ i;

Ti: khoảng cách giữa xung thứ (i) và xung thứ (i+1);

N: tổng số xung trong đoạn tín hiệu

Trang 5

Như vậy, sau bước này với mỗi tín hiệu ta sẽ thu

được 2 giá trị độ rộng xung (PW) và chu kỳ xung

(T) Giá trị của hai đặc trưng này sẽ là đầu vào cho

mô hình phân lớp dựa trên luật mờ ở bước sau

(a)

(b)

(c)

Hình 5 Ba dạng tín hiệu điện tim khác nhau

với chuỗi nhị phân tương ứng

Theo Teck Wee Chua và Woei Wan Tan [8], trong

hình 5 có hai tham số được trích chọn từ chuỗi

nhị phân này: độ rộng xung, chu kì xung Tất

cả các tham số được tính trung bình trong cửa

sổ 4s và độ lệch chuẩn của chúng được tính

tương ứng

3.3 Khối mờ hóa

Mặc dù, bộ mờ hóa đơn trị đơn giản và phổ biến hơn bộ mờ hóa không đơn trị Nhưng khi lựa chọn phương pháp mờ hóa người ta lại lựa chọn bộ mờ hóa không đơn trị vì bộ mờ hóa không đơn trị có thể làm việc tốt hơn trong môi trường nhiễu và nó

có thể mô hình hóa sự không chắc chắn, không chính xác của các đầu vào [4, 5] Các tín hiệu điện tim ECG thường bị ngắt quãng khi ghi nên các điểm kề đó có thể cũng là các giá trị đúng nhưng với độ thuộc bé hơn Do đó, theo Mouzouris và Mendel [2], bộ mờ hóa không đơn trị coi đầu vào x

là đại diệntốt nhất từ tất cả các giá trị xung quanh

nó Tuy nhiên, ta có thể dễ dàng chuyển đổi bộ phân loại không đơn trị thành đơn trị và ngược lại bằng cách thay thế khối mờ hóa tương ứng (hình chữ nhật đậm trong hình 4)

Sự khác biệt duy nhất giữa hệ logic mờ đơn trị và không đơn trị là số lượng các mức đốt cháy

Hiệu quả của “bộ tiền lọc” của FLS không đơn trị

là chìa khóa để làm việc với sự không chắc chắn trong đầu vào [1] Hiệu quả này là kết quả của phép hợp thành super-star trong phép mờ hóa của NSFLS framwork với việc biến x thành xl

max

Vì vậy, theo [8] xét một tập mờ với hàm thuộc Gauss

 −

=

2

2

1 exp ) (

σ

i

(3)

trong đó: phương sai σ2 thể hiện độ rộng của ( )

X xi

µ Giá trị này càng rộng thì càng có nhiều nhiễu trong dữ liệu Bộ mờ hóa không đơn trị có thể sử dụng suy diễn dùng phép min hoặc phép product để biến x thành xmaxl Giả sử tập mờ có đầu vào thứ k và tiền đề thứ k tương ứng có dạng:

=

2 ,

2

1 exp ) , (

k

k k k

x

x i k i

k X

m x x

x

σ µ

=

2 ,

2

1 exp ) , (

l k

l k k l

k

F

F i k i

k F

m x x

x

σ

+ Với phép suy diễn min đầu vào biến thành

, ax

l

k m

x như sau:

l k k

k l k l k k

F X

X F F X l

k

m m

x

σ σ

σ σ

+

+

= max

+ Với phép suy diễn dùng product đầu vào biến thành xl k m, axnhư sau:

l k k

k l k l k k

F X

X F F X l

k

m m

2 2

max

σ σ

+

+

(6)

Trang 6

Với hai dữ liệu đầu vào con là

k

mΧ và l

k

F

m , phương sai σ2thể hiện độ rộng của tập mờ tương ứng

Giá trị này càng rộng thì càng có nhiều nhiễu trong

dữ liệu Vì một lý do nào đó mà dữ liệu đầu vào

bị hỏng do nhiễu thì bộ mờ hóa không đơn trị vẫn

có thể xử lý được Ví dụ, đầu vào mΧkbị hỏng bởi

nhiễu, tức là: m X k =m X k0 +n k (7)

Với

0

k

X

m là tín hiệu có ích và nk là nhiễu

Thay

k

X

m trong (5) bởi (7) ta có:

l k k

l k l

k k

k l k l k k

F X

k F F

X

X F F X l

k

n m

m x

σ σ

σ σ

σ

σ σ

+

+ +

+

=

max

,

(8)

Công thức (8) chỉ ra rằng bộ mờ hóa Gaussian

làm việc được với nhiễu bởi thành phần

l k l

k X k

σ σ + σ Tương tự, ta chứng minh

được bộ mờ hóa tam giác cũng có khả năng làm

việc được với nhiễu Ngoài ra, hệ mờ không đơn trị

là hàm thuộc đầu ra có độ cao cực đại lớn hơn hệ

mờ đơn trị [3] Vì với cùng một đầu vào thì hệ mờ

không đơn trị có thể có độ thuộc trong nhiều tập mờ

tiền đề hơn hệ mờ đơn trị; do đó khi có nhiều nhiễu

trong đầu vào thì trong hệ mờ không đơn trị nhiều

luật sẽ được đốt cháy hơn là trong hệ mờ đơn trị

3.4 Khối quyết định

Phần này bàn về đề xuất tiếp cận GA để phân

lớp mờ, hàm Gaussian, các luật được chọn ngẫu

nhiên và được điều chỉnh đồng thời bởi GA Shi

và cộng sự [6], các hàm và các luật được thiết kế

và phát triển cùng một lúc vì hai tham số đó được

gọi là đồng tác phụ thuộc Sau đó, tiến hành lựa

chọn hàm thích hợp Nếu tìm được hàm thích hợp

tốt có thể phản ánh được mục tiêu của hệ thống

Phương pháp dùng giải thuật di truyền GA có sự

khác biệt hơn nhiều so với phương pháp truyền

thống gradient, nó được sử dụng để phát triển hệ

thống với bất kỳ loại hàm của phép đo thích hợp:

không khả vi, không liên tục, Để xác định hàm

thẩm định thích hợp, bài báo này không dùng vấn

đề dự báo hay ước lượng mà dùng vấn đề phụ

thuộc Với vấn đề phụ thuộc thường sử dụng sai

số bình phương hoặc hàm liên quan lỗi khác biệt

tuyệt đối Vấn đề phân loại sử dụng số lượng các

lớp được phân loại chính xác hoặc lớp được phân

loại chưa chính xác Hàm thích hợp được đề xuất

như sau:

(9) Trong đó: ACNSR: tỷ lệ phần trăm của lớp tim bình

thường; ACVF: tỷ lệ phần trăm của lớp rung tâm

thất và ACVT: tỷ lệ phần trăm của lớp tim đập nhanh được phân loại chính xác Sau khi mỗi nhiễm sắc thể được đánh giá và liên quan tới một sự thích hợp Dân số luôn luôn biến động, quá trình sinh sản để tạo ra một thế hệ tiếp theo của dân số Để xác định cácthành viên mới phát sinh dựa vào

sơ đồ “sự thay thế” Mục đích của cơ chế chọn lọc là tập trung tìm kiếm trên các vùng hứa hẹn nhất của không gian tìm kiếm Trong giải thuật di truyền GA để tìm kiếm hiệu quả kể cả với vùng mới dùng biến thể của nhà khai thác (chéo và đột biến) Vì sự xuyên chéo tạo điều kiện thăm dò, còn đột biến tạo điều kiện khai thác không gian tìm kiếm Trong bài báo, nhóm tác giả sử dụng chéo điểm duy nhất và từng bit đột biến Trong toàn bộ hoạt động của giải thuật di truyền để đơn giản các xác suất là hằng số: của chéo là 0.8 và đột biến là 0,03 Để đáp ứng điểm dừng của bài toán những cải tiến trong hoạt động được lặp đi lặp lại cho phù hợp với một số tiêu chí dừng

4 KẾT QUẢ THỬ NGHIỆM

Với cùng cơ sở dữ liệu thử nghiệm như hệ mờ loại hai khoảng [3] Kết quả của hệ mờ sử dụng giải thuật di truyền [8] như sau: Có ba cách đo hiệu suất (độ chính xác, độ nhạy cảm và đặc trưng) được dùng để chuẩn hóa hệ thống phân lớp Độ nhạy cảm là khả năng mà nếu xét nghiệm

là dương tính thì người có bệnh, trong khi đó đặc trưng là khả năng mà nếu xét nghiệm là âm tính thì người không có bệnh Các tham số được định nghĩa như sau:

Specificity,

(11) trong đó: TP, TN, FP và FN được định nghĩa trong bảng 1

Bảng 1 Ký hiệu sử dụng giống nhau giữa độ nhạy

cảm và đặc trưng

Predicted /

Rhythm A True Positive (TP) Negative (FN)False Rhythm B False Positive (FP) True Negative (TN)

Trang 7

Bảng 2 Kết quả phân lớp với các cấu hình

khác nhau

Cấu

hình Nhịp tim (%) AC (%) SE (%) SP

a

NSR 100,00 100,00 100,00

VF 83,33 90,91 92,00

VT 91,67 84,62 95,65

Trung bình 91,67 91,84 95,88

b

NSR 100,00 100,00 100,00

VF 95,00 100,00 97,56

Trung bình 98,33 98,41 99,19

c

NSR 100,00 98,36 100,00

VF 98,33 100,00 99,17

VT 100,00 100,00 100,00

Trung bình 98,44 98,45 99,72

d

NSR 100,00 100,00 100,00

VF 100,00 100,00 100,00

VT 100,00 100,00 100,00

Trung bình 100,00 100,00 100,00

trong đó [8]:

a: FLS đơn trị với đặc trưng đầu vào là độ rộng

xung và chu kỳ;

b: FLS đơn trị với đặc trưng đầu vào là độ rộng

xung và biên độ;

c: FLS không đơn trị với đặc trưng đầu vào là độ rộng xung và chu kỳ;

d: FLS không đơn trị với đặc trưng đầu vào là độ rộng xung và biên độ

Trong thực tế, các cán bộ y tế luôn quan sát thông tin biên độ chứ không phải là thông tin chu kỳ

để xác định các loại loạn nhịp thất Thông tin về chu kỳ xung có thể là không đáng tin cậy vì chu

kỳ xung ngắn hơn có thể là kết quả từ các hoạt động tập thể dục hay cảm xúc của bệnh nhân Tuy nhiên, từ kết quả này ta thấy ưu thế của việc

sử dụng hệ logic mờ không đơn trị Bên cạnh đó, FLS không đơn trị cung cấp những lợi thế nhất khi tín hiệu đầu vào đơn gồm các đặc trưng không chắc chắn để phân lớp tín hiệu Vấn đề được cải thiện chút ít nếu tín hiệu đầu vào là đặc trưng có

ít sự chắc chắn hơn Nói tóm lại, FLS không đơn trị được chứng minh là một công cụ rất hữu hiệu trong việc giải quyết những bất trắc tồn tại trong phân loại mẫu

Thuật toán giải thuật sử dụng các cửa sổ chiều dài ngắn nhất (4.0 s) để khai thác tính năng so với các thuật toán khác như sự liên quan giữa sự khác biệt và hiệu suất Một số thuật toán đã dùng

có độ dài của cửa sổ 4,0 s; 4,8 s; 8,0 s; 20,0 s; 8,0 s; 7,0 s và 5,5 s tương ứng để đạt được kết quả khá tốt Một số cửa sổ chiều dài ngắn hơn sẽ cho phép phát hiện trong một thời gian ngắn hơn, cho rằng thời gian tính toán của các phân lớp là tương đương Đề xuất FLS không đơn trị chỉ dùng

ít hơn 0,05 ms để phân lớp một tập các dữ liệu tách ra, vì thế thời gian tính toán lấy của phân loại

là không đáng kể so với các đặc trưng được chọn Bảng 3 cho thấy hệ thống phân lớp sử dụng giải thuật di truyền tối ưu hệ mờ không đơn trị tốt hơn

hệ thống phân lớp sử dụng hệ mờ loại hai khoảng

và VF - Filter Leakage

Bảng 3 So sánh kết quả phân lớp tập dữ liệu (%) của các phương pháp khác nhau

Thuật toán/

bài báo

dữ liệu

AC

(%)

VF-Filter

Leakage/[9] 97,55 94,12 98,24 89,22 89,41 89,08 89,71 84,71 93,28 VFDB

Type-2

khoảng

Fuzzy

Classifier/[3]

MIT-BIH

GA Fuzzy

Classifier 100,0 98,36 100,0 98,33 100,0 99,17 100,0 100,0 100,0 VFDB

Trang 8

Vì 3 phương pháp: Type-2 khoảng Fuzzy,

VF - Filter Leakage và GA Fuzzy Classifiercùng

sử dụng cơ sở dữ liệu có sẵn của MIT-BIH để

phân loại ra NSR, VF, VT Nhưng kết quả của GA

là tốt hơn hẳn VFDB - cơ sở liêu chứng loạn nhịp

thất ác tính của MIT- BIH CSDL điện tim MIT-BIH

[10] được sử dụng để đánh giá hiệu năng của mô

hình phân lớp 70 mẫu dữ liệu được chọn ngẫu

nhiên từ CSDL để huấn luyện và thử nghiệm mô

hình Trong 70 mẫu dữ liệu bao gồm 30 mẫu thuộc

lớp NSR, 25 mẫu thuộc lớp VT và 15 lớp thuộc lớp

VF CSDL bao gồm 48 bản ghi, mỗi bản ghi lưu trữ

một điện tâm đồ trong khoảng thời gian 30 phút

Tần số lấy mẫu của tín hiệu điện tim là 250 Hz

5 KẾT LUẬN

Nhóm tác giả đã trình bày các bước xây dựng một

mô hình phân lớp điện tim sử dụng hệ mờ không

đơn trị kết hợp với giải thuật di truyền để tối ưu

tham số hệ mờ Kết quả chỉ ra rằng với cùng một

dữ liệu đầu vào thì hệ mờ không đơn trị kết hợp

GA luôn loại bỏ được nhiễu vàphân lớp tốt hơn so

với các hệ mờ đơn trị tương ứng

TÀI LIỆU THAM KHẢO

[1] J M Mendel (2001) Uncertain Rule-Based Fuzzy

Logic Systems: Introduction and New Directions

Upper Saddle River, NJ Prentice-Hall, 2001.

[2] J M Mendel and R I John (2002) Type-2 Fuzzy

Sets Made Simple IEEE Transactions on Fuzzy

Systems (2002), 10(2), 117-127.

[3] Teck Wee Chua and Woei Wan Tan (2007)

Interval Type-2 Fuzzy System for ECG Arrhythmic

Engineering, National University of Singapore, Singapore, 1-18.

[4] L X Wang (1994) Adaptive Fuzzy Systems and Control Design and Stability Analysis NJ:

Prentice-Hall.

[5] N.V Thakor, Y.S Zhu, and K.Y Pan (1990) Ventricular Tachycardia and Fibrillation Detection

by A Sequential Hypothesis Testing Algorithm

IEEE Transactions on Biomedical Engineering, vol 37, no 9, pp 837-843, 1990.

[6] A.S Al-Fahoum, I.H (1999) Combined Wavelet Transform and Radial Basis Neural Networks for the Classifying Life Threatening Cardiac

Arrhythmias Med Bio Eng Comput., 1999 37:

p 566-573.

[7] A Kaufman and M M Gupta (1991) Introduction

to Fuzzy Arithmetic: Theory and Applications NY:

Van Nostrand Reinhold

[8] Teck Wee Chua and Woei Wan Tan (2009)

GA Optimisation of Non-Singleton Fuzzy Logic System for ECG Classification Department of

Electrical and Computer Engineering National University of Singapore 4, Engineering Drive 3, Singapore 117576.

[9] X S Zhang, Y S Zhu and N V Thakor (1990) Detecting Ventricular Tachycardia and Fibrillation

by Complexity Measure IEEE Transactions

on Biomedical Engineering, vol 46, no 5, pp 837-843.

[10] MIT/BIH Database Distribution, Massachusetts Inst Techno Cambridge, MA (2011)

[11] http://www.physionet.org/physiobank/database/

Ngày đăng: 16/05/2020, 00:27

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w