The positive almost periodic solution for Nicholson-type delay systemsXingguo Liua, Junxia Mengb,⇑ a College of Business Administration, Hunan University, Changsha, Hunan 410082, PR Chin
Trang 1The positive almost periodic solution for Nicholson-type delay systems
Xingguo Liua, Junxia Mengb,⇑
a
College of Business Administration, Hunan University, Changsha, Hunan 410082, PR China
b
College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
a r t i c l e i n f o
Article history:
Received 28 April 2011
Received in revised form 24 September
2011
Accepted 29 September 2011
Available online 18 October 2011
Keywords:
Positive almost periodic solution
Exponential convergence
Nicholson-type delay system
Linear harvesting term
a b s t r a c t
In this paper, we study the existence and exponential convergence of positive almost peri-odic solutions for a class of Nicholson-type delay system with linear harvesting terms Under appropriate conditions, we establish some criteria to ensure that the solutions of this system converge locally exponentially to a positive almost periodic solution Moreover,
we give an example to illustrate our main results
Ó 2011 Elsevier Inc All rights reserved
1 Introduction
In[1], to describe the models of Marine Protected Areas and B-cell Chronic Lymphocytic Leukemia dynamics that belong
to the Nicholson-type delay differential systems, Berezansky et al.[1]considered the dynamics of the following autonomous Nicholson-type delay systems:
x0
1ðtÞ ¼ a1x1ðtÞ þ b1x2ðtÞ þ c1x1ðt sÞex 1 ðtsÞ;
x0
2ðtÞ ¼ a2x2ðtÞ þ b2x1ðtÞ þ c2x2ðt sÞex 2 ðtsÞ;
(
ð1:1Þ with initial conditions:
whereui2 C([s, 0], [0, +1)), ai, bi, ciandsare nonnegative constants, i = 1, 2
Furthermore, Wang et al.[2]showed the existence and exponential convergence of positive almost periodic solutions for the following non-autonomous Nicholson-type delay systems:
0307-904X/$ - see front matter Ó 2011 Elsevier Inc All rights reserved.
q
This work was supported by the Natural Scientific Research Fund of Zhejiang Provincial of PR China (Grant No Y6110436), the Natural Scientific Research Fund of Hunan Provincial of PR China (Grant No 11JJ6006), and the Natural Scientific Research Fund of Hunan Provincial Education Department of
PR China (Grant Nos 11C0916, 11C0915, 11C1186).
⇑Corresponding author Tel./fax: +86 057383643075.
E-mail address: mengjunxia1968@yahoo.com.cn (J Meng).
Contents lists available atSciVerse ScienceDirect
Applied Mathematical Modelling
j o u r n a l h o m e p a g e : w w w e l s e v i e r c o m / l o c a t e / a p m
Trang 21đtỡ Ử a1đtỡx1đtỡ ợ b1đtỡx2đtỡ ợPm
jỬ1
c1jđtỡx1đt s1jđtỡỡe c 1j đtỡx 1 đts1jđtỡỡ;
x0
2đtỡ Ử a2đtỡx2đtỡ ợ b2đtỡx1đtỡ ợPm
jỬ1
c2jđtỡx2đt s2jđtỡỡe c 2j đtỡx 2 đts2j đtỡỡ;
8
>
<
>
:
đ1:3ỡ
whereai, bi, cij,cij,sij: R1?(0, +1) are almost periodic functions, and i = 1, 2, j = 1, 2, , m
Recently, assuming that a harvesting function is a function of the delayed estimate of the true population, Berezansky
et al.[3]proposed the NicholsonỖs blowflies model with a linear harvesting term:
x0đtỡ Ử dxđtỡ ợ pxđt sỡeaxđtsỡ Hxđt rỡ; d;p;s;a; H; r2 đ0; ợ1ỡ; đ1:4ỡ where Hx(t r) is a linear harvesting term, x(t) is the size of the population at time t, P is the maximum per capita daily egg production,1
ais the size at which the population reproduces at its maximum rate, d is the per capita daily adult death rate, andsis the generation time Moreover, Berezansky et al.[3]pointed out an open problem: How about the dynamic behav-iors of the NicholsonỖs blowflies model with a linear harvesting term
Now, motivated by Berezansky et al.[1], Wang et al.[2], Berezansky et al.[3]a corresponding question arises: How about the existence and convergence of positive almost periodic solutions of Nicholson-type delay differential systems with linear harvesting terms The main purpose of this paper is to give the conditions to ensure the existence and convergence of po-sitive almost periodic solutions of the following non-autonomous Nicholson-type delay systems with linear harvesting terms:
x0
1đtỡ Ử a1đtỡx1đtỡ ợ b1đtỡx2đtỡ ợPm
jỬ1
c1jđtỡx1đt s1jđtỡỡe c 1j đtỡx 1 đts1j đtỡỡ
H1đtỡx1đt r1đtỡỡ;
x0
2đtỡ Ử a2đtỡx2đtỡ ợ b2đtỡx1đtỡ ợPm
jỬ1
c2jđtỡx2đt s2jđtỡỡe c 2j đtỡx 2 đts2j đtỡỡ
H2đtỡx2đt r2đtỡỡ;
8
>
>
>
>
>
>
đ1:5ỡ
whereai, bi, Hi,ri, cij,cij,sij: R1?[0, +1) are almost periodic functions, and i = 1, 2, j = 1, 2, , m
For convenience, we introduce some notations Throughout this paper, given a bounded continuous function g defined on
R1, let g+and gbe defined as
gỬ inf
t2Rgđtỡ; gợỬ sup
t2R
gđtỡ:
It will be assumed that
a
i >0; b
i >0; c
ij >0; riỬ max max
16j6m sợ ij
n o
;rợ i
Denote by RnRnợ
the set of all (nonnegative) real vectors Let
C Ử Cđơr1;0; R1
ỡ Cđơr2;0; R1
ỡ and CợỬ C ơr1;0; R1
ợ
C ơr2;0; R1
ợ
:
If xi(t) is defined on [t0 ri,r) with t0,r2 R1and i = 1, 2, then we define xt2 C as xtỬ x1
t;x2 t
where xi
tđhỡ Ử xiđt ợ hỡ for all
h2 [ri, 0] and i = 1, 2 A matrix or vector A P 0 means that all entries of A are greater than or equal to zero A > 0 can be defined similarly For matrices or vectors A and B, A P B (resp A > B) means that A B P 0 (resp A B > 0) For vector
X = (x1, x2) 2 R2, we let jXj denote the absolute-value vector given by jXj = (jx1j, jx2j), and define jXk = max16i62jxij
The initial conditions associated with system(1.5)are of the form:
We write xt(t0,u)(x(t; t0,u)) for a solution of the initial value problem(1.5) and (1.7) Also, let [t0,g(u)) be the maximal right-interval of existence of xt(t0,u)
The remaining part of this paper is organized as follows In Section2, we shall give some notations and preliminary results In Section3, we shall derive new sufficient conditions for checking the existence, uniqueness and local exponential convergence of the positive almost periodic solution of(1.5) In Section4, we shall give some example and remark to illustrate our results obtained in the previous sections
2 Preliminary results
In this section, some lemmas and definitions will be presented, which are of importance in proving our main results in Section3
Trang 3Definition 2.1 (See[4,5]) Let u(t) : R1?Rnbe continuous in t u(t) is said to be almost periodic on R1, if for anye> 0, the set T(u,e) = {d:ju(t + d) u(t)j <efor all t 2 R1} is relatively dense, i.e., for anye> 0, it is possible to find a real number l = l(e) > 0, such that for any interval with length l(e), there exists a number d = d(e) in this interval such that ju(t + d) u(t)j <e, for all
t 2 R1
Definition 2.2 (See[4,5]) Let x 2 Rnand Q(t) be a n n continuous matrix defined on R1 The linear system
is said to admit an exponential dichotomy on R1if there exist positive constants k,a, projection P and the fundamental solu-tion matrix X(t) of(2.1)satisfying
kXðtÞPX1ðsÞk 6 keaðtsÞ for all t P s;
kXðtÞðI PÞX1ðsÞk 6 keaðstÞ for all t 6 s:
Set
B ¼ fuju¼ ðu1ðtÞ;u2ðtÞÞ is an almost periodic function on R1g:
For anyu2 B, we define induced module kukB¼ supt2R1kuðtÞk, then B is a Banach space
Lemma 2.1 (See[4,5]) If the linear system(2.1)admits an exponential dichotomy, then almost periodic system
has a unique almost periodic solution x(t), and
xðtÞ ¼
Z t
1
XðtÞPX1ðsÞgðsÞds
Z þ1 t
Lemma 2.2 (See[4,5]) Let ci(t) be an almost periodic function on R1and
M½ci ¼ lim
T!þ1
1 T
Z tþT t
ciðsÞds > 0; i ¼ 1; 2; ; n:
Then the linear system
x0ðtÞ ¼ diag ðc1ðtÞ; c2ðtÞ; ; cnðtÞÞxðtÞ
admits an exponential dichotomy on R1
Lemma 2.3 Suppose that there exist two positive constants Ei1and Ei2such that
Ei1>Ei2; bþ1E21
a 1
þXm j¼1
cþ 1j
a
1c 1j
1
e<E11;
bþ2E11
a 2
þXm j¼1
cþ 2j
a
2c 2j
1
b1E22
aþ
1
þXm
j¼1
c 1j
aþ 1
E11ecþE11
H
þ
1E11
aþ 1
>E12P 1
min
16j6mc 1j
b2E12
aþ
2
þXm
j¼1
c 2j
aþ 2
E21ecþE21H
þ
2E21
aþ 2
>E22P 1
min
16j6mc 2j
where i = 1, 2 Let
C0
:¼ fuju2 C; Ei2<uiðtÞ < Ei1; for all t 2 ½ri;0; i ¼ 1; 2g:
Moreover, assume that x(t; t0,u) is the solution of(1.5)withu2 C0 Then,
andg(u) = +1
Trang 4Proof Set x(t) = x(t; t0,u) for all t 2 [t0,g(u)) Let [t0, T) # [t0,g(u)) be an interval such that
we claim that
Assume, by way of contradiction, that(2.9)does not hold Then, one of the following cases must occur
Case i: There exists t12 (t0, T) such that
x1ðt1Þ ¼ E11 and 0 < xiðtÞ < Ei1for all t 2 ½t0 ri;t1Þ; i ¼ 1; 2: ð2:10Þ Case ii: There exists t22 (t0, T) such that
x2ðt2Þ ¼ E21 and 0 < xiðtÞ < Ei1for all t 2 ½t0 ri;t2Þ; i ¼ 1; 2: ð2:11Þ
If Case i holds, calculating the derivative of x1(t), together with(2.4)and the fact that supuP0ueu¼1
e,(1.5) and (2.10)
imply that
0 6 x0
1ðt1Þ ¼ a1ðt1Þx1ðt1Þ þ b1ðt1Þx2ðt1Þ þXm
j¼1
c1jðt1Þx1ðt1s1jðt1ÞÞe c 1j ðt 1 Þx 1 ðt 1 s1j ðt 1 ÞÞ H1ðt1Þx1ðt1r1ðt1ÞÞ
6a
1x1ðt1Þ þ bþ
1E21þXm j¼1
cþ 1j
c 1j
1
e¼a
1 E11þb
þ
1E21
a 1
þXm j¼1
cþ 1j
a
1c 1j
1 e
!
<0;
which is a contradiction and implies that(2.9)holds
If Case ii holds, calculating the derivative of x2(t), together with(2.4)and the fact that supuP0ueu¼1
e,(1.5) and (2.11)
imply that
0 6 x0
2ðt2Þ ¼ a2ðt2Þx2ðt2Þ þ b2ðt2Þx1ðt2Þ þXm
j¼1
c2jðt2Þx2ðt2s2jðt2ÞÞe c 2j ðt 2 Þx 2 ðt 2 s2j ðt 2 ÞÞ H2ðt2Þx2ðt2r2ðt2ÞÞ
6a
2x2ðt2Þ þ bþ
2E11þXm j¼1
cþ 2j
c 2j
1
e¼a
2 E21þb
þ
2E11
a 2
þXm j¼1
cþ 2j
a
2c 2j
1 e
!
<0;
which is a contradiction and implies that(2.9)holds
We next show that
Suppose, for the sake of contradiction, that(2.12)does not hold Then, one of the following cases must occur
Case I: There exists t32 (t0,g(u)) such that
x1ðt3Þ ¼ E12 and xiðtÞ > Ei2for all t 2 ½t0 ri;t3Þ; i ¼ 1; 2: ð2:13Þ Case II: There exists t42 (t0,g(u)) such that
x2ðt4Þ ¼ E22 and xiðtÞ > Ei2for all t 2 ½t0 ri;t4Þ; i ¼ 1; 2: ð2:14Þ
If Case I holds Then, from(2.5), (2.6), (2.9) and (2.13), we get
Ei2<xiðtÞ < Ei1; cþ
ijxiðtÞ Pcþ
ijEi2Pcþ ij
1 min
16j6mc ij
for all t 2 [t0 ri, t3), i = 1, 2, j = 1, 2, , m Calculating the derivative of x1(t), together with (2.5) and the fact that min16u6jueu=jej,(1.5), (2.13) and (2.15)imply that
0 P x0
1ðt3Þ ¼ a1ðt3Þx1ðt3Þ þ b1ðt3Þx2ðt3Þ þXm
j¼1
c1jðt3Þx1ðt3s1jðt3ÞÞe c1jðt 3 Þx 1 ðt 3 s1j ðt 3 ÞÞ H1ðt3Þx1ðt3r1ðt3ÞÞ
¼ a1ðt3Þx1ðt3Þ þ b1ðt3Þx2ðt3Þ þXm c1jðt3Þ
cþ 1j
cþ 1jx1ðt3s1jðt3ÞÞe c 1j ðt 3 Þx 1 ðt 3 s1jðt 3 ÞÞ H1ðt3Þx1ðt3r1ðt3ÞÞ
Trang 5Pa1ðt3Þx1ðt3Þ þ b1E22þXm
j¼1
c 1j
cþ 1j
cþ 1jx1ðt3s1jðt3ÞÞecþx1 ðt 3 s1j ðt 3 ÞÞ
Hþ1E11
Paþ
1x1ðt3Þ þ b1E22þXm
j¼1
c 1j
cþ 1j
cþ 1jE11ecþE11
Hþ1E11¼aþ
1 E12þb
1E22
aþ 1
þXm j¼1
c 1j
aþ 1
E11ecþE11
H
þ
1E11
aþ 1
!
>0;
which is a contradiction and implies that(2.12)holds
If Case II holds, we can show that(2.15)holds for all t 2 [t0 ri, t4),i = 1, 2, j = 1, 2, , m Calculating the derivative of x2(t), together with(2.6)and the fact that min16u6jueu=jej,(1.5), (2.14) and (2.15)imply that
0 P x0
2ðt4Þ ¼ a2ðt4Þx2ðt4Þ þ b2ðt4Þx1ðt4Þ þXm
j¼1
c2jðt4Þx2ðt4s2jðt4ÞÞe c 2j ðt 4 Þx 2 ðt 4 s2jðt 4 ÞÞ H2ðt4Þx2ðt4r2ðt4ÞÞ
¼ a2ðt4Þx2ðt4Þ þ b2ðt4Þx1ðt4Þ þXm
j¼1
c2jðt4Þ
cþ 2j
cþ 2jx2ðt4s2jðt4ÞÞe c2jðt 4 Þx 2 ðt 4 s2j ðt 4 ÞÞ H2ðt4Þx2ðt4r2ðt4ÞÞ
Pa2ðt4Þx2ðt4Þ þ b
2E12þXm j¼1
c 2j
cþ 2j
cþ 2jx2ðt4s2jðt4ÞÞecþx2 ðt 4 s2j ðt 4 ÞÞ
Hþ
2E21
Paþ
2x2ðt4Þ þ b2E12þXm
j¼1
c 2j
cþ 2j
cþ 2jE21ecþE21 Hþ2E21¼aþ
2 E22þb
2E12
aþ 2
þXm j¼1
c 2j
aþ 2
E21ecþE21H
þ
2E21
aþ 2
!
>0;
which is a contradiction and implies that(2.12)holds
It follows from(2.9) and (2.12)that(2.7)is true From Theorem 2.3.1 in[6], we easily obtaing(u) = +1 This ends the proof ofLemma 2.3 h
3 Main results
Theorem 3.1 Let(2.4)–(2.6)hold Moreover, suppose that
þ
1
a
1
þXm
j¼1
cþ 1j
a
1e2þH
þ 1
a 1
; bþ2
a 2
þXm j¼1
cþ 2j
a
2e2þH
þ 2
a 2
Then, there exists a unique positive almost periodic solution of system(1.5)in the region B⁄= {uju2 B, Ei26ui(t) 6 Ei1, for all
t 2 R1, i = 1, 2}
Proof For any / 2 B, we consider an auxiliary system
x0
1ðtÞ ¼ a1ðtÞx1ðtÞ þ b1ðtÞ/2ðtÞ þPm
j¼1
c1jðtÞ/1ðt s1jðtÞÞe c 1j ðtÞ/ 1 ðts1j ðtÞÞ
H1ðtÞ/1ðt r1ðtÞÞ;
x0
2ðtÞ ¼ a2ðtÞx2ðtÞ þ b2ðtÞ/1ðtÞ þPm
j¼1
c2jðtÞ/2ðt s2jðtÞÞe c 2j ðtÞ/ðts2j ðtÞÞ
H2ðtÞ/2ðt r2ðtÞÞ;
8
>
>
>
>
>
>
>
>
ð3:2Þ
Notice that M[ai] > 0(i = 1, 2), it follows fromLemma 2.2that the linear system
x0
1ðtÞ ¼ a1ðtÞx1ðtÞ;
x0
2ðtÞ ¼ a2ðtÞx2ðtÞ;
(
ð3:3Þ
admits an exponential dichotomy on R Thus, byLemma 2.1, we obtain that the system(3.2)has exactly one almost periodic solution:
x/ðtÞ ¼ x /ðtÞ; x/ðtÞ
¼
Z t
1
e
Rt
s a 1 ðuÞdu
b1ðsÞ/2ðsÞ þXm
j¼1
c1jðsÞ/1ðs s1jðsÞÞe c1jðsÞ/ 1 ðss1j ðsÞÞ H1ðsÞ/1ðs r1ðsÞÞ
! ds;
Z t
1
e
Rt
s a 2 ðuÞdu
b2ðsÞ/1ðsÞ þXm
c2jðsÞ/2ðs s2jðsÞÞe c 2j ðsÞ/ 2 ðss2jðsÞÞ H2ðsÞ/2ðs r2ðsÞÞ
! ds
! : ð3:4Þ
Trang 6Define a mapping T : B ? B by setting
Tð/ðtÞÞ ¼ x/ðtÞ; 8/2 B:
Since B⁄= {uju2 B, Ei26ui(t) 6 Ei1, for all t 2 R1, i = 1, 2}, it is easy to see that B⁄is a closed subset of B For anyu2 B⁄, from(2.4) and (3.4)and the fact that supuP0ueu¼1
e, we have
x/ðtÞ 6
Z t
1
eRt
s a 1 ðuÞdu
bþ1E21þXm j¼1
1
c1jðsÞec1jðsÞ
! ds;
Zt
1
eRt
s a 2 ðuÞdu
bþ2E11þXm j¼1
1
c2jðsÞec2jðsÞ
! ds
!
6 bþ1E21
a
1
þXm j¼1
cþ 1j
a
1c 1je;
bþ2E11
a 2
þXm j¼1
cþ 2j
a
2c 2je
!
In view of the fact that min16u6jueu=jej, from(2.5), (2.6) and (3.4), we obtain
x/ðtÞ P
Z t
1
eRt
s a 1 ðuÞdu
b1E22þXm j¼1
c1jðsÞ1
cþ 1j
cþ 1j/1ðs s1jðsÞÞecþ/1 ðss1jðsÞÞ
H1ðsÞ/1ðs r1ðsÞÞ
! ds;
Z t
1
eRt
s a 2 ðuÞdu
b
2E12þXm j¼1
c2jðsÞ1
cþ 2j
cþ 2j/2ðs s2jðsÞÞecþ/2 ðss2jðsÞÞ
H2ðsÞ/2ðs r2ðsÞÞ
! ds
!
1E22
aþ
1
þXm j¼1
c 1j
aþ 1
E11ecþE11H
þ
1E11
aþ 1
;fracb
2E12aþ
2þXm j¼1
c 2j
aþ 2
E21ecþE21H
þ
2E21
aþ 2
!
>ðE12;E22Þ; for all t 2 R1: ð3:6Þ
This implies that the mapping T is a self-mapping from B⁄to B⁄ Now, we prove that the mapping T is a contraction mapping
on B⁄
In fact, foru,w2 B⁄
, we get sup
t2R jðTðuÞðtÞ TðwÞðtÞÞ1j; sup
t2R jðTðuÞðtÞ TðwÞðtÞÞ2j
¼ sup
t2R j
Z t
1
eRt
s a 1 ðuÞdu
ðb1ðsÞðu2ðsÞ w2ðsÞÞ
þXm j¼1
c1jðsÞðu1ðs s1jðsÞÞe c 1j ðsÞ u 1 ðss1jðsÞÞ
w1ðs s1jðsÞÞe c 1j ðsÞw 1 ðss1j ðsÞÞÞ H1ðsÞðu1ðs r1ðsÞÞ
w1ðs r1ðsÞÞÞÞdsj; sup
t2R j
Z t
1
eRt
s a 2 ðuÞdu
ðb2ðsÞðu1ðsÞ w1ðsÞÞ
þXm j¼1
c2jðsÞðu2ðs s2jðsÞÞe c2jðsÞ u2ðss2j ðsÞÞ
w2ðs s2jðsÞÞe c 2j ðsÞw 2 ðss2j ðsÞÞÞ H2ðsÞðu2ðs r2ðsÞÞ
w2ðs r2ðsÞÞÞÞdsjÞ
¼ sup
t2R
j
Z t
1
e
Rt
s a 1 ðuÞdu
ðb1ðsÞðu2ðsÞ w2ðsÞÞ
þXm j¼1
c1jðsÞ
c1jðsÞðc1jðsÞu1ðs s1jðsÞÞe c 1j ðsÞ u 1 ðss1j ðsÞÞ
c1jðsÞw1ðs s1jðsÞÞe c1jðsÞw1ðss1jðsÞÞÞ H1ðsÞðu1ðs r1ðsÞÞ
w1ðs r1ðsÞÞÞÞdsj; supt2Rj
Zt
1
eRt
s a 2 ðuÞdu
ðb2ðsÞðu1ðsÞ
w1ðsÞÞ þXm
j¼1
c2jðsÞ
c2jðsÞðc2jðsÞu2ðs s2jðsÞÞe c 2j ðsÞ u 2 ðss2jðsÞÞ
c2jðsÞw2ðs s2jðsÞÞe c 2j ðsÞw 2 ðss2j ðsÞÞÞ H2ðsÞðu2ðs r2ðsÞÞ
In view of(1.5), (2.5), (2.6), (3.5), (3.6) and (3.7), from supuP11u
e 2and the inequality jxex yeyj ¼ 1 ðx þ hðy xÞÞ
exþhðyxÞ 6
1
e2jx yj where x; y 2 ½1; þ1Þ; 0 < h < 1; ð3:8Þ
we have
Trang 7t2R
jðTðuÞðtÞ TðwÞðtÞÞ1j; sup
t2R
jðTðuÞðtÞ TðwÞðtÞÞ2jÞ
6 bþ1
a
1
ku wkBþ sup
t2R
Z t
1
eRt
s a 1 ðuÞduXm j¼1
cþ 1j
1
e2ju1ðs s1jðsÞÞ w1ðs s1jðsÞÞjds þH
þ 1
a 1
ku wkB;bþ2
a 2
ku wkB
þ sup
t2R
Z t
1
eRt
s a 2 ðuÞduXm j¼1
cþ 2j
1
e2ju2ðs s2jðsÞÞ w2ðs s2jðsÞÞjds þH
þ 2
a 2
ku wkB
!
6 bþ1
a
1
þXm j¼1
cþ 1j
a
1e2þH
þ 1
a 1
!
ku wkB; bþ2
a 2
þXm j¼1
cþ 2j
a
2e2þH
þ 2
a 2
!
ku wkB
!
Hence
kTðuÞ TðwÞkB6max b
þ 1
a 1
þXm j¼1
cþ 1j
a
1e2þH
þ 1
a 1
;bþ 2
a 2
þXm j¼1
cþ 2j
a
2e2þH
þ 2
a 2
ku wkB: Noting that
þ
1
a
1
þXm
j¼1
cþ 1j
a
1e2þH
þ 1
a 1
;bþ2
a 2
þXm j¼1
cþ 2j
a
2e2þH
þ 2
a 2
<1;
it is clear that the mapping T is a contraction on B⁄ Using Theorem 0.3.1 of[7], we obtain that the mapping T possesses a unique fixed pointu⁄
2 B⁄, Tu⁄=u⁄ By(3.2),u⁄satisfies(1.5) Sou⁄is an almost periodic solution of(1.5)in B⁄ The proof
ofTheorem 3.1is now complete h
Theorem 3.2 Let x⁄(t) be the positive almost periodic solution of Eq.(1.5)in the region B⁄ Suppose that(2.4)–(2.6)and(3.1)
hold Then, the solution x(t; t0,u) of(1.5)withu2 C0converges exponentially to x⁄
(t) as t ? +1
Proof Set x(t) = x(t; t0,u) and yiðtÞ ¼ xiðtÞ x
iðtÞ, where t 2 [t0 ri, +1), i = 1, 2 Then
y0
1ðtÞ ¼ a1ðtÞy1ðtÞ þ b1ðtÞy2ðtÞ þPm
j¼1
c1jðtÞðx1ðt s1jðtÞÞe c 1j ðtÞx1ðts1jðtÞÞ
x
1ðt s1jðtÞÞe c1jðtÞx
1 ðts1j ðtÞÞÞ H1ðtÞy1ðt r1ðtÞÞ
y0
2ðtÞ ¼ a2ðtÞy2ðtÞ þ b2ðtÞy1ðtÞ þPm
j¼1
c2jðtÞðx2ðt s2jðtÞÞe c 2j ðtÞx 2 ðts2j ðtÞÞ
x
2ðt s2jðtÞÞe c 2j ðtÞx
2 ðts2jðtÞÞÞ H2ðtÞy2ðt r2ðtÞÞ;
8
>
>
>
<
>
>
>
:
ð3:10Þ
Set
CiðuÞ ¼ a
i u
þ bþ
i þXm j¼1
cþ ij
1
e2euriþ Hþ
Clearly,Ci(u), i = 1, 2, are continuous functions on [0, 1] In view of(3.1), we obtain
Cið0Þ ¼ a
i þ bþ
i þXm j¼1
cþ ij
1
e2þ Hþi <0; i ¼ 1; 2;
we can choose two constantsg> 0 and k 2 (0, 1] such that
CiðkÞ ¼ k a
i
þ bþ
i þXm j¼1
cþ ij
1
We consider the Lyapunov functional
Calculating the upper right derivative of Vi(t)(i = 1, 2) along the solution y(t) of(3.10), we have
DþðV1ðtÞÞ 6 a1ðtÞjy1ðtÞjektþ b1ðtÞjy2ðtÞjektþXm
j¼1
c1jðtÞjx1ðt s1jðtÞÞe c1jðtÞx 1 ðts1j ðtÞÞ
x
1ðt s1jðtÞÞe c 1j ðtÞx
1 ðts1j ðtÞÞjektþ H1ðtÞjy1ðt r1ðtÞÞjektþ kjy1ðtÞjekt
¼ ðk a1ðtÞÞjy1ðtÞj þ b1ðtÞjy2ðtÞj þXm
j¼1
c1jðtÞjx1ðt s1jðtÞÞe c1jðtÞx 1 ðts1j ðtÞÞ
"
xðt s ðtÞÞe c 1j ðtÞx
1 ðts1j ðtÞÞj þ HðtÞjy ðt r ðtÞÞj
Trang 8DþðV2ðtÞÞ 6 a2ðtÞjy2ðtÞjektþ b2ðtÞjy1ðtÞjektþXm
j¼1
c2jðtÞjx2ðt s2jðtÞÞe c2jðtÞx 2 ðts2j ðtÞÞ
x
2ðt s2jðtÞÞe c 2j ðtÞx
2 ðts2j ðtÞÞjektþ H2ðtÞjy2ðt r2ðtÞÞjektþ kjy2ðtÞjekt
¼ ðk a2ðtÞÞjy2ðtÞj þ b2ðtÞjy1ðtÞj þXm
j¼1
c2jðtÞjx2ðt s2jðtÞÞe c2jðtÞx 2 ðts2j ðtÞÞ
"
x
2ðt s2jðtÞÞe c 2j ðtÞx
2 ðts2jðtÞÞj þ H2ðtÞjy1ðt r2ðtÞÞj
Let maxi¼1;2fekt 0ðmaxt2½t 0 r i ;t 0 juiðtÞ x
iðtÞj þ 1Þg :¼ M We claim that
Otherwise, one of the following cases must occur
Case 1: There exists T1> t0such that
Case 2: There exists T2> t0such that
If Case 1 holds, together with(2.7), (3.8)and(3.14), (3.17)implies that
0 6 Dþ
ðV1ðT1Þ MÞ ¼ DþðV1ðT1ÞÞ 6 ðk ½ a1ðT1ÞÞjy1ðT1Þj þ b1ðT1Þjy2ðT1Þj
þXm
j¼1
c1jðT1Þjx1ðT1s1jðT1ÞÞe c1jðT 1 Þx 1 ðT 1 s1jðT 1 ÞÞ x
1ðT1s1jðT1ÞÞe c1jðT 1 Þx
1 ðT 1 s1jðT 1 ÞÞj þ H1ðT1Þjy1ðT1r1ðT1ÞÞj
#
ek 1
¼ ðk a1ðT1ÞÞjy1ðT1Þj þ b1ðT1Þjy2ðT1Þj þXm
j¼1
c1jðT1Þ
c1jðT1Þjc1jðT1Þx1ðT1s1jðT1ÞÞe c 1j ðT 1 ÞxðT 1 s1jðT 1 ÞÞ
"
c1jðT1Þx
1ðT1s1jðT1ÞÞe c 1j ðT 1 Þx ðT 1 s1j ðT 1 ÞÞj þ H1ðT1Þjy1ðT1r1ðT1ÞÞji
ek 1
6ðk a1ðT1ÞÞjy1ðT1Þjek 1þ b1ðT1Þjy2ðT1Þjek 1þXm
j¼1
c1jðT1Þ1
e2jy1ðT1s1jðT1ÞÞjekðT 1 s1j ðT 1 ÞÞeks1j ðT 1 Þ
þH1ðT1Þjy1ðT1r1ðT1ÞÞjekðT 1 r1 ðT 1 ÞÞekr1 ðT 1 Þ6
ka 1
þ bþ
1þXm j¼1
cþ 1j
1
e2ekr 1þ Hþ
1ekr 1
Thus,
0 6 k a
1
þ bþ
1þXm j¼1
cþ 1j
1
e2ekr 1þ Hþ1ekr 1; which contradicts with(3.12) Hence,(3.16)holds
If Case 2 holds, together with(2.7), (3.8)and(3.15), (3.18)implies that
0 6 Dþ
ðV2ðT2Þ MÞ ¼ DþðV2ðT2ÞÞ 6 ðk ½ a2ðT2ÞÞjy2ðT2Þj þ b2ðT2Þjy1ðT2Þj
þXm
j¼1
c2jðT2Þjx2ðT2s2jðT2ÞÞe c2jðT 2 Þx 2 ðT 2 s2j ðT 2 ÞÞ x
2ðT2s2jðT2ÞÞe c2jðT 2 Þx ðT 2 s2j ðT 2 ÞÞj þ H2ðT2Þjy2ðT2r2ðT2ÞÞj
#
ek 2
¼ ðk a2ðT2ÞÞjy2ðT2Þj þ b2ðT2Þjy1ðT2Þj þXm
j¼1
c2jðT2Þ
c2jðT2Þjc2jðT2Þx2ðT2s2jðT2ÞÞe c2jðT 2 Þx 2 ðT 2 s2j ðT 2 ÞÞ
"
c2jðT2Þx
2ðT2s2jðT2ÞÞe c 2j ðT 2 Þx
2 ðT 2 s2j ðT 2 ÞÞj þ H2ðT2Þjy2ðT2r2ðT2ÞÞji
ek 2
6ðk a2ðT2ÞÞjy2ðT2Þjek 2þ b2ðT2Þjy1ðT2Þjek 2þXm
j¼1
c2jðT2Þ1
e2jy2ðT2s2jðT2ÞÞjekðT 2 s2j ðT 2 ÞÞeks2j ðT 2 Þ
þH2ðT2Þjy2ðT2r2ðT2ÞÞjekðT 2 r2 ðT 2 ÞÞekr2 ðT 2 Þ6
ka 2
þ bþ
2þXm j¼1
cþ 2j
1
e2ekr 2þ Hþ2ekr 2
Thus,
Trang 90 6 k a
2
þ bþ2þXm j¼1
cþ 2j
1
e2ekr2
þ Hþ2ekr2; which contradicts with(3.12) Hence,(3.16)holds It follows that
This completes the proof h
4 Example and remark
In this section, we give an example to demonstrate the results obtained in previous sections
Example 4.1 Consider the following Nicholson-type delay system with linear harvesting terms:
x0
1ðtÞ ¼ 18 þ cos 2t
x1ðtÞ þ 0:00001 þ 0:000005 sin 2t
ee3x2ðtÞ
þ ee1 9:5 þ 0:005j sin ffiffiffi
2 p tj
x1t e2j sin tj
ex 1ðte 2j sin tjÞ;
þ ee1 9:5 þ 0:005j sin ffiffiffi
5 p tj
x1 t e2j cos pffiffi3
tj
ex 1ðte 2j cospffiffi3 tjÞ
ð0:000001 cos2tÞee3x1 t e2j cos pffiffi3
tj
x0
2ðtÞ ¼ 18 þ sin 2t
x2ðtÞ þ 0:00001 þ 0:000005 cos 2t
ee3x1ðtÞ
þ ee1 9:5 þ 0:005j cos ffiffiffi
2
p tj
x2t e2j cos tj
ex 2ðte 2j cos tjÞ;
þ ee1 9:5 þ 0:005j sin ffiffiffi
6
p tj
x2 t e2j cos pffiffi7
tj
ex 2ðte 2j cospffiffi7 tjÞ
0:000001 cos 4t
ee3x2 t e2j cos pffiffi3
tj
;
8
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
ð4:1Þ
i ¼ 18; aþ
i ¼ 19; cþ
ij¼c
ij¼ 1; b
i ¼ 0:00001ee3; bþ
i ¼ 0:000015ee3; c
ij¼ 9:5ee1; cþ
ij ¼ 9:505ee1;Hþ
0:000001ee3; ri¼ max max16j6m sþ
ij
n o
; rþ i
¼ e2;
bi
aþ
i
þX2
j¼1
c
ije1cþij e
aþ i
H
þ
ie
aþ i
¼19 þ 0:00001e
e3 0:000001ee2
bþie
a
i
þX2
j¼1
cþ ij
a
ic ij
1
e¼
bþie
a i
þX2 j¼1
cþ ij
a i
1
e¼
0:000015ee2þ 19:01ee2
and
þ
1
a
1
þXm
j¼1
cþ 1j
a
1e2þH
þ 1
a 1
;bþ2
a 2
þXm j¼1
cþ 2j
a
2e2þH
þ 2
a 2
¼0:000016e
e2þ 19:01ee2
where i, j = 1, 2 Let Ei1= e and Ei2= 1 for i = 1, 2 Then,(4.2)–(4.4)imply that the Nicholson-type delay differential system
(4.1)satisfies(2.4)–(2.6) and (3.1) Hence, fromTheorems 3.1 and 3.2, system(4.1)has a positive almost periodic solution
xðtÞ 2 B¼ fuju2 B; 1 6uiðtÞ 6 e; for all t 2 R; i ¼ 1; 2g:
Moreover, ifu2 C0= {uju2 C, 1 <ui(t) < e, for all t 2 [e2, 0], i = 1, 2}, then x(t; t0,u) converges exponentially to x⁄(t) as
t ? +1
Remark 4.1 To the best of our knowledge, few authors have considered the problems of positive almost periodic solution of Nicholson-type delay system with linear harvesting terms Therefore, all the results in[1–3,8]and the references therein cannot be applicable to prove that all the solutions of(4.1)with initial valueu2 C0converge exponentially to the positive almost periodic solution Moreover, if H1(t) H2(t) 0, we can find that the main results of[2]are special ones ofTheorems 3.2with Ei1= e and Ei2= 1 for i = 1, 2 This implies that the results of this paper are new and they complement previously known results
Acknowledgements
The authors thank the referees very much for the helpful comments and suggestions
Trang 10[1] L Berezansky, L Idels, L Troib, Global dynamics of Nicholson-type delay systems with applications, Nonlinear Anal Real World Appl 12 (1) (2011) 436– 445.
[2] W Wang, L Wang, W Chen, Existence and exponential stability of positive almost periodic solution for Nicholson-type delay systems, Nonlinear Anal Real World Appl 12 (4) (2011) 1938–1949.
[3] L Berezansky, E Braverman, L Idels, Nicholson’s blowflies differential equations revisited: main results and open problems, Appl Math Model 34 (2010) 1405–1417.
[4] A.M Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, vol 377, Springer, Berlin, 1974.
[5] C.Y He, Almost Periodic Differential Equation, Higher Education Publishing House, Beijing, 1992 (in Chinese).
[6] J.K Hale, S.M Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[7] J.K Hale, Ordinary Differential Equations, Krieger, Malabar, Florida, 1980.
[8] F Long, Positive Almost Periodic Solution for a Class of Nicholson’s Blowflies Model with a Linear Harvesting Term, Nonlinear Anal Real World Appl 13 (2012) 686–693.