Tài liệu là kho tàng phong phú đặc biệt tại địa chỉ 123.doc các bạn có thể tự chọn cho mình sao cho phù hợp với nhu cầu phục vụ . Trong những năm tháng học tập ở hà nội may mắn được các anh chị đã từng đi làm chia sẻ một một chút tài liệu tôi xin đươc chia sẻ với các bạn . trong quá trình upload vẫn còn chưa chỉnh sửa hết nhưng khi các bạn tải về vẫn có thể chỉnh sửa lại theo ý muốn của mình tùy theo mục đích và yêu cầu sử dụng. Xin được chia sẻ lên trang 123.doc và các bạn thường xuyên chọn 123.doc là địa chỉ tin cậy trong việc tải cũng như sử dụng tài liệu tại đây.
Trang 1HƯỚNG DẪN GIẢI
Chuyên đề 16 QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN,
ĐƯỜNG XIÊN VÀ HÌNH CHIẾU.
16.1 (h.16.6)
Vì ADBC nên AD�AB(dấu”=” xảy ra � ABC� 900).
Vì BE AC nên BE BC (dấu”=” xảy ra � � ACB� 900).
Vì CF AB nên CF CA (dấu”=” xảy ra � � BAC� 900).
Do các dấu “=” không thể xảy ra đồng thời nên
16.2 (h.16.7)
Vẽ BH d CK; d. Theo quan hệ giữa đường vuông góc
và đường xiên ta có BH �BO CK CO; � . Do đó
BH CK BO CO BC
Dấu”=” xảy ra H O và K O� �d BC
Vì góc A tù nên d luôn cắt BC
16.3 (h.16.8)
lượt là hình chiếu của AB và BC trên
đường thẳng BM
Ta có ∆HAM = ∆KCM (cạnh huyền, góc
nhọn) � MH MK .
Ta có AB < BM (quan hệ giữa đường
vuông góc và đường xiên) Hình 16.8
Do đó AB < BH + HM (1)
Mặt khác cũng do AB < BM nên AB < BK – MK (2)
Từ (1) và (2), suy ra 2AB(BH HM) (BK MK).
Lại có MH = MK nên 2AB < BH + BK hay 2
AB
16.4 (h.16.9)
∆ABD và ∆CAE có : � �D E ( 90 ).0
AB = AC, �ABD CAE (cùng phụ với �
góc BAD)
Do đó ABD CAE (cạnh huyền,
góc nhọn) Suy ra BD = AE và AD =
CE
Ta có BD + CE = AE +AD =DE Hình 16.9
Vẽ BH CE thì DE = BH (tính chất đoạn thẳng song song).
Trang 2Vì BK BC (quan hệ giữa đường vuông góc và đường xiên) nên � DE BC �
(dấu ‘’=’’xảy ra C H hay xy // BC) Vậy khi xy // BC thì BD + CE = BC.
16.5 (h.16.10)
Gọi N là giao điểm của AB và tia CM
Vì M nằm trong tam giác ABC nên tia
CM cắt cạnh AB tại điểm N nằm giữa A
và B, do đó AB > AN (1)
Theo quan hệ giữa đường vuông góc
và đường xiên, từ HN > HM
Suy ra AN > AM (2)
Từ (1) và (2), ta có AB > AM
Mặt khác AM = AC (vì HM = HC) nên
AB > AC
Hình 16.10
16.6 (h.16.11)
a) Ta có AB AC BM, CN� AM AN.
∆ABC và ∆AMN cân tại A
� � 1800 �
2
� ABC AMN A
/ /
� BC MN (vì có cặp góc đồng bị bằng
nhau)
Vẽ AH BC thì AH MN (tại K).
Ta có
Gọi O là giao điểm của BN với AK
Theo quan hệ giữa đường vuông góc và
đường xiên ta có :
Do BN BO ON nên 2 2 2 .
BN
b) Vẽ BI MN�BI/ /HK Do đó IK = BH (tính chất đoạn chắn song song).
Ta có
Mặt khác BM > MI nên 2
BM
16.7 (h.16.12)
Trang 3Gọi N là trung điểm của EF Các
tam giác ABC và AEF là những tam
giác vuông, M và N là trung điểm
của cạnh huyền nên
(1) Suy ra BC = 2AM ; EF = 2AN
Theo quan hệ giữa đường vuông góc và đường xiên ta có AN�AM (2).
Từ (1)và (2), suy ra EF�BC5 cm
Để xác định khi đó dấu “=” xảy ra, ta gọi H là giao điểm của AN với BC Ta có
AH BC (bạn đọc tự chứng minh).
Ta có EF� BC �� AN AM N M H M .
Khi đó tam giác ABC có MB = MC, AM BC (vì M �H ) nên là tam giác vuông cân Do đó độ dài ngắn nhất của EF là 5cm khi và chỉ khi A là đỉnh của một tam giác vuông cân có cạnh huyền là BC
16.8 (h.16.13)
Ta có C BAH (cùng phụ �B );� �
� �
B HAC (cùng phụ với � C )
Mà �BAH HAC (giả thiết) nên�
� �.
C B
Xét ∆ABC có C B nên AB < AC(quan hệ giữa cạnh và góc đối diện trong tam� � giác) Suy ra HB HC (quan hệ giữa đường xiên và hình chiếu)
16.9 (h.16.14)
Vẽ AH BC .
Vì các góc B và C nhón nên H nằm
giữa B và C
Ta có B C� � �ACAB (quan hệ
giữa cạnh và góc đối diện trong
tam giác)
- Nếu M �H thì AM AB (quan hệ giữa đường vuông góc và đường xiên)
- Nếu M nằm giữa B và H thì
� AM AB (quan hệ giữa đường
xiên và hình chiếu)
- Nếu M nằm giữa H và C(h.16.15)
Ta có HM < HC
� AM AC (quan hệ giữa đường
Trang 4xiên và hình chiếu)
mà AC < AB nên AM < AB
16.10 (h.16.16)
Theo định lí Py-ta-go ta có:
2 2 2 52 122 169� 13
Ta có BM �BH(dấu ‘’=’’xảy ra
M H ) ;
�
CM CH (dấu ‘’=’’xảy ra M H ).
Do đó BM CM �BH CH 13( dấu ‘’=’’xảy ra M H ).(1)
Ta có HM �HA nên BM �BA (dấu ‘’=’’xảy ra M A ).
Tương tự CM CA (dấu ‘’=’’xảy ra � M A )
Do đó BM CM �BA CA 5 12 17 (dấu ‘’=’’xảy ra M A )(2)
Từ (1) và (2), suy ra 13�MB MC �17.
16.11 (h.16.17)
Giả sử AB < AC theo quan hệ giữa đường xiên và hình chiếu ta có HB < HC, do
đó MB < MC
Từ điều kiện AB < AC và BD = CE
suy ra AD < AE
Theo định lí Py-ta-go, ta có:
2 2 2; 2 2 2
Do đó MD2 ME2.
Ta có
2 2 2; 2 2 2
MB MD BD MC ME CE
Vì MD2 ME BD2, 2 CE nên2
2 2
MB MC suy ra MB MC .
Theo quan hệ giữa đường xiên và hình chiếu ta suy ra HB > HC, do đó AB > AC(trái giả thiết)
Chứng minh tương tự, nếu AB > AC thì cũng suy ra mâu thuẫn
Vậy AB = AC hay tam gác ABC là tam giác cân