1. Trang chủ
  2. » Giáo án - Bài giảng

Giáo án dấu nhị thức bậc nhất tiết 2 hay nhất

8 93 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 169,35 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Để có một bài giảng hay thu hút học sinh chắc hẳn bạn phải biên soạn giáo án hay và hấp dẫn. Giáo án ở trên đã được chỉnh sửa chi tiết , công phu, biên soạn và nhận xét từ các thầy cô giáo sẽ giúp bạn có một giáo án thật hay để dạy cho các học sinh yêu quý của mình

Trang 1

Ngày soạn 23/02/2020

Tiết PPCT :64

Lớp dạy: 10A4

CHƯƠNG IV.BẤT ĐẲNG THỨC.BẤT PHƯƠNG

TRÌNH Bài 3: DẤU CỦA NHỊ THỨC BẬC NHẤT (tiết 2)

I MỤC TIÊU.

1 Kiến thức:

- Biết xét dấu một nhị thức bậc nhất, biết cách giải các bất phương trình tích, bất phương trình chứa ẩn ở mẫu, chứa ấn trong dấu giá trị tuyệt đối của các nhị thức bậc nhất

2 Kĩ năng:

- Xét dấu một biểu thức

- Giải một số bất phương trình: Bất phương trình tích, bất phương trình chứa ẩn ở mẫu, bất phương trình chứa ẩn trong dấu giá trị tuyệt đối

- Xét được dấu của nhị thức bậc nhất một cách thành thạo

- Sử dụng thành thạo pp bảng và pp khoảng

- Dựa vào bảng xét dấu đọc nhanh nghiệm của bpt

- Vận dụng một cách linh hoạt việc xét dấu để giải các BPT và xét dấu các biểu thức đại số khác

3 Thái độ:

- Rèn luyện tính cẩn thận linh hoạt

- Diễn đạt vấn đề rõ rang trong sáng

- Tư duy năng động, sáng tạo

- Thể hiện thái độ hợp tác tốt trong học tập

II CHUẨN BỊ:

Giáo viên:Giáo án, hệ thống bài tập, máy chiếu, phiếu học tập

Học sinh: Ôn tập kiến thức trước

III HOẠT ĐỘNG DẠY HỌC.

1 Ổn định tổ chức: Kiểm tra sĩ số lớp

2 Kiểm tra bài cũ(Lồng vào quá trình học bài mới)

3 Bài mới

Trang 2

Hoạt động 1: Giải bất phương trình tích , bất phương trình chứa ẩn ở mẫu.

Mục tiêu: Củng cố định lý về dấu của nhị thức bậc nhất.

Cách lấy nghiệm của bất phương trình

Hoạt động 1.1:Củng cố định lí về dấu của nhị thức

Hoạt động của GV Hoạt động của HS Nội dung ghi bảng

HD1.1:Củng cố định lí

về dấu của nhị thức

GV: gọi 3 học sinh lên

giải các vế a,b,c

Ví dụ: Xét dấu các biểu

thức sau:

a,f x( ) 3 (2 x x3)

b,

2

( )

1

x

g x

x

c,

(2 5)

( )

1

x x

h x

x

GV gọi các học sinh khác

đứng dậy nhận xét

GV nhận xét chuẩn hóa

và cho điểm các HS

HD1.2 Nâng cao kiến

thức về việc giải BPT

Từ ví dụ trên GV dẫn dắt

cho học sinh tới việc giải

BPT

GV dẫn dắt : Thực chất

việc giải BPT f(x)>0 là

xét xem biểu thức f(x)

nhận giá trị dương với

nhưng giá trị nào của x

( do đó cũng biết f(x)

nhận giá trị âm với

những giá trị nào của x),

làm như vậy ta nói là đã

xét dấu biểu thức f(x)

GV : Vậy từ đó các e hãy

giải cho cô các bất

HS lên bảng trình bày

HS đứng dậy nhận xét

HS chú ý lắng nghe ghi bài vào vở

HS chú ý lắng nghe

HS chú ý lắng nghe

II Áp dụng vào giải BPT

1.Bất phương trình tích , bất phương trình chứa ẩn ở mẫu thức

Ví dụ:Xét dấu các biểu thức:

; ( ) 3 (2 3)

2

; ( )

1 (2 5)

; ( )

1

a f x x x

x

b g x

x

x x

c h x

x

Trang 3

phương trình :

a,f x( ) 3 (2 x x 3) 0

b,

2

1

x

g x

x

c,

(2 5)

1

x x

h x

x

GV gợi ý học sinh từ

bảng xét dấu đã làm để

giải BPT và gọi HS

đứng lên giải (Nếu HS

chưa giải được thì giáo

viên hướng dẫn cụ thể

hơn)

GV dẫn dắt : Các BPT

chúng ta vừa giải ở trên

là những bất phương

trình có dạng như thế

nào ?

Vậy với những BPT chưa

có dạng tích thương các

nhị thức bậc nhất thì theo

các e chúng ta sẽ làm như

thế nào ?

GV:Từ đó GV giới thiệu

cho HS phương pháp giải

bất phương trình tích ,

bất phương trình chứa ấn

ở mẫu thức

GV hướng dẫn mẫu cho

HS ví dụ:

VD: Giải BPT

2 5 0

xx

HS đứng dậy trả lời

HS: Phân tích thành dạng tích thương các nhị thức bậc nhất

HS chú ý lắng nghe và ghi vào vở

HS theo dõi và ghi chép:

* Phương pháp:

- Phân tích f(x) thành thương hoặc tích của nhiều nhị thức b1

- Lập bảng xét dấu, dựa vào bảng xét dấu để rút ra nghiệm

Trang 4

Giáo viên chia lớp thành

6 nhóm tiến hành thảo

luận trong 3p , Gv phát

phiếu học tập cho các

nhóm

Giải các BPT sau:

Nhóm 1,2:

3 (2 x 3)(1 x) 0x   

Nhóm 3,4:

1

3

2

Nhóm 5,6:

xx

GV cho các nhóm đánh

giá lẫn nhau sau đó nhận

xét , chỉnh sửa chuẩn hóa

và cho điểm các nhóm

Các nhóm thảo luận trình bày vào bảng phụ và treo lên bảng

Nhóm 1,2:

Đặt f x( ) 3 (2 x 3)(1 x  x) ta xét dấu biểu thức f(x) ta có bảng xét dấu sau:

X

� 0 1

3

2 �

3x - 0 + |  | +

2x-3 - | - | - 0 + 1-x + | + 0 | -f(x) + 0 0 + 0 -Dựa vào bảng xét dấu ta có Nghiệm của BPT là:

3 ( ;0) (1; )

2

x� � �  Nhóm 3,4:

Đk:x�  2

Ta biến đổi tương đương bất phương trình đã cho

1 3( 2)

0 2

3 5

0 2

x x x x

  

 Đặt

3 5 ( )

2

x

f x

x

 

 ta xét dấu biểu thức f(x) ta có bảng xét dấu sau:

của BPT

Ví dụ:Giải BPT

2 5 0

xx

Giải:

Ta biến đổi tương đương BPT

đã cho:

2 5 0 ( 5) 0

xx �x x 

Đặt f x( )x x( 5) xét dấu biểu thức f(x) ta có bảng xét dấu sau:

x � -5 0 �

x - | - 0 + x+

5

- 0 + | +

f(x) + 0 - 0 + Dựa vào bảng xét dấu ta có nghiệm của BPT là

( ; 5) (0; )

x� �   �  �

Trang 5

� -2

5 3

 �

-3x-5 + | + 0  x+2  0 + | +

f(x)  || + 0  Dựa vào bảng xét dấu ta có Nghiệm của BPT là:

5 ( 2; ) 3

x�   Nhóm 5,6:

Đk:

1 1

x x

�  �

Ta biến đổi tương đương bất phương trình đã cho

0

1 2( 1)

0 ( 1)( 1) 3 0 ( 1)( 1)

x

Đặt

3 ( )

( 1)( 1)

x

f x

 

  ta xét

dấu biểu thức f(x) ta có bảng xét dấu sau:

X �  3  1 1 � 3

x

  + 0  |  |  1

x  |  0 + | + 1

x  |  |  0 + f(x) + 0  || + || 

Dựa vào bảng xét dấu ta có Nghiệm của BPT là:

( ; 3) ( 1;1)

x� �   �  HS:Các nhóm tiến hành nhận

Trang 6

GV nêu ví dụ cho HS

tiến hành trình bày:

Ví dụ:Giải và biện luận

BPT:

3

0

2 1

x

 

GV cho 1 HS đứng dậy

định hướng giải sau đó

giáo viện hướng dẫn và

gọi HS lên bảng trình bày

xét đánh giá bài làm của nhau

HS:

Các nhị thức 3 x và

xm có nghiệm lần lượt là

3 và 2m-1

Đặt

3 ( )

2 1

x

f x

 

Ta xét 2 TH:

TH1:

3 1 2

m m

Ta có bảng xét dấu:

X � 2m-1 3 �

3 x + | + 0 -x-2m+1  0 + | +

f(x)  0 + 0

Dựa vào bảng xét dấu ta có nghiệm của BPT là

( ; 2 1] [ 3; )

x� �  m �  � TH2

3 1 2

m m

Ta có bảng xét dấu:

X � 3 2m-1 �

3 x + 0 | -x-2m+1  | - 0 +

f(x)  0 + 0

Dựa vào bảng xét dấu ta có nghiệm của BPT là

( ; 3] [2m-1; )

x� �  �  �

Trang 7

Hoạt động 2:Bất phương trình chứa ấn trong dấu giá trị tuyệt đối

Mục tiêu:- Củng cố định lí vê dấu của nhị thức bậc nhất

- Nâng cao việc giải bất phương trình

- Cách lấy nghiệm của bất phương trình

GV gọi HS đứng lên nhắc

lại công thức về giá trị

tuyệt đối của một biểu

thức

GV nêu ví dụ cho cả lớp

theo dõi và gọi 1 học sinh

đứng dậy trình bày

Ví dụ: Trong các BPT

sau , BPt nào có thể đưa

được về dạng BPT chứa

dấu GTTĐ:

2

2

b x

 �

GV đưa ra ví dụ hướng

dẫn HS

Ví dụ

2 3 15

.2 x 1 0

a x

 �

  �

GV: Để giải BPT chứa dấu

GTTĐ theo các em đầu

tiên chúng ta phải làm gì

( )

f x

=

f x � �aaf xa

f x � �a f x a hoặc ( )

f xa

Cả lớp theo dõi và 1 HS đứng dậy Tbay

HS : Phá dấu GTTD

HS theo dõi và ghi chép

2 Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối

Ví dụ1: Trong các BPT sau , BPt nào có thể đưa được về dạng BPT chứa dấu GTTĐ:

2

2

b x

 �

Ví dụ2.Giải các BPT sau:

2 3 15

2 5

1

a x x b x

 �

Giải:

a.Theo định nghĩa giá trị tuyệt đối ta có:

2x � � 3 15  15 2 � x 3 15 �

9 x 6

Vậy nghiệm của BPT đã cho là :

Trang 8

GV: Dựa vào công thức

GTTD của một biểu thức

đã học và cách giải BPT

dạng tích thương các nhị

thức bậc nhất các chúng ta

sẽ phá dấu GTTD và tiến

hành giải BPT trên

Gv hướng dẫn Hs hướng

giải và sau đó gọi học sinh

đứng dậy trả lời

GV chuẩn hóa nhận xét

đánh giá và cho điểm

HS đứng lên giải vế b

b

1

x =

Do đó ta xét BPT trong hai khoảng

Với x�  1 ta có hệ phương trình:

1 1

1

3

x x

�   � � � 

Trong TH này hệ có nghiệm là 1

3

x�  Với x  1 ta có hệ phương trình:

1

x

x x

 

�   �

1 1

x x

 

��

Trong TH này hệ có nghiệm là 1

x 

IV CỦNG CỐ.

-Nhắc lại định lí về nhị thức bậc nhất, vẽ lại bảng về dấu của nhị thức bậc nhất;

-Dựa vào định lí về dấu của nhị thức bậc nhất ta có thể áp dụng giải các bất phươg

trình đơn giản hơn

-Xem lại và học lý thuyết theo SGK

-Làm các bài tập trong SGK

Ngày đăng: 31/03/2020, 21:23

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w