Trị giá mỗi loại tiền trên đều bằng nhau.. Hỏi mỗi loại có mấy tờ Bài 3.. 4 điểm Cho tam giác ABC,đường trung tuyến AD Kẻ đường trung tuyến... vì có DEIKcâu a; GDE GIH;GEDGKIslt.
Trang 1ĐỀ THI CHỌN HỌC SINH GIỎI NĂM HỌC 2018-2019
MÔN THI: TOÁN 7 Bài 1 (4 điểm)
a) Chứng minh rằng 76 75 74chia hết cho 55
b) Tính A 1 5 52 53 5 49 550
Bài 2 (4 điểm)
a) Tìm các số a b c biết rằng: , ,
2 3 4
a b c
và a2b3c 20
b) Có 16 tờ giấy bạc loại 20000 đ, 50000đ, 100000đ Trị giá mỗi loại tiền trên đều bằng nhau Hỏi mỗi loại có mấy tờ
Bài 3 (4 điểm)
a) Cho hai đa thức 5 2 4 3 2 1
4
f x x x x x x x
4
g x x x x x x
Tính f x g x và f x g x
b) Tính giá trị của đa thức sau:
Ax x x x x tại x 1
Bài 4 (4 điểm)
Cho tam giác ABC có A90 ,0 trên cạnh BC lấy điểm E sao cho BEBA Tia phân giác của B cắt AC ở D
a) So sánh các độ dài DAvà DE
b) Tính số đo BED
Bài 5 (4 điểm)
Cho tam giác ABC,đường trung tuyến AD Kẻ đường trung tuyến BE cắt
AD ở G Gọi , I K theo thứ tự là trung điểm của GA GB Chứng minh rằng: ,
a) IK / /DE IK, DE
b) 2
3
AG AD
Trang 2ĐÁP ÁN Câu 1
)7 7 7 1 7 55 55( )
) 1 5 5 5 5 5 (1)
5 5 5 5 5 5 5 (2)
b A
A
Trừ vế theo vế (2) cho (1) ta có:
51
4
A A
Câu 2
10
20
a
c
b) Gọi số tờ giấy bạc loại 20 000đ, 50 000đ, 100 000đ theo thứ tự là , ,x y z
x y z, , *
Theo bài ra ta có: x y z 16và 20000x50000y100000z
Biến đổi 20000x50000y100000z
2
100000 100000 100000 5 2 1 5 2 1 8
x y z x y z x y z
Suy ra x10,y4,z2
Vậy số tờ giấy bạc loại 20000d , 50 000đ, 100 000đ theo thứ tự là 10; 4;2
Câu 3
a) 4 3 2 1 1
12 11 2
4 4
f x g x x x x x
( ) 2 2 7 6
4 4
f x g x x x x x x
1 1 1 1 1 1 1 1 50
A (50 số hạng)
Trang 3Câu 4
a) ABD EBD c g c DADE
b) Vì ABD EBDnên ABEDBED900
Câu 5
a) ABC và ABG có:
/ / , , / / ,
DE AB DE AB IK AB IK ABdo đó DE/ /IKvà DEIK
b) GDE GIK g c g( ) vì có DEIK(câu a); GDE GIH;GEDGKI(slt)
GD GI
3
GDGI IAAG AD
D
E A
B
C
K
I
D A