1. Trang chủ
  2. » Thể loại khác

Ebook The big picture: Medical biochemistry: Par 1

116 46 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 116
Dung lượng 6,61 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

(BQ) Part 1 book The big picture: Medical biochemistry presents the following contents: Amino acids and proteins, carbohydrates, lipids, nucleosides, nucleotides, DNA, and RNA; integrated usmle style questions and answer, enzymes and amino acid protein metabolism, carbohydrate metabolism, lipid metabolism, membranes, DNA/RNA function and protein synthesis.

Trang 2

Medi ci ne i s a n ever-cha ngi ng s ci ence As new res ea rch a nd cl i ni ca l experi ence broa den our knowl edge, cha nges i n trea tment a nd drugthera py a re requi red The a uthors a nd the publ i s her of thi s work ha ve checked wi th s ources bel i eved to be rel i a bl e i n thei r efforts toprovi de i nforma ti on tha t i s compl ete a nd genera l l y i n a ccord wi th the s ta nda rds a ccepted a t the ti me of publ i ca ti on However, i n vi ew ofthe pos s i bi l i ty of huma n error or cha nges i n medi ca l s ci ences , nei ther the a uthors nor the publ i s her nor a ny other pa rty who ha s been

i nvol ved i n the prepa ra ti on or publ i ca ti on of thi s work wa rra nts tha t the i nforma ti on conta i ned herei n i s i n every res pect a ccura te orcompl ete, a nd they di s cl a i m a l l res pons i bi l i ty for a ny errors or omi s s i ons or for the res ul ts obta i ned from us e of the i nforma ti on conta i ned

i n thi s work Rea ders a re encoura ged to confi rm the i nforma ti on conta i ned herei n wi th other s ources For exa mpl e a nd i n pa rti cul a r,rea ders a re a dvi s ed to check the product i nforma ti on s heet i ncl uded i n the pa cka ge of ea ch drug they pl a n to a dmi ni s ter to be certa i n tha tthe i nforma ti on conta i ned i n thi s work i s a ccura te a nd tha t cha nges ha ve not been ma de i n the recommended dos e or i n the

contra i ndi ca ti ons for a dmi ni s tra ti on Thi s recommenda ti on i s of pa rti cul a r i mporta nce i n connecti on wi th new or i nfrequentl y us ed drugs

Trang 4

Copyri ght © 2012 by The McGra w-Hi l l Compa ni es , Inc Al l ri ghts res erved Except a s permi tted under the Uni ted Sta tes Copyri ght Act of 1976, no

pa rt of thi s publ i ca ti on ma y be reproduced or di s tri buted i n a ny form or by a ny mea ns , or s tored i n a da ta ba s e or retri eva l s ys tem, wi thout thepri or wri tten permi s s i on of the publ i s her

ISBN: 978-0-07-163792-3

MHID: 0-07-163792-3

The ma teri a l i n thi s eBook a l s o a ppea rs i n the pri nt vers i on of thi s ti tl e: ISBN: 978-0-07-163791-6, MHID: 0-07-163791-5

Al l tra dema rks a re tra dema rks of thei r res pecti ve owners Ra ther tha n put a tra dema rk s ymbol a fter every occurrence of a tra dema rked na me,

we us e na mes i n a n edi tori a l fa s hi on onl y, a nd to the benefi t of the tra dema rk owner, wi th no i ntenti on of i nfri ngement of the tra dema rk.Where s uch des i gna ti ons a ppea r i n thi s book, they ha ve been pri nted wi th i ni ti a l ca ps

McGra w-Hi l l eBooks a re a va i l a bl e a t s peci a l qua nti ty di s counts to us e a s premi ums a nd s a l es promoti ons , or for us e i n corpora te tra i ni ngprogra ms To conta ct a repres enta ti ve pl ea s e e-ma i l us a t bul ks a l es @mcgra w-hi l l com

TERMS OF USE

Thi s i s a copyri ghted work a nd The McGra w-Hi l l Compa ni es , Inc (“McGra w-Hi l l ”) a nd i ts l i cens ors res erve a l l ri ghts i n a nd to the work Us e ofthi s work i s s ubject to thes e terms Except a s permi tted under the Copyri ght Act of 1976 a nd the ri ght to s tore a nd retri eve one copy of the work,you ma y not decompi l e, di s a s s embl e, revers e engi neer, reproduce, modi fy, crea te deri va ti ve works ba s ed upon, tra ns mi t, di s tri bute,

di s s emi na te, s el l , publ i s h or s ubl i cens e the work or a ny pa rt of i t wi thout McGra w-Hi l l ’s pri or cons ent You ma y us e the work for your ownnoncommerci a l a nd pers ona l us e; a ny other us e of the work i s s tri ctl y prohi bi ted Your ri ght to us e the work ma y be termi na ted i f you fa i l tocompl y wi th thes e terms

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY ORCOMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THEWORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIEDWARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE McGra w-Hi l l a nd i ts l i cens ors do not wa rra nt or gua ra ntee tha t thefuncti ons conta i ned i n the work wi l l meet your requi rements or tha t i ts opera ti on wi l l be uni nterrupted or error free Nei ther McGra w-Hi l l nor

i ts l i cens ors s ha l l be l i a bl e to you or a nyone el s e for a ny i na ccura cy, error or omi s s i on, rega rdl es s of ca us e, i n the work or for a ny da ma gesres ul ti ng therefrom McGra w-Hi l l ha s no res pons i bi l i ty for the content of a ny i nforma ti on a cces s ed through the work Under no ci rcums ta nces

s ha l l McGra w-Hi l l a nd/or i ts l i cens ors be l i a bl e for a ny i ndi rect, i nci denta l , s peci a l , puni ti ve, cons equenti a l or s i mi l a r da ma ges tha t res ul tfrom the us e of or i na bi l i ty to us e the work, even i f a ny of them ha s been a dvi s ed of the pos s i bi l i ty of s uch da ma ges Thi s l i mi ta ti on of

l i a bi l i ty s ha l l a ppl y to a ny cl a i m or ca us e wha ts oever whether s uch cl a i m or ca us e a ri s es i n contra ct, tort or otherwi s e

Trang 5

Dedications

Acknowledgements

About the Authors

SECTION I: THE BASIC MOLECULES OF LIFE

CHAPTER 1 Ami no Aci ds a nd Protei ns

Overvi ew

Ami no Aci ds —Structure a nd Functi ona l Groups

Es s enti a l a nd Non-Es s enti a l

Tra ns port/Cha nnel Protei ns

Revi ew Ques ti ons

CHAPTER 2 Ca rbohydra tes

Overvi ew

Ba s i c Ca rbohydra te Structure a nd Functi on

Monos a ccha ri des a nd Di s a ccha ri des

Gl ycogen a nd Sta rches

Gl ycoprotei ns

Gl ycos a mi nogl yca ns

Revi ew Ques ti ons

Li pi d-Deri ved Hormones /Vi ta mi n D

Corti cos teroi ds (Adrena l Gl a nd)

Androgens (Tes tes ) a nd Es trogens (Ova ri es )

Vi ta mi n D

Revi ew Ques ti ons

CHAPTER 4 Nucl eos i des , Nucl eoti des , DNA, a nd RNA

Overvi ew

Nucl eos i des a nd Nucl eoti des

Components of Nucl eos i des a nd Nucl eoti des

Synthes i s of Puri ne Nucl eos i des a nd Nucl eoti des

Synthes i s of Pyri mi di ne Nucl eos i des a nd Nucl eoti des

Forma ti on of Deoxy Nucl eos i des a nd Nucl eoti des

Brea kdown of Puri nes a nd Pyri mi di nes

RNA a nd DNA—Ba s i c Structure a nd Functi on

RNA

DNA

Revi ew Ques ti ons

SECTION I: Integra ted USMLE-Styl e Ques ti ons a nd Ans wers

Ques ti ons

Ans wers

Trang 6

SECTION II: FUNCTIONAL BIOCHEMISTRY

CHAPTER 5 Enzymes a nd Ami no Aci d/Protei n Meta bol i s m

Ami no Aci d Meta bol i s m

Ami no Aci d Synthes i s

Ami no Aci d Degra da ti on

The Urea Cycl e

Revi ew Ques ti ons

CHAPTER 6 Ca rbohydra te Meta bol i s m

Overvi ew

Gl ycol ys i s

Ci tri c Aci d Cycl e

Oxi da ti ve Phos phoryl a ti on

Gl uconeogenes i s

The Pentos e Phos pha te Pa thwa y

Gl ycogen Synthes i s

Gl ycogen Brea kdown

Modi fi ed Ca rbohydra tes (Gl ycoprotei ns , GAGs )Revi ew Ques ti ons

CHAPTER 7 Li pi d Meta bol i s m

Overvi ew

Fa tty Aci d Meta bol i s m

Fa tty Aci d Synthes i s

Fa tty Aci d Degra da ti on

Meta bol i s m of Compl ex Li pi ds

Tri a cyl gl ycerol Synthes i s

Phos phogl yceri de Synthes i s

Ketone Body Synthes i s

Cera mi de/Sphi ngol i pi ds Synthes i s

Chol es terol Synthes i s

Revi ew Ques ti ons

CHAPTER 8 Membra nes

Overvi ew

Membra ne Structure

Li pi ds

Protei ns

Membra ne Functi ons

Membra ne Cha nnel s

Membra ne Si gna l i ng

Revi ew Ques ti ons

CHAPTER 9 DNA/RNA Functi on a nd Protei n Synthes i s

Overvi ew

Structure of the Nucl eus

Hi s tones

Nucl ea r Ma tri x/Sca ffol d

Nucl eol us a nd Ri bos ome Synthes i s

DNA Repl i ca ti on a nd Tra ns cri pti on

Muta ti ons a nd Repa i r Mecha ni s ms

Regul a ti on of Cel l Growth a nd Di fferenti a ti onRevi ew Ques ti ons

SECTION II: Integra ted USMLE-Styl e Ques ti ons a nd Ans wers

Ques ti ons

Trang 7

Ans wers

SECTION III: APPLIED BIOCHEMISTRY

CHAPTER 10 Meta bol i s m a nd Vi ta mi ns /Mi nera l s

Co-authors/Editors: Maria L Valencik and Cynthia C Mastick

Revi ew Ques ti ons

CHAPTER 11 The Di ges ti ve Sys tem

Editor: Kshama Jaiswal

Sma l l Intes ti ne (Duodenum, Jejunum, a nd Il eum)

La rge Intes ti ne/Anus

Revi ew Ques ti ons

CHAPTER 12 Mus cl es a nd Moti l i ty

Co-author/Editor: Darren Campbell

Acti n-Bi ndi ng Protei ns

Exci ta ti on–Contra cti on Coupl i ng

Skel eta l Mus cl e

Structure a nd Genera l Overvi ew

Skel eta l Mus cl e Types

Ca rdi a c Mus cl e

Smooth Mus cl e

Energy Producti on a nd Us e i n Mus cl es

Mi crotubul e-Ba s ed Moti l i ty

Intermedi a te Fi l a ments

Nonmus cl e Cel l s

Revi ew Ques ti ons

CHAPTER 13 Connecti ve Ti s s ue a nd Bone

Editor: Jacques Kerr, BSc, MB, BS, FRCS, FCEM

Trang 8

Ma rkers of Bone Forma ti on a nd Res orpti on

Revi ew Ques ti ons

CHAPTER 14 Bl ood

Co-authors/Editors: Matthew Porteus, MD, PhD and Tina Mantanona

Overvi ew

Ba s i c Components of Bl ood

Red Bl ood Cel l (RBC) Functi ons

Di s ea s es As s oci a ted wi th Ina dequa te Synthes i s of Hemogl obi n Components

The Fi bri n Mes hwork

Di fference between Pl a tel et Pl ug Forma ti on a nd Cl ot Forma ti on

Regul a ti on of Cl ot Forma ti on

Pl a s mi n a nd Cl ot Di s s ol uti on

Revi ew Ques ti ons

CHAPTER 15 The Immune Sys tem

Editor: Eric L Greidinger, MD

Compl ement s ys tem

Hypers ens i ti vi ty Rea cti ons

Revi ew Ques ti ons

CHAPTER 16 The Ca rdi ova s cul a r Sys tem

Editor: Ralph V Shohet, MD

Overvi ew

Ca rdi a c Mus cl e Structure a nd Functi on

Si noa tri a l a nd Atri oventri cul a r Nodes

The Ca rdi a c Cycl e

Bi ochemi ca l Mecha ni s ms As s oci a ted wi th Hea rt Atta ck

Revi ew Ques ti ons

Trang 9

CHAPTER 17 The Res pi ra tory Sys tem

Editor: Howard J Huang, MD

Overvi ew

Ba s i c Ana tomy a nd Devel opment

Pul mona ry Surfa cta nt a nd the Devel opi ng Lung

O2–CO2 Excha nge i n the Lung a nd Aci d–Ba s e Ba l a nce

Noni nfecti ve Di s ea s es of the Res pi ra tory Sys tem

Obs tructi ve Di s ea s es —Emphys ema

Obs tructi ve Di s ea s es —Bronchi ti s

Obs tructi ve Di s ea s es —As thma

Bi ochemi ca l Ba s i s of As thma Medi ca ti ons

Res tri cti ve Di s ea s es —Acute Res pi ra tory Di s ea s e SyndromeRes tri cti ve Di s ea s es —Occupa ti ona l Expos ures

Res tri cti ve Di s ea s es —Inters ti ti a l Lung Di s ea s es

Infecti ve Di s ea s es of the Res pi ra tory Sys tem

Revi ew Ques ti ons

CHAPTER 18 The Uri na ry Sys tem

Editor: Armando J Lorenzo, MD, MSc, FRCSC, FAAP Overvi ew

Ba s i c Ana tomy a nd Phys i ol ogy

Rena l Fi l tra ti on

The Rena l Corpus cl e

Nephron

Inul i n/Crea ti ni ne Cl ea ra nce

Reni n–Angi otens i n–Al dos terone Sys tem (RAAS)

Reni n a nd Bl ood Pres s ure

Ma cul a Dens a a nd Bl ood Fl ow/Os mol a ri ty

Angi otens i nogen/Angi otens i n I a nd II

Al dos terone

Va s opres s i n

Atri a l Na tri ureti c Pepti de (ANP)

Aci d–Ba s e Ba l a nce

NH3 a nd Aci d–Ba s e Ba l a nce

Syntheti c Functi ons

Synthes i s of Erythropoi eti n

Rol e i n Vi ta mi n D Synthes i s

Revi ew Ques ti ons

CHAPTER 19 The Nervous Sys tem

Editor: Kathryn Beck-Yoo, MD

Overvi ew

Components of the Nervous Sys tem

Nerve Impul s e Conducti on

Neuron a t Res t

Nerve Impul s e

Repol a ri za ti on

Autonomi c Nervous Sys tem

Sympa theti c Nervous Sys tem

Pa ra s ympa theti c Nervous Sys tem

Neurotra ns mi tters

Dopa mi ne

NE/Epi nephri ne

Serotoni n

Acetyl chol i ne (Ach)

Regul a ti on of Ca techol a mi nes

Gl yci ne, Gl uta ma te, a nd GABA

Neuropepti des

Bi ochemi s try of Vi s i on

Anes thes i a

Revi ew Ques ti ons

CHAPTER 20 The Reproducti ve Sys tem

Editor: Catrina Bubier, MD

Overvi ew

Trang 10

Ba s i c Ana tomy a nd Devel opment

Fema l e Reproducti ve Sys tem

The Mens trua l Cycl e

Mens trua ti on (Da ys 1–4)

Fol l i cul a r/Prol i fera ti ve Pha s e (Da ys 5–13)

The Lutea l /Secretory Pha s e (Da ys 15–28)

Ferti l i za ti on

Brea s t Devel opment a nd La cta ti on

Oxytoci n

Prol a cti n

Ma l e Reproducti ve Sys tem

Tes tos terone

FSH a nd LH

Revi ew Ques ti ons

SECTION III: Integra ted USMLE-Styl e Ques ti ons a nd Ans wers

Ques ti ons

Ans wers

SECTION IV: APPENDICES

APPENDIX I: Bi ochemi ca l Ba s i s of Di s ea s es

Contributing Editor: Harold Cross, MD, PhD

Ami no Aci d Synthes i s /Degra da ti on

Ami no Aci d Tra ns port

Urea Cycl e Di s orders

Structura l Protei ns

Ca rbohydra tes

Gl ycogen Stora ge

Mi tochondri a l Enzymes (Excl udi ng Urea Cycl e a nd Fa tty Aci d Oxi da ti on)

Li pi ds a nd Fa tty Aci d Oxi da ti on Errors

Nucl eoti de Meta bol i s m

Defecti ve DNA

Bi l i rubi n Meta bol i s m

Bl ood Cl otti ng Fa ctor Defects

Steroi d Hormone Synthes i s

Vi ta mi ns /Mi nera l s a nd El ectrol ytes

APPENDIX II: Bi ochemi ca l Methods

Pol ya cryl a mi de Gel El ectrophores i s (PAGE) [Sodi um Dodecyl Sul fa te (SDS)/Non-SDS]Immunoa s s a ys

RIA

ELISA or EIA

Chroma togra phy

Thi n La yer (Pa per) Chroma togra phy (TLC)

Col umn Chroma togra phy

Gel Fi l tra ti on Chroma togra phy

Ion-Excha nge Chroma togra phy

Affi ni ty Chroma togra phy

Hi gh-Performa nce/Pres s ure Li qui d Chroma togra phy (HPLC)

Protei n a nd Deoxyri bonucl ei c Aci d (DNA)/Ri bonucl ei c Aci d (RNA) Preci pi ta ti onDNA a nd RNA Sequenci ng

Southern, Northern, a nd Wes tern Bl ots

Trang 11

Hydroxyl Group (—OH−)

Ca rboxyl Group (—COOH)

Ami ne Group (—NH2)

Phos pha te Group (PO3 a nd PO4)

Sul fur–Sul fur Bonds (—S—S—)

Al dehyde Group (—COH)

Summa ry

Index

Trang 12

To my fa mi l y: my dea r wi fe, Meryl , who ha s unfa i l i ngl y s upported my profes s i ona l endea vors a nd endured my countl es s eveni ng hours a t thecomputer on thi s project; my da ughters , Rebecca , La ura , a nd Mi ri a m, who bri ng me i ncredi bl e “na ches ”; my mother a nd fa ther (ma y they res t i npea ce) for thei r s upport i n my forma ti ve yea rs ; my brothers Howa rd a nd Ma tthew; my mother-i n-l a w Ma rtha for her ever-pres ent a ccol a des ; my

fa ther-i n-l a w Ed (ma y he res t i n pea ce); a nd my fa ther-i n-l a w Lou for the profes s i ona l res pect a l wa ys a ccorded me

Fi na l l y to the more tha n 3000 medi ca l s tudents I ha ve ta ught who i ns pi red my s ucces s a s a tea cher a nd educa tor a nd who preceded thos e

s tudents who I trus t wi l l benefi t from thi s textbook

— Ma rc E Ti s chl er

To my pa rents , fa mi l y, a nd fri ends who pers evered throughout the wri ti ng, proofi ng, a nd publ i ca ti on of thi s book a s wel l a s the ma ny

i ns tructors , from hi gh s chool to uni vers i ty to gra dua te s chool to medi ca l s chool a nd beyond, who i ns ti l l ed i n me not onl y a l ove for l ea rni ng

but a l s o for tea chi ng

Thi s book i s pers ona l l y dedi ca ted to one s uch pers on, Ca s s i e Murphy-Cul l en, PhD (ma y s he res t i n pea ce), who s erved a s a tea cher, couns el or

a nd, mos t-of-a l l , cons ta nt a nd dedi ca ted fri end to a l l of her s tudents , i ncl udi ng mys el f

— Lee W Ja ns on

Trang 13

Si ncere tha nks to the current a uthors of Ha rper’s Il l us tra ted Bi ochemi s try for thei r revi ews a nd comments wi th s peci a l tha nks to Dr RobertMurra y, edi tor of Ha rper’s , for hi s pa ti ence, ki ndnes s , a nd excepti ona l efforts i n revi ewi ng thi s book The a uthors a l s o wi s h to tha nk AndreaAgui rre, Chi neyne Ana ko, Ma rti n Benja mi n, Na ta s ha Bhuya n, Jos eph Ca rrol l , Ka tha ri ne Fl a nnery, Si l vi ja Gottes ma n, Mi cha el Ori , Cha rl es

Ra ppa port, Chri s topher Ri l ey, Al a n Schuma cher, a nd Ka ren Stern, medi ca l s tudents a t the Uni vers i ty of Ari zona , who s erved on a focus group toprovi de va l ua bl e i ns i ght for thi s text from a medi ca l s tudent pers pecti ve

Trang 14

ABOUT THE AUTHORS

Ma rc E Ti s chl er recei ved a n undergra dua te degree i n bi ol ogy from Bos ton Uni vers i ty, a ma s ter degree i n chemi s try from the Uni vers i ty of South

Ca rol i na , a nd hi s doctora te degree i n bi ochemi s try from the Uni vers i ty of Penns yl va ni a After s ervi ng i n a pos tdoctora l pos i ti on i n phys i ol ogy

a t Ha rva rd Medi ca l School , he joi ned the fa cul ty a t the Uni vers i ty of Ari zona i n 1979 where he i s currentl y a profes s or of bi ochemi s try a ndmol ecul a r bi ophys i cs hol di ng joi nt a ppoi ntments i n phys i ol ogy a nd i n i nterna l medi ci ne Ha vi ng s erved a s coordi na tor of the medi ca l

bi ochemi s try cours e for a deca de, he wa s recrui ted to pl a y a ma jor rol e i n the devel opment of the revi s ed medi ca l curri cul um a t the Uni vers i ty

of Ari zona , whi ch debuted i n 2006 a nd offers a n i ntegra ted, orga n-ba s ed a pproa ch a ki n to the s econd ha l f of thi s textbook In tha t newcurri cul um, he des i gned a nd s erves a s di rector of the medi ca l bl ock enti tl ed Di ges ti on, Meta bol i s m, a nd Hormones He ha s ta ught more tha n

3000 medi ca l s tudents duri ng hi s tenure i n Ari zona

Lee W Ja ns on recei ved a BS i n Bi ochemi s try/mi nor i n La ti n from the Uni vers i ty of Roches ter fol l owed by a PhD i n bi ol ogi ca l

s ci ences /bi ochemi s try from Ca rnegi e Mel l on Uni vers i ty After a pos tdoctora l fel l ows hi p a t NASA-Johns on Spa ce Center doi ng res ea rch on

i mmunol ogi ca l a cti va ti on i n mi crogra vi ty, he entered medi ca l s chool a t the Uni vers i ty of Texa s Southwes tern Medi ca l Center a t Da l l a s ,conti nui ng wi th a fa mi l y pra cti ce res i dency i n both Da l l a s a nd Sa n Antoni o He entered the a cti ve duty Ai r Force a nd s erved a s a fa mi l yphys i ci a n a nd a fl i ght s urgeon, i ncl udi ng tours of Korea , Ira q, a nd Afgha ni s ta n After mi l i ta ry s ervi ce, he perma nentl y moved to Edi nburgh,Scotl a nd i n 2007, where he pra cti ces i n the Na ti ona l Hea l th Servi ce a s a n emergency room doctor a nd a genera l phys i ci a n i n the Uni ted

Ki ngdom wi th occa s i ona l work i n Aus tra l i a a nd other pa rts of the worl d In hi s free ti me, he wri tes a nd does res ea rch Pa s t book publ i ca ti ons

i ncl ude Brew Chem 101: The Basics of Home-brewing Chemistry (Storey Publ i s hi ng).

Trang 15

SECTION I

THE BASIC MOLECULES OF LIFE

Trang 16

CHAPTER 1 AMINO ACIDS AND PROTEINS

Ami no Aci ds —Structure a nd Functi ona l Groups

Ba s i c Protei n Structure

Ca tegori es of Protei ns

Revi ew Ques ti ons

OVERVIEW

Ami no a ci ds a re the ba s i c bui l di ng bl ocks of protei ns a nd s erve a s bi ol ogi ca l mol ecul es i n thei r own ri ght wi th a va ri ety of functi ons Ami no

a ci ds a re often ca tegori zed a s es s enti a l or non-es s enti a l , dependi ng on the a bi l i ty of the body to ma nufa cture ea ch a mi no a ci d vers usrequi rement for i nges ti on i n the di et Al though s evera l hundred a mi no a ci ds exi s t, 20 pl a y the predomi na nt rol e i n the huma n body Ea ch

a mi no a ci d ha s a cha ra cteri s ti c R-group tha t determi nes i ts chemi ca l na ture a nd, therefore, how i t wi l l i ntera ct wi th other a mi no a ci ds , othermol ecul es , a nd wi th i ts envi ronment

Ami no a ci ds l i nk together vi a pepti de bonds to form pepti des a nd protei ns Thes e pepti des a nd protei ns fol d i nto thei r fi na l

three-di mens i ona l s ha pe a s the res ul t of hydrophobi c, hydrophi l i c, hydrogen bonthree-di ng, a nd i oni c bonthree-di ng forces (a mong others ) tha t res ul t from the

a mi no a ci ds i n the pepti de cha i n, i ncl udi ng the cha ra cteri s ti cs of thei r R-groups Protei ns ma y be ca tegori zed a s enzymes , s tructura l protei ns ,motor protei ns , a nd tra ns port/cha nnel protei ns The s peci fi c rol es of a mi no a ci ds a nd protei ns i n the s ynthes i s of other mol ecul es a nd i n thefuncti ons of orga n s ys tems a nd the huma n bodi es wi l l be expl ored i n deta i l i n s ubs equent cha pters

AMINO ACIDS—STRUCTURE AND FUNCTIONAL GROUPS

ESSENTIAL AND NON-ESSENTIAL Amino acids a re the ba s i c bui l di ng bl ocks of protei ns Twenty a mi no a ci ds ma ke up protei ns i n l i vi ng orga ni s ms ; s evera l hundred more a mi no

a ci ds perform s peci a l i zed functi ons i n huma n a nd non-huma n bi ol ogy Ami no a ci ds a re often des cri bed a s

Essential (mus t be obta i ned di rectl y from food)

Non-essential (the huma n body i s a bl e to produce them on i ts own).

There i s s ome deba te a bout the exa ct defi ni ti ons of thes e terms , but 8–10 a mi no a ci ds a re us ua l l y deemed es s enti a l a nd 10–12 a re

non-es s enti a l (s ee Ta bl e 1-1)

Trang 17

TABLE 1-1 Ami no Aci ds —R-Group Cl a s s i fi ca ti ons

Succota s h, a combi na ti on of corn a nd l i ma bea ns , wa s us ed by Na ti ve Ameri ca n hunters a nd wa rri ors Li ght i n wei ght, ea s y to ca rry, a nd

s i mpl e to prepa re, s uccota s h conta i ns a l l the es s enti a l requi red a mi no a ci ds needed by huma ns a nd kept thes e tra vel ers wel l nouri s hed

a nd hea l thy duri ng l ong tri ps a wa y from thei r s ettl ements

Trang 18

Figure 1-1 Basic Structure of an Amino Acid A central alpha (α) carbon is bonded to an amino group (NH 2 ), a carboxyl group (COOH), and an R group.

[Reproduced wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

CHARACTERISTICS OF R-GROUPS

As a mi no a ci ds a re i denti ca l except for thei r R-group, four R-group cha ra cteri s ti cs cl a s s i fy the a mi no a ci ds (s ee a l s o Ta bl e 1-1)

1 Hydrophobic (Water Hating) R-groups: Thes e a mi no a ci ds prefer to be i ns i de a fol ded protei n or covered by a nother pa rt of a protei n or a l i pi d

membra ne (Cha pter 8) where they a re hi dden from the externa l wa ter envi ronment

2 Hydrophilic (Water Loving) R-groups: Wi th pa rti a l cha rges from the hydroxyl (OH−) or a mi no (NH3) pa rts of thes e R-groups , thes e a mi no a ci dsprefer to be a t or nea r the s urfa ce of a protei n where they i ntera ct wi th s urroundi ng wa ter mol ecul es An excepti on woul d be the s urfa ceporti on of a membra ne protei n tha t i ntera cts wi th the hydrophobi c regi on of the phos phol i pi d bi l a yer (Cha pter 8) Hydrophi l i c R-groups a reoften i mporta nt a t the a cti ve s i te of a n enzyme (Cha pter 5)

3 Charged R-groups: Ei ther pos i ti vel y or nega ti vel y cha rged, thes e a mi no a ci ds prefer to be a t the s urfa ce of a fol ded protei n or i n conta ct wi th

other cha rged a toms /mol ecul es

4 Special R-groups: There a re four a mi no a ci ds wi th s peci a l qua l i ty R-groups

• Prol i ne ha s a gl uta ma te R-group tha t ha s bonded onto i ts el f (s ee Fi gure 1-2A) formi ng a n “i mi no” a ci d Prol i ne i s often found a t s ha rpturns of fol ded protei ns (Fi gure 1-2B)

Figure 1-2 A–B Proline A Prol i ne forms from the a mi no a ci d gl uta ma te when the a mi no group ni trogen (bl ue) crea tes a bond wi th ca rbon 2 on

the R-group (red), ma ki ng a n a mi no a ci d tha t i s “fol ded” onto i ts el f The ca rbon a toms a re i ndi vi dua l l y numbered to a l l ow the rea der to fol l ow

the proces s tha t ta kes three s teps (i ndi ca ted by a rrows ) B Prol i ne’s s peci a l s tructure a l l ows the forma ti on of a “ha i rpi n” β-turn vi a forma ti on

of a n i mi no bond The a mi no group from prol i ne i s s ha ded i n bl ue [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypeeBrothers Medi ca l Publ i s hers (P) Ltd., 2009.]

• Cys tei ne ha s a s ul fhydryl group tha t ca n bond wi th a nother cys tei ne s ul fhydryl group to form a cys ti ne “di s ul fi de” bond (Fi gure 1-3) Thi sbond ca n be ei ther wi thi n one protei n or between two di fferent protei ns a nd i s i mporta nt i n ma ki ng s trong s tructures s uch a s the protei nkera ti n found i n fi ngerna i l s

Trang 19

Figure 1-3 Formation of Cystine Disulfide Bond The s ul fhydryl groups (SH) from two cys tei ne a mi no a ci d res i dues from di fferent pa rts of a s i ngl e

or two s epa ra te a mi no a ci d s equences ma y l os e one hydrogen a tom ea ch to become a cys ti ne res i due by the forma ti on of a di s ul fi de bond (S

—S) [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

• Methi oni ne ha s a s ul fur a tom conta i ned wi thi n i ts R-group Al though i t does not ma ke di s ul fi de bonds , thi s s ul fur i s s een a t the s i te of

s ome enzyme rea cti ons or a t s peci a l a rea s of protei n s tructure

• Hi s ti di ne ha s a uni que i mi da zol e ri ng conta i ni ng two ni trogen a toms , whi ch ca n be uncha rged or pos i ti vel y cha rged Thi s uni que

cha ra cteri s ti c ma kes the hi s ti di ne R-group i mporta nt i n enzyme rea cti ons tha t ma ke or brea k bonds

Hair and Cystine Double Bonding: Ha i r, whi ch i s compos ed of l i nea r protei n s equences , i s curl y or s tra i ght dependi ng on the number of cys ti ne

di s ul fi de bonds The number a nd l oca ti on of cys tei ne res i dues a nd a cces s ory protei ns s peci fi c for ea ch pers on a ffect the number of

di s ul fi de bonds res ul ti ng i n thi s very i ndi vi dua l i zed cha ra cteri s ti c Chemi ca l s tha t promote thes e di s ul fi de bonds a re us ed for “perms ” a nd,

a l terna ti vel y, chemi ca l s tha t brea k thes e bonds a re us ed i n ha i r s tra i ghteni ng trea tments

BASIC PROTEIN STRUCTURE

Severa l fa ctors a ffect ba s i c protei n s tructure, i ncl udi ng the fol l owi ng:

Amino Acid Composition: Whether the R-group of ea ch a mi no a ci d wa nts to be a wa y from, nea r, or i n conta ct wi th wa ter a t the s urfa ce of the

fol ded protei n

Special Amino Acids: Prol i ne, cys tei ne, a nd/or methi oni ne exert effects on protei n fol di ng due to res ul ti ng bends a nd di s ul fi de bonds

Functional Sites: Structura l protei ns or protei ns tha t ca ta l yze a rea cti on (i e., enzymes ; Cha pter 5) us ua l l y conta i n s peci fi c a mi no a ci ds tha t a re

i mporta nt for tha t protei n’s pa rti cul a r functi on The R-groups a t thes e s i tes wi l l a ffect the protei n’s fi na l fol ded s ha pe

Final Modifications: Mos t protei ns a re i ni ti a l l y ma de wi th extra a mi no a ci ds a t thei r begi nni ng a nd/or end Thes e extra a mi no a ci ds ma y be

modi fi ed or removed duri ng the ma tura ti on of the protei n, res ul ti ng i n cha nges to the fi na l s tructure

Final Destination: Whether the protei n wi l l end up i n a n a queous s ol uti on or i n a membra ne wi l l a l s o cha nge the fol di ng, a s protei ns tha t go

to membra nes wi l l ul ti ma tel y wa nt thei r hydro-phobi c, “wa ter ha ti ng” R-groups on the outs i de i n conta ct wi th the hydrophobi c membra ne(s ee bel ow, Cha pter 8)

LEVELS OF PROTEIN STRUCTURE

When des cri bi ng protei n s tructure, we us e the fol l owi ng terms : pri ma ry (1°), s econda ry (2°), terti a ry (3°), a nd/or qua terna ry (4°) s tructure

Primary (1°) Structure: The pa rti cul a r s equence of a mi no a ci ds i n a protei n (a l s o ca l l ed a polypeptide) i s termed a s primary structure The a mi no

a ci ds wi thi n a pol ypepti de a re termed residues a nd a re l i nked vi a peptide bonds (Fi gure 1-4A), formed when the ca rboxyl i c a ci d group of one

a mi no a ci d i ntera cts wi th the a mi no group of a s econd a mi no a ci d The combi na ti on produces the pepti de bond a nd one mol ecul e of wa ter.Repea ted pepti de bonds form a cha i n of pepti de bond l i nka ges wi th the ni trogen from the a mi no group, the centra l ca rbon from the a mi no

a ci d, a nd the ca rbon from the ca rboxyl i c a ci d formi ng the protei n “ba ckbone.” The pri ma ry s tructure i s often s hown a s “bea ds on a s tri ng”

wi th ea ch bea d repres enti ng a n a mi no a ci d res i due (Fi gure 1-4B)

Figure 1-4 A Formation of a Peptide Bond A pepti de bond i s formed between the ca rboxyl i c a ci d (COOH) group a nd the a mi no ni trogen (HHN)

group to form a new C—N bond The proces s rel ea s es one mol ecul e of wa ter (OH a nd H a s s hown i n pi nk ci rcl e) By conventi on a protei n i s

a l wa ys dra wn s ta rti ng wi th the N-termi nus on the l eft [Reproduced wi th permi s s i on from Ba rrett KE, et a l : Ga nong’s Revi ew of Medi ca lPhys i ol ogy, 23rd edi ti on, McGra w-Hi l l , 2010.] B Primary (1°) Structure The pri ma ry s tructure of a protei n i s the cha i n of a mi no a ci ds from the N-

termi na l (NH2 group of a mi no a ci d 1) to i ts C-termi na l end (COOH group of the fi na l a mi no a ci d) Indi vi dua l a mi no a ci ds a re denoted a s green

“bea ds ” a nd bonds a re red “s tri ngs ” i n thi s s tyl i zed repres enta ti on Protei ns va ry grea tl y i n l ength from a few a mi no a ci ds to s evera l hundred.[Reproduced wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

Secondary (2°) Structure: From the l i nea r cha i n of a mi no a ci ds , the C—N a nd C—C bonds rota te a round the centra l ca rbon a tom (s ee Fi gure 1-1) Thi s rota ti on forms secondary structures (Fi gure 1-5A–C) ca l l ed a n α-helix, β-strand, or β-turn (s ee a l s o Fi gure 1-2B a bove) dependi ng on the

Trang 20

hydrophi l i c a nd hydrophobi c cha rge a nd s i ze i nfl uences of the R-groups a s wel l a s hydrogen a nd i oni c bondi ng Pa rts of the pepti de tha t donot form conventi ona l s econda ry s tructures a re referred to a s “ra ndom coi l ”

Figure 1-5 A–C Secondary (2°) Structure A The α-hel i x s tructure i s s ta bi l i zed by hydrogen bonds (bl ue dotted l i ne) between the N—H of one

a mi no a ci d a nd the of a nother a mi no a ci d The hydrophobi c a nd hydrophi l i c na ture of the R-groups from ea ch a mi no a ci d i n the hel i x

a l s o pl a ys a pa rt i n forma ti on of the α-hel i x B The β-s tra nds form when the one s equence of s ucces s i ve a mi no a ci ds form hydrogen bonds

between the N—H a nd the C═O of a nother group of s ucces s i ve a mi no a ci ds R-groups of thes e a mi no a ci ds a l s o i nfl uence the forma ti on of

β-s tra ndβ-s by both cha rge a nd β-s teri c forceβ-s β-Stra ndβ-s ca n be ei ther pa ra l l el (l eft) or a nti pa ra l l el (ri ght) a β-s noted by the a rrowβ-s C A β-turn formβ-s

a t the juncture between two a nti pa ra l l el β-s tra nds a nd us ua l l y i nvol ves a mi no a ci ds wi th s ma l l R-groups , i ncl udi ng gl yci ne, a l a ni ne, a nd

va l i ne β-turns ca n a l s o form vi a prol i ne’s uni que s tructure (Fi gure 1-2B) [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on,

Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

Tertiary (3°) Structure: Seconda ry s tructure a nd the rema i ni ng a mi no a ci d s equences conti nue to fol d a nd i ntera ct wi th other pa rts of the a mi no

a ci d s equence to form terti a ry (3°) s tructure Thes e proces s es a ga i n a re dri ven by hydrophobi c a nd hydrophi l i c forces of the i ndi vi dua l pa rts

of the s equence, a s wel l a s hydrogen bondi ng a nd i oni c bondi ng between cha rged a mi no a ci d R-groups In pa rti cul a r, R-groups a nd the

pa rti a l pos i ti ve cha rge of the ni trogen a nd nega ti ve cha rge of oxygen (OH− a nd C═O−) mol ecul es often form hydrophi l i c a nd hydrophobi c

“s i des ” of the α-hel i x or β-s tra nd As a res ul t, thes e s econda ry s tructures wi l l pos i ti on thems el ves wi th ea ch other a nd wi th other s i mi l a r

a rea s of the fol ded protei n to keep thei r hydrophobi c a rea s a wa y from a nd thei r hydrophi l i c a rea s expos ed to the externa l wa ter

envi ronment Exa mpl es a re s hown i n Fi gure 1-6 Addi ti ona l l y, terti a ry s tructure s ta rts to devel op a t a cti ve s i tes of protei ns where cri ti ca l

a cti ons a nd i ntera cti ons wi l l ta ke pl a ce Thes e a cti ve s i tes wi l l be di s cus s ed i n s ubs equent cha pters

Figure 1-6 Examples of Tertiary (3°) Structure Seconda ry s tructures , i ncl udi ng α-hel i ces , β-s heets , β-turns /bends , a nd l oop regi ons combi ne to

form terti a ry s tructure doma i ns Severa l common forms of terti a ry s tructure ha ve been cha ra cteri zed a nd a re i l l us tra ted i n the fi gure

[Reproduced wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

Globular vs Fibrous Proteins: Protei ns a re often grouped i nto the broa d ca tegori es of “gl obul a r”—ha vi ng a n a pproxi ma tel y s pheri ca l

three-di mens i ona l s ha pe—or “fi brous ”—bei ng l ong a nd fa i rl y s tra i ght overa l l A va s t ma jori ty of protei ns a re gl obul a r, wi th fi brous protei ns often

pl a yi ng s tructura l or very s peci a l i zed functi ona l rol es Exa mpl es of fi brous protei ns i ncl ude a cti n, col l a gen, a nd kera ti n, whi ch pl a y

Trang 21

s tructura l rol es i n mus cl e, connecti ve ti s s ue, a nd s ki n/na i l s

Quaternary (4°) Structure: Al though ma ny protei ns a re ma de of onl y one pepti de cha i n (ca l l ed “monomers ” or “s ubuni ts ”), two or more fol ded cha i ns ma y combi ne together to ma ke a fi na l a cti ve “ol i gomer” protei n The s ubuni ts i n a mul ti meri c protei n ma y ha ve i denti ca l (homo- oligomer) or di fferent (hetero-oligomer) a mi no a ci d s equences a nd i ntera ct to opti mi ze hydrophobi c a nd hydrophi l i c a rea s a nd hydrogen/ i oni c

bondi ng The combi na ti on of the mul ti pl e protei n s ubuni ts ma kes qua terna ry (4°) s tructure (Fi gure 1-7)

Figure 1-7 Quaternary (4°) Structure Protei n monomers ma y joi n, hel d together by hydrogen bondi ng (s hown) a nd/or hydrophobi c–hydrophi l i c

i ntera cti ons , to ma ke ol i gomers Identi ca l protei n s ubuni t monomers ma y joi n together to ma ke a homo-ol i gomer Noni denti ca l protei n

s ubuni t monomers ma y joi n together to ma ke a hetero-ol i gomer [Reproduced wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypeeBrothers Medi ca l Publ i s hers (P) Ltd., 2009.]

The proces s of protei n fol di ng i s not a trul y l i nea r one; a protei n never exi s ts a s a l ong a mi no a ci d s tri ng Ins tea d, protei n fol di ng i s acompl ex i ntera cti on of thes e proces s es a nd s econda ry a nd terti a ry s tructures a ctua l l y form s omewha t i n pa ra l l el Ma ny more compl ex fa ctorsnot di s cus s ed here a l s o occur to hel p i n determi ni ng the fi na l protei n conforma ti on The proces s of ma ki ng a nd tra ffi cki ng a protei n wi l l beexpl ored more ful l y i n Cha pters 5 a nd 9

Dystrophin and Muscular Dystrophy: Mus cul a r dys trophi es (i ncl udi ng Duchenne a nd Becker mus cul a r dys trophi es ) a re di s ea s es i n whi ch

s kel eta l mus cl e ra pi dl y brea ks down, res ul ti ng i n mus cl e wea knes s a nd wa s ti ng, decrea s ed motor s ki l l s , a nd, eventua l l y, the i na bi l i ty to

wa l k (us ua l l y by the a ge of 12 yea rs ) Of a pproxi ma tel y, 30 di fferent types of mus cul a r dys trophi es , the Duchenne a nd Becker forms s how Xchromos ome-l i nked i nheri ta nce a nd, therefore, a l mos t a l wa ys a ffect ma l es a t a ra te of a pproxi ma tel y one i n 3500 boys worl dwi de Both a re

ca us ed by the a bs ence or muta ti on of the protei n dystrophin, whi ch provi des s trength for s kel eta l mus cl e cel l s by a nchori ng the i nterna l cel l

components to the extra cel l ul a r ma tri x

Trang 22

Reproduced wi th permi s s i on from Ka ndel l E, et a l : Pri nci pl es of Neuros ci ence, 4th edi ti on, McGra w-Hi l l , 2000.

The i ntera cti on of dys trophi n wi th s evera l other protei ns i nvol ved i n thi s s tructura l s upport network i s a pri me exa mpl e of protei n–protei n i ntera cti ons i nvol vi ng the forces of thei r hydrophobi c a nd hydrophi l i c regi ons More i mporta ntl y, the muta ti ons i n the dys trophi nprotei n a re bel i eved to s i gni fi ca ntl y a l ter one or more of thes e regi ons , res ul ti ng i n brea kdown of the a nchori ng compl ex a nd thus di s ea s e

CATEGORIES OF PROTEINSAMINO ACID AND PEPTIDE-DERIVED HORMONES AND NEUROTRANSMITTERS

Ami no a ci ds a nd the pepti des /protei ns tha t they form s erve s evera l cri ti ca l rol es i n huma n bi ochemi s try a nd l i fe The ma jor rol e of a mi no

a ci ds i s to provi de the bui l di ng bl ocks for protei ns a nd a va s t ma jori ty of the body’s a mi no a ci ds a re i nvol ved i n thi s functi on However, a mi no

a ci ds a re a l s o the ma jor precurs ors of s evera l bi ol ogi ca l l y i mporta nt mol ecul es , a s noted i n Ta bl e 1-2

TABLE 1-2 Ami no Aci ds —Components of Va ri ous Bi ol ogi ca l Mol ecul es

Quaternary (4°) Structure: Qua terna ry (4°) s tructure i s exempl i fi ed i n ma ny other wa ys tha n thos e gi ven a bove, where two s econda ry s tructura l

el ements a re s i mpl y i n cl os e proxi mi ty to ea ch other Ma ny fi brous protei ns expa nd on thi s concept, wi th two or more α-hel i ces wound

a round ea ch other for mos t of thei r a mi no a ci d s equence Exa mpl es i ncl ude F-a cti n a nd the ta i l s ecti on of myos i n, kera ti n i n ha i r, a nd

i ntermedi a te fi l a ments , whi ch pl a y a n i mporta nt s tructura l rol e i ns i de a l l cel l s

Reproduced wi th permi s s i on from Mes cher AL: Junquei ra ’s Ba s i c Hi s tol ogy Text a nd Atl a s , 12th edi ti on, McGra w-Hi l l , 2010

Collagen, a nother fi brous s tructura l protei n of s ki n a nd connecti ve ti s s ue, i s compos ed of three i ntertwi ned hel i ca l protei n s equences

(s ee the fi gure on ri ght), whi ch di ffer from the α-hel i ca l s tructure Unl i ke a n α-hel i x where hydrogen bondi ng wi thi n the s a me protei n

s equence predomi na tes , col l a gen uti l i zes hydrogen bondi ng between the three hel i ca l protei n cha i ns Col l a gen opti mi zes thi s very uni que

s tructure by ha vi ng the s ma l l a mi no a ci d gl yci ne a s every thi rd a mi no a ci d to a l l ow the three hel i ces to fi t very cl os e together (s ee the fi gurebel ow) In a ddi ti on, col l a gen ha s a n a bunda nce of prol i ne res i dues to promote the hel i ca l protei n s tructure a nd a s peci a l form of prol i ne(hydroxyprol i ne) wi th a n extra hydroxyl (OH–) to form the i nterprotei n hydrogen bonds wi th the gl yci ne NH groups Hydroxyl ys i ne res i dueshel p to s ta bi l i ze the s tructure a s wel l

Trang 23

Ada pted (l eft) a nd reproduced (ri ght) wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd.,2009.

Osteogenesis imperfecta (OI) i s a geneti c di s ea s e tha t a ffects col l a gen-conta i ni ng ti s s ues s uch a s bone, s ki n, joi nts , eyes , ea rs , a nd teeth

beca us e of poi nt muta ti ons tha t des ta bi l i ze or a l ter col l a gen’s i mporta nt tri pl e hel i x s tructure Pa ti ents wi th OI often di s pl a y frequentfra ctures a nd ea s y brui s i ng (s ometi mes mi s ta ken for chi l d a bus e); wea k joi nts ; a bl ui s h col or to the norma l l y whi te pa rt of thei r eyes ;hea ri ng l os s due pa rtl y to a bnorma l i ti es of the i nner ea r bones ; a nd poorl y s ha ped, s ma l l , bl ue-yel l ow teeth

As a res ul t, ei ther the exces s or defi ci ency of a mi no a ci ds ca n l ea d di rectl y to di s ea s e tha t ma y res ul t i n centra l nervous s ys tem defects ,

di eta ry a nd meta bol i s m probl ems , l i ver a nd ki dney fa i l ure, s ki n a nd eye l es i ons , a nd even dea th

ENZYMES

Enzymes a re s peci a l i zed protei ns tha t a ccel era te a chemi ca l rea cti on by s ervi ng a s a bi ol ogi ca l ca ta l ys t By ca ta l yzi ng thes e rea cti ons ,

enzymes ca us e them to ta ke pl a ce one mi l l i on or more ti mes fa s ter tha n i n thei r a bs ence Enzymes a re us ua l l y i denti fi ed by the endi ng of

“a s e” to thei r na me (e.g., hexoki na s e, the fi rs t enzyme i n the brea kdown of gl ucos e) There a re excepti ons for enzymes tha t were di s coveredbefore thi s na mi ng s cheme wa s a dopted (e.g., tryps i n, peps i n, a nd thrombi n) Enzyme rea cti ons wi l l be di s cus s ed i n grea ter deta i l i n Cha pter5

STRUCTURAL PROTEINS

Protei ns a l s o s erve a n i mporta nt rol e a s s tructura l el ements of cel l s a nd ti s s ues The bes t exa mpl es of thes e protei ns a re a cti n a nd tubul i n,whi ch form a cti n fi l a ments a nd mi crotubul es , res pecti vel y (Fi gure 1-8A-B) In s kel eta l mus cl e, a cti n fi l a ments provi de the “s ca ffol di ng” a ga i ns twhi ch the motor protei n myos i n ca n genera te force to produce mus cl e contra cti on In s mooth mus cl e a nd non-mus cl e (e.g., s ki n a nd i mmune

s ys tem), a cti n fi l a ments crea te the mecha ni ca l s tructure of the cel l a nd a re di rectl y a s s oci a ted wi th l i nka ges to s urroundi ng cel l s a l l owi ng

i ntercel l ul a r s i gna l i ng The a cti n fi l a ments a l s o provi de tra cks on whi ch s peci a l i zed myos i n mol ecul es move ves i cl es a nd orga nel l es (s eeCha pter 12) Fi na l l y, a cti n fi l a ments a re i nti ma tel y i nvol ved i n cel l moti l i ty, a wi de a rra y of cel l ul a r movements s uch a s wound hea l i ng (themovement of s ki n cel l s i nto cuts ), the i mmune res pons e (the proces s of whi te bl ood cel l s conta cti ng a nd recogni zi ng ea ch other i n the hi ghl y

s el ecti ve proces s of i mmune rea cti ons ), a nd cytoki nes i s (the di vi s i on of one cel l i nto two duri ng mi tos i s )

Figure 1-8 A–B A Actin and B Tubulin in Monomer and Filamentous Forms [Ada pted wi th permi s s i on from Ba rrett KE, et a l : Ga nong’s Revi ew of

Medi ca l Phys i ol ogy, 23rd edi ti on, McGra w-Hi l l , 2010.]

The s tructura l protei n tubul i n crea tes mi crotubul e tra cks for the movement by two mol ecul a r motor protei ns , dynei n a nd ki nes i n, of

ves i cl es , gra nul es , orga nel l es , a nd chromos omes Mi crotubul es a re a l s o the s tructura l component i n fl a gel l a a nd ci l i a i nvol ved i n functi ons

s uch a s s perm moti l i ty, the movement of the egg down the Fa l l opi a n tubes , a nd the expul s i on of di rt a nd mucus out of the l ungs a nd tra chea Nonmoti l e ci l i a a re a l s o i mporta nt i n rod cel l s i n the eye a nd neurons i nvol ved i n ol fa cti on (s mel l ) Mi crotubul es a l s o s erve a mecha ni ca l –

s tructura l rol e i n the cel l s i mi l a r to a cti n mi crofi l a ments a nd a re res pons i bl e for the movement a nd s epa ra ti on of chromos omes duri ng

mi tos i s (s ee Cha pter 12)

MOTOR PROTEINS

Trang 24

“Motor” protei ns tra ns port mol ecul es i ns i de a cel l , provi de movement of certa i n pa rts of i ndi vi dua l cel l s i nvol ved i n s peci a l i zed functi ons(e.g., i mmune res pons es a nd wound hea l i ng), genera te l a rger s ca l e movements of fl ui ds a nd s emi s ol i ds s uch a s the ci rcul a ti on of bl ood a ndmovement of food through the di ges ti ve tra ct, a nd fi na l l y provi de movement of the huma n body through thei r rol es i n s kel eta l mus cl es

Myos i n i s a protei n wi th a hydrophobi c ta i l ; a hea d group, whi ch ca n a tta ch a nd deta ch from a cti n fi l a ments ; a nd a “hi nge” s ecti on, whi chmoves the hea d group ba ck a nd forth res ul ti ng i n movement Two ma jor types of myos i n exi s t Myos i n I i s compos ed of one mol ecul e wi th a n

a ddi ti ona l a rea on i ts s hort ta i l tha t ca n bi nd to other protei ns a nd membra nes Myos i n II (s evera l s ubtypes exi s t) i s compos ed of a l ong ta i ltha t bi nds vi a hydrophobi c i ntera cti ons to other myos i n II mol ecul es , res ul ti ng i n a compos i te mol ecul e tha t ca n s horten s kel eta l mus cl es by

i ts i ntera cti on wi th a cti n fi l a ments i n thos e mus cl es Ki nes i n a nd dynei n a re very much l i ke myos i n I i n form a nd functi on (s ee Cha pter 12)

Microtubules, Cilia, and Flagella—Roles in Disease Processes: Al though us ua l l y ra re, defects i n ci l i a /fl a gel l a , known a s ci l i opa thi es , l ea d to

s evera l di s ea s es /s yndromes i ncl udi ng the fol l owi ng:

Kartagener Syndrome/Primary Ciliary Dyskinesia—defecti ve ci l i a i n the res pi ra tory tra ct, Eus ta chi a n tube, a nd Fa l l opi a n tubes l ea di ng to chroni c

l ung i nfecti ons , ea r i nfecti ons a nd hea ri ng l os s , a nd i nferti l i ty Pos s i bl e a s s oci a ti on wi th “s i tus i nvers us ,” a condi ti on i n whi ch ma jor

i nterna l orga ns a re “fl i pped” l eft to ri ght

Senior–Loken Syndrome/Nephronophthisis—eye di s ea s e a nd forma ti on of cys ts i n the ki dneys l ea di ng to rena l fa i l ure.

Bardet–Biedl Syndrome—dys functi on of ci l i a throughout the body l ea di ng to obes i ty due to i na bi l i ty to s ens e s a ti a ti on, l os s of eye

pi gment/vi s ua l l os s a nd/or bl i ndnes s , extra di gi ts a nd/or webbi ng of fi ngers a nd toes , menta l a nd growth reta rda ti on a nd beha vi ora l/s oci a l probl ems , s ma l l a nd/or mi s s ha ped geni ta l i a (ma l e a nd fema l e), enl a rged a nd da ma ged hea rt mus cl e, a nd ki dney fa i l ure

Alstrom Syndrome—chi l dhood obes i ty, brea kdown of the reti na l ea di ng to bl i ndnes s , hea ri ng l os s , a nd type 2 di a betes

Meckel–Gruber Syndrome—forma ti on of cys ts i n ki dneys a nd bra i n l ea di ng to rena l fa i l ure a nd neurol ogi ca l defi ci ts , extra di gi ts a nd

bowi ng/s horteni ng of the l i mbs

Increased Ectopic (Tubal) Pregnancies/Male Infertility—defi ci ent ci l i a i n Fa l l opi a n tubes or defi ci ent fl a gel l a / s perm ta i l moti l i ty.

Autosomal Recessive Polycystic Kidney Disease—much ra rer tha n the a utos oma l domi na nt form, dys functi on of ba s a l bodi es a nd ci l i a i n rena l

cel l s l ea ds to a l tera ti ons of the l ungs a nd ki dneys l ea di ng to a va ri ety of s econda ry medi ca l condi ti ons a nd often dea th

Parkinson’s and Alzheimer’s diseases—Al though work i s s ti l l ongoi ng, res ea rchers now feel tha t s ome forms of Pa rki ns on’s a nd Al zhei mer’s

di s ea s es ma y res ul t, i n pa rt, from da ma ge to mi crotubul es a nd a s s oci a ted protei ns Trea tments a i med a t s ta bi l i zi ng mi crotubul es ma yhel p ma ny s ufferers of thes e ma l a di es

TRANSPORT/CHANNEL PROTEINS

Another group of protei ns fol d i nto a terti a ry or qua terna ry s tructure tha t crea tes cha nnel s for the movement of mol ecul es i nto a nd out of thenucl eus , va ri ous cel l orga nel l es , a nd from cel l s to thei r outs i de envi ronment s uch a s the bl ood s trea m The hydrophobi c a nd hydrophi l i c

na ture of the a mi no a ci ds tha t ma ke up thes e cha nnel protei ns a l l ows a n exteri or of the protei n tha t ca n exi s t i ns i de the extremel y

hydrophobi c envi ronment of a membra ne bi l a yer a nd a hydrophi l i c i nteri or tha t ca n a l l ow cha rged mol ecul es to move through the membra ne(Cha pter 8) Cha nnel s a re es s enti a l for the tra ns porta ti on of nutri ents i nto a nd out of cel l s a s wel l a s for nerve s i gna l s a nd the s el ecti ve

fi l tra ti on of mol ecul es i n the ki dneys Thes e s peci a l i zed functi ons of cha nnel s wi l l be di s cus s ed i n deta i l i n Cha pter 8 a nd Secti on III

REVIEW QUESTIONS

1 Wha t i s the mea ni ng a nd s i gni fi ca nce of es s enti a l a nd non-es s enti a l a mi no a ci ds ?

2 Wha t i s the s i gni fi ca nce of ea ch a mi no a ci d R-group (hydrophobi c, hydrophi l i c, a nd cha rged)?

3 Wha t a re the four ma jor types of s tructura l el ements of protei ns a nd how a re they defi ned?

4 Wha t i s a n enzyme a nd how do the terms ca ta l ys t a nd a cti ve s i te rel a te to enzymes ?

5 Wha t i s the ba s i c s tructure of a mi no a ci ds ?

6 How do the el ements pepti de bond, pepti des , α-hel i x, β-s tra nd, β-turn, ha i rpi n turn, a nd di s ul fi de bond rel a te to the s tructure of protei ns ?

7 How does a n a mi no a ci d s equence fol d?

8 Wha t a re the rol es of R-groups a nd pri ma ry to qua terna ry s tructure i n the fi na l conforma ti on of protei ns ?

9 Wha t a re the di fferent ca tegori es of protei ns a nd how a re they defi ned?

Trang 25

CHAPTER 2 CARBOHYDRATES

Ba s i c Ca rbohydra te Structure a nd Functi on

Monos a ccha ri des a nd Di s a ccha ri des

Gl ycogen a nd Sta rches

Gl ycoprotei ns

Gl ycos a mi nogl yca ns

Revi ew Ques ti ons

cons ti tuents of gl ycoprotei ns a nd gl ycol i pi ds ) However, a number of a ddi ti ona l mol ecul es crea ted by l i nka ges of ca rbohydra tes to protei ns

pl a y va ri ous rol es i n cel l –cel l i ntera cti ons a nd bi ol ogi ca l s tructures

BASIC CARBOHYDRATE STRUCTURE AND FUNCTION

Carbohydrates, whos e na mes end i n “-ose,” ha ve a formul a of (CH2O)x where x i s a number from three to s even (gi vi ng the na mes of triose, tetros e, pentose, hexose, a nd heptose) Al l ca rbohydra tes conta i n a ketone or a n a l dehyde group, a s wel l a s one or more hydroxyl groups (Fi gure

2-1A–B; Appendi x III) The oxygen a toms of the ketone a nd a l dehyde groups ha ve s i mi l a r rea cti ve qua l i ti es to tha t of the ca rboxyl i c a ci d group

s een i n a mi no a ci ds a nd a re the s i tes of chemi ca l rea cti ons wi thi n the ca rbohydra te mol ecul e, a s wel l a s wi th other ca rbohydra te, protei n, or

l i pi d mol ecul es Often, the ketone or a l dehyde rea cts wi th a hydroxyl group from the s a me s uga r mol ecul e to form a ca rbohydra te ri ng

s tructure a s s hown

Figure 2-1 A–B Basic Carbohydrate Structures A The rea cti ve ketone group of ca rbon 2 (green ca rbon group) from the hexos e fructos e rea cts wi th

the hydroxyl group of ca rbon 5 to form a new bond a nd a fi ve-s i ded (pentos e) ri ng s tructure Al l ca rbon a toms a re numbered for cl a ri ty Thi srea cti on i s ful l y revers i bl e a s i ndi ca ted by the bi di recti ona l a rrows As a res ul t, the l i nea r a nd ri ng s tructures a re cons ta ntl y cha ngi ng i n

s ol uti on B The rea cti ve a l dehyde group of ca rbon 1 (green ca rbon group) from the hexos e gl ucos e rea cts wi th the hydroxyl group of ca rbon 5 to

form a new bond a nd a s i x-s i ded (hexos e) ri ng s tructure Al l ca rbon a toms a re numbered for cl a ri ty Thi s rea cti on i s ful l y revers i bl e a s

i ndi ca ted by the bi di recti ona l a rrows As a res ul t, the l i nea r a nd ri ng s tructures a re cons ta ntl y cha ngi ng i n s ol uti on [Ada pted wi th permi s s i onfrom Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

Ca rbohydra tes pl a y a ma jor rol e i n huma ns a s energy s ources a nd s tora ge, a nd thei r rol e i n di et a nd nutri ti on, a l though s ometi mes

controvers i a l , i s a l wa ys one of s upreme i mporta nce However, ca rbohydra tes pl a y other rol es a s noted i n Ta bl e 2-1

Trang 26

TABLE 2-1 Bi ochemi ca l Rol es of Ca rbohydra tes

MONOSACCHARIDES AND DISACCHARIDES

Al though there a re mul ti pl e tri os es , pentos es , hexos es a nd heptos es dependi ng on the va ri ous a rra ngements of hydroxyl groups a nd

hydrogens a round the centra l ca rbon ba ckbone, onl y a few of thes e s i ngl e res i due s uga rs a re commonl y s een i n huma n bi ol ogy Common

s i ngl e s uga r groups , ca l l ed monosaccharides, i ncl ude the tri os e glyceraldehyde; the pentos e ribose; a nd the hexos es fructose, glucose, a nd

galactose (s hown i n Fi gure 2-2).

Figure 2-2 Common Monosaccharides in Human Biology The common monos a ccha ri de ca rbohydra tes found i n huma ns a re s hown a bove, i ncl udi ng

the three-ca rbon tri os e gl ycera l dehyde; the fi ve-ca rbon pentos e ri bos e; a nd the s i x-ca rbon hexos es fructos e, gl ucos e, a nd ga l a ctos e Note theonl y s tructura l di fference between gl ucos e a nd ga l a ctos e i s the pl a cement of the hydrogen a tom a nd hydroxyl group a t ca rbon 4 Ca rbon a toms

a re numbered for cl a ri ty [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]Hydroxyl groups (OH) a re often l oca ti ons of enzyme rea cti ons , es peci a l l y the forma ti on of a new bond between two ca rbohydra te mol ecul es

wi th the res ul ti ng rel ea s e of a wa ter mol ecul e When monos a ccha ri des form s uch bonds , the res ul ti ng mol ecul es a re a disaccharide,

trisaccharide, a nd s o on The va ri ous combi na ti ons of a l l the di fferent monos a ccha -ri des woul d produce a va s t mi xture of thes e new mol ecul es

but, i n fa ct, onl y a few a re common i n huma ns (Fi gure 2-3), na mel y lactose (the pri ma ry s uga r found i n mi l k), trehalose [found i n pl a nts (e.g.,

s unfl ower s eeds ), a ni ma l s (e.g., s hri mp), Ba ker’s yea s t, a nd s evera l types of mus hrooms )], maltose [(found i n ma ny foods ma de from gra i ns (e.g., ba rl ey)], a nd sucrose (found na tura l l y i n pl a nts ; us ua l l y a rti fi ci a l l y ma de for huma n cons umpti on a s common ta bl e s uga r) The ri ng

s tructure of monos a ccha ri des a l s o ha s rea cti ve hydroxyl groups a t ea ch of thei r ca rbon a toms , es peci a l l y a t the fi rs t a nd s i xth ca rbons , whi ch

ca n bond to other s uga r mol ecul es a nd a mi no groups a nd protei ns (di s cus s ed bel ow a nd i n the fol l owi ng cha pters )

Trang 27

Figure 2-3 Common Disaccharides in Human Biology The common di s a ccha ri de ca rbohydra tes found i n huma ns a re s hown a bove, i ncl udi ng

l a ctos e, treha l os e, ma l tos e, a nd s ucros e Component monos a ccha ri des a nd s peci fi c α- a nd β-bond confi gura ti ons a re i ndi ca ted i mmedi a tel yunder ea ch di s a ccha ri de Note tha t the s econd gl ucos e mol ecul e i n treha l os e a nd the fructos e mol ecul e i n s ucros e a re fl i pped hori zonta l l y i nthe fi na l di s a ccha ri de mol ecul e (s ee ca rbon numbers ) [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee BrothersMedi ca l Publ i s hers (P) Ltd., 2009.]

Carbohydrate Intolerance: The di ges ti on of ca rbohydra tes from food i nvol ves s evera l proces s es rel yi ng on protei ns , both enzymes a nd

tra ns port/cha nnel types Defects i n a ny of thes e protei ns l ea d to di s ea s e s ta tes i n whi ch a pa rti cul a r ca rbohydra te ca nnot be tol era ted i n

the pa ti ent’s di et One of the bes t known exa mpl es i s lactose intolerance, whi ch devel ops i n a dol es cence or a dul thood a nd i s ca us ed by the

i na bi l i ty to di ges t the s uga r l a ctos e, the pri ma ry ca rbohydra te i n cow’s mi l k Decrea s ed di ges ti on i ncrea s es ba cteri a l fermenta ti on of theexces s s uga r mol ecul es produci ng i ntes ti na l ga s , bl oa ti ng, na us ea , a nd pa i nful cra mpi ng The os moti c effect of the exces s monos a ccha ri de

a nd di s a ccha ri de mol ecul es l ea ds to i ncrea s ed wa ter retenti on a nd a bs orpti on i n the l a rge i ntes ti ne, ca us i ng wa tery di a rrhea

In fa ct, hi s tori ca l evi dence i ndi ca tes tha t huma ns onl y recentl y evol ved the a bi l i ty to di ges t l a ctos e when cow’s mi l k beca me a s ta pl e ofthei r di et In a ddi ti on, s ome ra ces of huma ns a re l es s a bl e to di ges t l a ctos e, l ea di ng to i ncrea s ed i nci dence of l a ctos e i ntol era nce i n tha t

ra ci a l group

Other types of ca rbohydra te i ntol era nce i ncl ude enzyme defi ci enci es i n the di ges ti on of s ucros e, ma l tos e, a nd treha l os e—the l a tter s eenpredomi na tel y i n Inui t a nd Greenl a nd popul a ti ons —a nd the a bs ence or decrea s ed a cti on of tra ns porter/cha nnel protei ns tha t ca n ca us eprofound effects on di ges ti on of gl ucos e, fructos e, a nd ga l a ctos e Some ca rbohydra te i ntol era nce ca n l ea d to s eri ous probl ems of fa i l ure tothri ve a nd ki dney a nd/or l i ver di s ea s e Trea tment of ca rbohydra te i ntol era nces i s norma l by a voi da nce of the offendi ng s uga r or by

s uppl ementa ti on of the a ffected enzyme

GLYCOGEN AND STARCHES

Li nka ges of monos a ccha ri des a nd di s a ccha ri des form l ong ca rbohydra te cha i ns ca l l ed pol ys a ccha ri des The common pol ys a ccha ri des found i n

na ture a re glycogen a nd starch In fa ct, over ha l f of a l l the ca rbohydra tes i n the huma n di et a re s ta rch mol ecul es Al though gl ycogen i s a l wa ys a bra nched pol ys a ccha ri de mol ecul e, s ta rch ca n be ei ther bra nched (ca l l ed amylopectin) or unbra nched (ca l l ed amylose) The gl ycogen mol ecul e

a nd s ta rch mol ecul es a re s hown i n Fi gure 2-4

Trang 28

Figure 2-4 A–B Glycogen and the Plant Starch Forms Amylopectin and Amylose A Gl ucos e mol ecul es , bondi ng both l i nea rl y between the ca rbons 1

a nd 4 (green bonds ) a nd a s bra nches between ca rbons 1 a nd 6 (red bond) of s ucces s i ve gl ucos e mol ecul es , crea te gl ycogen (bra nches

a pproxi ma tel y every 10 gl ucos e res i dues ) or the form of pl a nt s ta rch ca l l ed a myl opecti n (bra nches a pproxi ma tel y every 30 gl ucos e mol ecul es )

Gl ycogen a nd s ta rch a re us ua l l y thous a nds of gl ucos e mol ecul es l ong a nd a re extremel y i mporta nt forms of ca rbohydra te s tora ge i n the

huma n body a nd pl a nts , res pecti vel y B Gl ucos e mol ecul es , bondi ng onl y l i nea rl y between the ca rbons 1 a nd 4 (green bonds ) of s ucces s i ve

gl ucos e mol ecul es , crea te the form of pl a nt s ta rch ca l l ed a myl os e, whi ch ha s no bra nchi ng Amyl os e i s a n i mporta nt form of ca rbohydra te

s tora ge i n pl a nts [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

Glycogen Storage Diseases: Gl ycogen s tora ge di s ea s es i ncl ude 11 cl a s s es of i nborn errors i n the producti on a nd brea kdown of thes e l ong

ca rbohydra te cha i ns The geneti c errors , a l though ra re, res ul t i n a n i na bi l i ty of the body to res pond to the i ncrea s ed need for gl ucos e

mol ecul es As a res ul t, pa ti ents s ufferi ng from gl ycogen s tora ge di s ea s es a re l i mi ted i n thei r a bi l i ty to exerci s e or devel op l ow bl ood s uga r

a fter a rel a ti vel y s hort peri od of food depri va ti on Thes e gl ycogen s tora ge di s ea s es wi l l be expl ored i n ful l er deta i l i n l a ter cha pters

Cellulose, the a nother ma jor pl a nt pol ys a ccha ri de bes i des s ta rch, di ffers from amylose onl y i n the bonds between ca rbons 1 a nd 4 Cha nges

i n the wa y the a l dehyde a nd hydroxyl groups of the two gl ucos e mol ecul es form the bond res ul ts i n ei ther a n a myl os e α-bond [i ndi ca ted by adownwa rd bond (Fi gure 2-4A)] or a cel l ul os e β-bond [i ndi ca ted by a n upwa rd bond (Fi gure 2-5)] Al though the di fference ma y s eem

i ns i gni fi ca nt, thi s β-bond res ul ts i n a ma rkedl y di fferent overa l l s tructure of the pol ys a ccha ri de Al though α-l i nka ges crea te a n overa l l hel i ca l

s tructure of the cha i n, β-l i nka ges crea te a s tra i ght cha i n The α-l i nked hel i ca l s tructure i s i mporta nt for a cces s i ng the ca rbohydra te mol ecul esfor meta bol i s m, wherea s the β-l i nked l i nea r cha i n i s s tronger a nd, therefore, wel l s ui ted for cel l ul os e-conta i ni ng s tructures s uch a s pl a nt

wa l l s (e.g., wood) In a ddi ti on, the β-l i nka ges ca nnot be di ges ted by huma ns but ca n be di ges ted by a ni ma l s s uch a s cows a nd termi tes , a nd i t

i s the rea s on huma ns ca nnot l i ve on gra s s or wood, both of whi ch a re compos ed of β-bonded gl ucos e mol ecul es

Figure 2-5 Cellulose Note the β-l i nka ges (upwa rd-goi ng green bond) between ca rbons 1 a nd 4 of the two gl ucos e mol ecul es tha t di ffer from the

α-l i nka ges s een i n gl ycogen a nd s ta rches Cel l ul os e i s compos ed of mul ti pl e repea ts of thi s ba s i c uni t a s i ndi ca ted by the s ubs cri pt “n.”

[Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

GLYCOPROTEINS

Ca rbohydra tes ma y a l s o form bonds wi th protei ns vi a a ny of the ca rbohydra te hydroxyl groups combi ni ng wi th the a mi no a ci d hydroxyl groups

of s eri ne or threoni ne or the a mi ne ni trogen of a s pa ra gi ne The res ul ti ng ca rbohydra te–protei n mol ecul es a re referred to a s glycoproteins, a nd

a pproxi ma tel y ha l f of the protei ns i n the huma n body a re es ti ma ted to be gl ycoprotei ns The di vers i ty of gl ycoprotei ns s een i n na ture a ndhuma ns i s i mmens e wi th compl ex mi xtures of protei ns , a mi no a ci ds , a nd s uga rs (monos a ccha ri des , di s a ccha ri des , a nd tri s a ccha -ri des ) l i nked

Trang 29

together i n a va s t number of l i nea r a nd bra nched forma ti ons generi ca l l y ca l l ed oligosaccharides Thes e ol i gos a ccha ri des pl a y a di vers e number

of functi ona l rol es i n bi ndi ng, s i gna l i ng, a nd regul a ti on tha t wi l l be more ful l y expl ored i n Secti on III

GLYCOSAMINOGLYCANSEven more compl ex tha n s i mpl e ol i gos a ccha ri des a re the glycosaminoglycans (often referred to a s “GAGs”), whi ch conta i n repea ti ng

di s a ccha ri de cha i ns of a modi fi ed gl ucos e a nd/or ga l a ctos e Pri or to thei r l i nka ge to the GAG mol ecul e, thes e ca rbohydra te mol ecul es ha ve a n

a mi ne group a dded wi th a n a ddi ti ona l a cetyl (e.g., NHCOCH3) or nega ti vel y cha rged s ul fa te (e.g., NHSO3) group, produci ng glucosamine a nd galactosamine mol ecul es In a ddi ti on, nega ti vel y cha rged s ul fa te (SO3), vi a the rea cti ve hydroxyl groups , a nd/or ca rboxyl a te (COO−) groups a re

l i nked to a t l ea s t one of the s uga rs of the repea ti ng cha i n (Fi gure 2-6) A very wel l known GAG i s heparin, a potent i nhi bi tor of bl ood cl ot

forma ti on, us ed i n pa ti ents wi th hea rt a tta cks , s trokes , a nd cl otti ng di s ea s es Other GAGs i ncl ude chondroitin a nd hyaluronic acid (the l onges t of

the GAGs ), whi ch bond wi th a centra l l i nea r core protei n to crea te proteoglycans Thes e mol ecul es a re i mporta nt a s s trong s tructura l el ements

i n connecti ve ti s s ue a nd ca rti l a ge (Fi gure 2-6C a nd Ta bl e 2-2)

Figure 2-6 A–C Examples of Glycosaminoglycans (GAGs) and of Proteoglycan Associated with Collagen A Hepa ri n, a GAG a nd a n i mporta nt mol ecul e

i n bl ood cl ot regul a ti on, i s compos ed of two ca rbohydra te mol ecul es l i nked vi a a β-l i nka ge between ca rbons 1 a nd 4 a nd the a ddi ti on of aCOO− group, a s wel l a s s ul fa te a nd ni trogen a nd s ul fa te groups a t va ri ous other ca rbon a toms Al though mul ti pl e forms of hepa ri n exi s t,

dependi ng on the pa rti cul a r ca rbon tha t i s modi fi ed, one of the mos t common i s s hown a bove B Chondroi ti n, a GAG i mporta nt i n ca rti l a ge,

tendon, a nd bone s tructure, i s compos ed of a l terna ti ng ca rbohydra te mol ecul es (gl ucuroni c a ci d N-a cetyl -ga l a ctos a mi ne; note COO− a nd

ni trogen groups ) l i nked vi a a n αl i nka ge between ca rbons 1 a nd 3 Ea ch ca rbohydra te mol ecul e ma y be s ul fa ted (once or twi ce) or l eft uns ul

-fa ted The more common s ul -fa ted forms a re referred to a s chondroi ti n s ul -fa te a nd a re fel t to be ma i nl y res pons i bl e for the mol ecul e’s

bi ol ogi ca l a cti vi ty Chondroi ti n ha s recentl y become popul a r to i nges t i n pi l l form by s ome pa ti ents wi th knee a nd other joi nt pa i n i n hopes of

“repl a ci ng” ca rti l a ge tha t ha s been depl eted by ti me a nd wea r a nd tea r C Col l a gen, the ma i n protei n i n connecti ve ti s s ue, i s s trongl y

a s s oci a ted wi th proteogl yca ns compos ed of s evera l GAGs Common components i ncl ude hya l uroni c a ci d, a nd l ong, l i nea r cha i ns of repeti ti veuni ts of uroni c a ci ds (l eft) a nd chondroi ti n s ul fa te or kera ta n s ul fa te bound together by l i nk a nd core protei ns The res ul ti ng protei n a nd

ca rbohydra te mol ecul es a s wel l a s i ntera cti ons between the cha rged GAG groups a nd s urroundi ng wa ter mol ecul es crea te a n overa l l s tructure(ri ght) tha t i s both s trong a nd ri gi d but a l s o fl exi bl e a nd conforma bl e Thes e qua l i ti es hel p to ma ke col l a gen the perfect s ubs ta nce to provi de

s tructure but a l s o a l l ow movement i n joi nts [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca l

Publ i s hers (P) Ltd., 2009.]

Trang 30

TABLE 2-2 Bi ochemi ca l Rol es of Gl ycos a mi nogl yca ns

Gl ycos a mi nogl yca ns a re res pons i bl e for a va s t number of functi ons i n huma n bi ol ogy, mos tl y i nvol vi ng s tructure outs i de the cel l a nd/or

a tta chment of cel l s to externa l s tructures An exa mpl e of thi s s tructura l moti f i s s hown i n Fi gure 2-7

Figure 2-7 Example of Extracellular Matrix Structure The rol e of col l a gen, chondroi ti n, proteogl yca ns , a nd l i nk protei ns i n the forma ti on of the

extra cel l ul a r ma tri x i s i l l us tra ted [Reproduced wi th permi s s i on from Mes cher AL: Junquei ra ’s Ba s i c Hi s tol ogy Text a nd Atl a s , 12th edi ti on,McGra w-Hi l l , 2010.]

Carbohydrates and Fertilization: The ferti l i za ti on of a huma n egg rel i es on ca rbohydra te bi ndi ng a nd s i gna l i ng Bi ndi ng of a receptor on the

s perm’s s urfa ce to a galactose mol ecul e wi thi n a n ol i gos a ccha ri de on the egg’s s urfa ce s i gna l s the s perm to rel ea s e mol ecul es tha t a l l ow

s perm entry i nto the egg, res ul ti ng i n ferti l i za ti on

Trang 31

Ada pted wi th permi s s i on from Ki bbl e JD a nd Ha l s ey CR: The Bi g Pi cture: Medi ca l Phys i ol ogy, 1s t edi ti on, McGra w-Hi l l , 2009.

The l i s t bel ow i l l us tra tes jus t a few of thes e mol ecul es a nd thei r functi ons , whi ch wi l l be expl ored further i n l a ter cha pters

REVIEW QUESTIONS

1 Wha t a re tri os e, pentos e, a nd hexos e ca rbohydra tes a nd thei r key fea tures ?

2 Wha t a re ketone a nd a l dehyde groups a nd thei r key fea tures ?

3 Wha t a re monos a ccha ri des a nd di s a ccha ri des a nd thei r key fea tures ?

4 Wha t a re the ba s i c s tructures of gl ycera l dehyde, ri bos e, gl ucos e, ga l a ctos e, fructos e, ma l tos e, l a ctos e, s ucros e, gl ycogen, s ta rch,

a myl opecti n, a myl a s e, gl ycoprotei ns , a nd gl ycos a mi nogl yca ns ?

5 Wha t a re the ba s i c rol es a nd functi ons of ca rbohydra te mol ecul es , i ncl udi ng the va ri ous other types of mol ecul es to whi ch they ma y bond

a nd the res ul ti ng s tructura l cha ra cteri s ti cs ?

Trang 32

CHAPTER 3 LIPIDS

Ba s i c Li pi d Functi ons

Ba s i c Membra ne Li pi d Structure

Compl ex Li pi ds

Li pi d-deri ved Hormones /Vi ta mi n D

Revi ew Ques ti ons

OVERVIEW

Li pi ds a re the thi rd ma jor type of bi ochemi ca l mol ecul e found i n huma ns Al though one of thei r ma jor functi ons rel a tes to the forma ti on of

bi ol ogi ca l membra nes (phos phol i pi ds a nd chol es terol ), l i pi d mol ecul es a re a l s o es s enti a l for energy s tora ge a nd tra ns port (tri a cyl gl ycerol s ),cel l ul a r bi ndi ng a nd recogni ti on a nd other bi ol ogi ca l proces s es (gl ycol i pi ds ), s i gna l i ng (s teroi d hormones ), di ges ti on (bi l e s a l ts ), a nd

meta bol i s m (fa tty a ci ds , ketone bodi es , a nd vi ta mi n D) Li pi d mol ecul es a re ma i nl y hydrophobi c a nd a re, therefore, found i n a rea s a wa y from

wa ter mol ecul es or a re i nvol ved i n mecha ni s ms s uch a s l i poprotei n compl exes tha t a l l ow thei r movement i n a nd through wa ter envi ronments The s ma l l er hydrophi l i c pa rts of l i pi ds a re, thems el ves , i mporta nt i n forma ti on of bi ol ogi ca l membra nes a nd i n the s evera l s peci fi c functi ons

of l i pi ds a nd l i pi d-deri ved mol ecul es

BASIC LIPID FUNCTIONS

A ma jor rol e of l i pi d mol ecul es i s to provi de the bui l di ng bl ocks for bi ol ogi ca l membra nes , i ncl udi ng phospholipids, glycolipids, a nd cholesterol However, other l i pi ds known a s triacylglycerols (a l s o referred to a s tri gl yceri des or fa ts ) functi on i n the s tora ge of bi ol ogi ca l energy a nd bile salts, deri ved i n the l i ver from chol es terol a nd s erve i n the di ges ti on of di eta ry fa t Fi na l l y, s evera l l i pi d-deri ved mol ecul es s erve a s i mporta nt

hormones a nd i ntra cel l ul a r mes s engers

It i s i mporta nt to note tha t the ma jor pa rt of every l i pi d mol ecul e i s hydrophobi c i n na ture a nd, l i ke the hydrophobi c pa rts of protei ns

di s cus s ed ea rl i er (Cha pter 1), prefers to be a wa y from a nd protected a ga i ns t i ntera cti on wi th wa ter mol ecul es Thi s hydrophobi c cha ra cter i sfunda menta l i n membra ne forma ti on, l i pi d tra ns port, a nd i n ma ny of the functi ons tha t the va ri ous types of l i pi d mol ecul es perform

BASIC MEMBRANE LIPID STRUCTURE

A membra ne l i pi d i s compos ed of three ba s i c components tha t a re a s fol l ows :

1 Fatty acids a re compos ed of l ong cha i ns of ca rbon mol ecul es wi th a ca rboxyl i c a ci d (COOH) a t ca rbon 1 a nd a CH3 (methyl ) group a t the end ofthe cha i n (Fi gure 3-1A) The ca rboxyl i c a ci d group i s i nvol ved i n bondi ng of the fa tty a ci d to the other components of a l i pi d mol ecul e Inhuma ns , fa tty a ci ds a re us ua l l y 12–24 ca rbons l ong a nd mos t often the number of ca rbons i n the fa tty a ci d ba ckbone i s even Fa tty a ci ds ca nconta i n s i ngl e (C—C), doubl e (C═C), or tri pl e ca rbon–ca rbon bonds

Figure 3-1 A Common Saturated and Unsaturated Fatty Acids Pa l mi ta te (16-ca rbon), s tea ra te (18-ca rbon), a nd a ra chi da te (20-ca rbon), fa tty a ci ds ,

s hown by the ca rbon ba ckbone a nd i n “s ti ck di a gra m” form for a ra chi da te often us ed for s i mpl i ci ty The ca rbon a toms of fa tty a ci ds a re

numbered from the ca rboxyl i c a ci d (COOH) to the termi na l methyl (CH3) group Hydrogen a toms a re not s hown for cl a ri ty B Fatty Acid Chain

Double Bonding Deta i l of uns a tura ted fa tty a ci d ca rbon cha i n, i l l us tra ti ng trans doubl e bond (l eft: hydrogen a toms on oppos i te s i des of the

bond a nd res ul ti ng l i nea r ca rbon cha i n) a nd uns a tura ted cis doubl e bond (ri ght: hydrogen a toms on the s a me s i de of the bond a nd res ul ti ng

“ki nked” ca rbon cha i n) C Common Unsaturated Fatty Acids (Top a nd mi ddl e) Two 18-ca rbon uns a tura ted a ci ds s howi ng a cis doubl e bond (ol ei c

a ci d) a nd a trans doubl e bond (el a i di c a ci d) both a t ca rbon 9 Arrows i l l us tra te di fferent conforma ti ons of fa tty a ci d cha i n tha t res ul t from the two types of s a tura ted bonds (Bottom) An 18-ca rbon uns a tura ted fa tty a ci ds wi th two cis doubl e bonds (l i nol ei c a ci d) a t ca rbons 9 a nd 12 (s ee

a rrows ) Note how the a ddi ti on of a s econd cis doubl e bond crea tes a n even more nonl i nea r fa tty a ci d cha i n, whi ch ca us es i ncrea s ed di s order

of pa cki ng a nd, therefore, i ncrea s ed fl ui di ty of bi ol ogi ca l membra nes [Ada pted wi th permi s s i on from Murra y RA, et a l : Ha rper’s Il l us tra ted

Bi ochemi s try, 28th edi ti on, McGra w-Hi l l , 2009.]

• Saturated fa tty a ci ds conta i n onl y s i ngl e ca rbon–ca rbon bonds , a nd a l l of the ca rbon mol ecul es a re bonded to the ma xi mum number of

hydrogen mol ecul es

• Unsaturated fa tty a ci ds ha ve a t l ea s t one doubl e ca rbon–ca rbon bond wi th the potenti a l for a ddi ti ona l hydrogen a tom bondi ng s ti l l

exi s ti ng for s ome of the ca rbon a toms i n the ba ckbone cha i n If more tha n one doubl e bond i s pres ent, the term pol yuns a tura ted i s us ed

Thes e doubl e bonds ca n exi s t i n ei ther a “ki nked” cis doubl e bond or a more l i nea r trans doubl e bond (Fi gure 3-1B-C).

2 Glycerol i s a s i mpl e three-ca rbon mol ecul e wi th hydroxyl groups a t ea ch ca rbon (Fi gure 3-2A) Thes e hydroxyl groups a re the rea cti ve l oca ti on

where fa tty a ci ds a nd other components of a l i pi d mol ecul e bond to form di a cyl gl ycerol (Fi gure 3-2A) a nd tri a cyl gl ycerol (Fi gure 3-2B)

mol ecul es

Trang 33

Figure 3-2 A–B A Glycerol, Diacylglycerol, and Triacylglycerol Gl ycerol i s a s i mpl e, three-ca rbon cha i n mol ecul e (green) wi th a hydroxyl group (OH)

bonded to ea ch of the ca rbon a toms The hydroxyl groups a t ca rbons 1 a nd 2 of gl ycerol bond rea ct wi th the ca rboxyl i c a ci d groups (COO–) of the

fa tty a ci d cha i ns , res ul ti ng i n two new bonds a nd two wa ter (H2O) mol ecul es In genera l , uns a tura ted fa tty a ci ds bond to ca rbon 1, wherea s

s a tura ted fa tty a ci ds bond to ca rbon 2 The res ul ti ng mol ecul e i s ca l l ed “di a cyl gl ycerol ” a nd i s i nvol ved i n i mporta nt s i gna l i ng pa thwa ys(Cha pter 8) B Tri a cyl gl ycerol i s formed when a thi rd fa tty a ci d bonds to the thi rd gl ycerol hydroxyl group Thi s res ul ta nt mol ecul e i s a n

i mporta nt s tora ge form of energy (Cha pter 8) [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers Medi ca lPubl i s hers (P) Ltd., 2009.]

Double Bonds and Melting Temperatures: The number a nd type of doubl e bonds i n a pa rti cul a r l i pi d mol ecul e’s fa tty a ci d a ffects how tha t fa tty

a ci d “pa cks ” wi th other fa tty a ci ds a nd, therefore, the tempera ture a t whi ch the pa rti cul a r l i pi d mol ecul e mel ts For exa mpl e, the s a tura ted

fa tty a ci ds l i s ted i n Ta bl e 3-1 ha ve mel ti ng poi nts between 44°C a nd 77°C The uns a tura ted fa tty a ci ds ha ve fa r l ower mel ti ng poi nts , ra ngi ng

from 13°C to –50°C, decrea s i ng a s the number of doubl e bonds (pol yuns a tura ti on) i ncrea s es “Ki nked” cis doubl e bonds ma ke the pa cki ng of

fa tty a ci ds even more di s orga ni zed a nd l ower the mel ti ng tempera ture even further The effects of s a tura ted/uns a tura ted/pol yun-s a tura ted

a nd cis/trans fa tty a ci ds a re rea di l y s een i n the di fferent mel ti ng tempera tures of butter, compos ed of a hi ghl y s a tura ted l i pi ds , a nd

ma rga ri ne, compos ed of uns a tura ted l i pi ds The l i nea r na ture of trans fa tty a ci ds ma kes them s i mi l a r to the s tructure of s a tura ted fa tty

a ci ds Thi s s tructura l fea ture, rel a ti ve to the cis confi gura ti on, s eems to ma ke meta bol i s m of trans fa ts di ffi cul t Cons equentl y, trans fa ts

rema i n l onger i n the ci rcul a ti on, thereby contri buti ng to a rteri a l depos i ti on a nd s ubs equent devel opment of corona ry hea rt di s ea s e In

genera l , uns a tura ted fa ts a re hea l thi er for the huma n body a nd, therefore, di eta ry fa ts compos ed mos tl y of cis doubl e bonded,

pol yuns a tura ted fa ts a re recommended by di eti ci a ns a nd cl i ni ci a ns to hel p a voi d hea rt di s ea s e a nd other medi ca l probl ems

TABLE 3-1 Common Fa tty Aci ds Found i n Huma ns

Essential Fatty Acids: Much l i ke there a re essential a mi no a ci ds tha t the body ca n onl y get from di eta ry s ources , certa i n fa tty a ci ds a re a l s o

deemed es s enti a l Two pa rti cul a r es s enti a l fa tty a ci ds , l i nol ea te a nd l i nol ena te, ha ve doubl e bonds a t the s i xth a nd thi rd ca rbon a tomscounti ng from the methyl end of thei r cha i ns , res pecti vel y, a nd a re needed to produce certa i n 20-ca rbon l ong fa tty a ci ds conta i ni ng doubl e

bonds Thes e two fa tty a ci ds a re known a s omega-6 (ω-6) a nd omega-3 (ω-3) fa tty a ci ds Huma ns do not ha ve the a bi l i ty to produce doubl e

bonds a t thes e l oca ti ons a nd, therefore, mus t obta i n thes e two requi red fa tty a ci d bui l di ng bl ocks from vegeta bl e oi l s Ara chi dona te wi th a

20-ca rbon cha i n a nd four cis doubl e bonds i s a l s o a n es s enti a l fa tty a ci d i nvol ved i n s evera l i mporta nt bi ol ogi ca l functi ons Recentl y, l onger

ca rbon cha i n ω-3 fa tty a ci ds ha ve been propos ed to decrea s e hea rt a tta cks a nd s trokes ; s uppl ements a nd s ome food products a re now

a va i l a bl e, whi ch conta i n thes e fa tty a ci ds Interes ti ngl y, exces s i ve di eta ry i nta ke of ω-6 fa tty a ci ds ha s been i mpl i ca ted i n a n i ncrea s ed ri s k

of hea rt a tta cks , s trokes , s ome ca ncers , a nd even depres s i on

3 Head Group The fi na l component of a l i pi d mol ecul e va ri es wi th ea ch type of l i pi d a nd, a l ong wi th the two s peci fi c fa tty a ci ds , defi nes ea ch

pa rti cul a r l i pi d Thi s thi rd pa rt of the l i pi d mol ecul e i s often ca l l ed the “hea d group,” a ptl y na med i f one envi s i ons the end methyl group ofthe fa tty a ci d cha i ns to be the ta i l of the l i pi d mol ecul e (Fi gure 3-3A) Mos t l i pi ds i n a bi ol ogi ca l membra ne ha ve a phos pha te group (PO4–3)

a tta ched to the thi rd gl ycerol ca rbon a nd a re, therefore, ca l l ed phospholipids Us ua l l y, a n a ddi ti ona l mol ecul e (s evera l common exa mpl es

found i n huma ns a nd the res ul ti ng phos phol i pi d mol ecul es a re s hown i n Fi gure 3-3B) i s a tta ched to the phos pha te mol ecul e, res ul ti ng i nthe fi na l hea d group of the l i pi d mol ecul e Thi s hea d group i s us ua l l y cha rged, crea ti ng a pa rt of the l i pi d tha t i s hydrophi l i c, a nd wa nts to

be nea r wa ter, a qua l i ty tha t i s es s enti a l for the forma ti on of bi ol ogi ca l membra nes (Cha pter 8) a nd ma ny l i pi d functi ons

Trang 34

Figure 3-3 A Phospholipid Components and Formation Bondi ng between hydroxyl (OH) of a phos pha te group wi th the hydroxyl (OH) of gl ycerol

ca rbon 3 (green) res ul ts i n a phos phol i pi d mol ecul e a nd one wa ter mol ecul e The ba s i c phos phol i pi d i l l us tra ted a bove i s termed

phos pha ti di c a ci d a nd i s the bui l di ng bl ock of common phos phol i pi ds found i n the cel l membra ne (s ee bel ow) Fa tty a ci d cha i ns a re depi cted

i n bl a ck B Common Phospholipids Found in Humans Common hea d groups , whi ch form phos phol i pi ds (top a nd mi ddl e) a nd a re s hown i n bl ue,

bonded to the hydroxyl (OH) of a phos pha te group (purpl e), whi ch i ts el f i s bonded to the hydroxyl (OH) of gl ycerol ca rbon 3 (green) Thi s

s tructure res ul ts i n a phos phol i pi d mol ecul e tha t i s genera l l y found i n membra nes Li pi d mol ecul es a re often repres ented i n “s ti ck di a gra m”form (bottom) wi th the cha rged phos pha te group a nd hydrophi l i c hea d group s hown a s a ci rcl e a nd ova l a nd wi th the fa tty a ci d “ta i l s ,”depi cted a s ei ther s tra i ght or ja gged l i nes , formi ng the hydrophobi c regi on [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on,

Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

The common fa tty a ci ds found i n huma ns a re l i s ted i n Ta bl e 3-1

COMPLEX LIPIDSGLYCOLIPIDS/SPHINGOLIPIDS

Jus t a s ca rbohydra te a nd protei n mol ecul es ca n bi nd together (di s cus s ed i n Cha pter 2), ca rbohydra tes ca n a l s o bi nd to l i pi ds to form a

glycolipid However, i n a huma n gl ycol i pi d, the gl ycerol ba ckbone i s genera l l y repl a ced by a ba ckbone of sphingosine [ma de from the a mi no a ci d

s eri ne a nd the 16-ca rbon fa tty a ci d pa l mi ta te (Fi gure 3-4A)] a nd i s , therefore, referred to a s a sphingolipid Sphi ngos i ne ca n bi nd two othermol ecul es wi th the rema i ni ng hydroxyl (OH) a nd a mi no (NH3) groups from the s eri ne a mi no a ci d In huma n s phi ngol i pi ds , the a mi no group i s

a l wa ys bound to a nother fa tty a ci d to ma ke the mol ecul e ceramide From cera mi de, the pa rti cul a r mol ecul e(s ) a tta ched to the rema i ni ng hydroxyl group defi nes both the na me a nd the cha ra cteri s ti cs of the res ul ti ng s phi ngol i pi d For exa mpl e, the mol ecul e sphingomyelin, whi ch

ca n ma ke up to 20% of the tota l phos phol i pi d i n ma ny bi ol ogi ca l membra nes , i s ma de of cera mi de a nd a phos phoryl chol i ne hea d group(Fi gure 3-4B)

Trang 35

Figure 3-4 A-B Ceramide and Sphingolipids A Cera mi de i s produced from the combi na ti on of the a mi no a ci d s eri ne a nd the 16-ca rbon, fa tty a ci d

Trang 36

pa l mi ta te (green) wi th the s ubs equent a ddi ti on of a s econd fa tty a ci d (bl a ck) to the a mi no (NH3) group (referred to a s N-a cetyl a ti on) Other

mol ecul es ca n then bi nd to the cera mi de hydroxyl (OH) to produce a wi de ra nge of s phi ngol i pi ds i mporta nt to huma ns , a n exa mpl e of whi ch i s

s phi ngomyel i n (B) s hown i n the ri ght pa nel a nd di s cus s ed i n the text C Common Cerebrosides Cerebros i des a re compos ed of s phi ngos i ne a nd

a s i ngl e gl ucos e or ga l a ctos e mol ecul e a tta ched vi a the hydroxyl group a t ca rbon 4 D A Sulfatide Sul fa ti des a re s i mpl y cerebros i des wi th the

a ddi ti on of a ca rbohydra te-l i nked s ul fa te mol ecul e Compa re wi th ga l a ctocerebros i de i n Fi gure 3-4B E A Globoside and GalNAc Carbohydrate

Gl obos i des a re compos ed of cera mi de bonded to a fa tty a ci d vi a the NH group (green) a nd s evera l ca rbohydra te mol ecul es , i ncl udi ng Ga l NAc

(l i ght bl ue s qua re), bonded vi a the s eri ne OH (upper pa nel ) The s tructure of N-a cetyl -ga l a ctos a mi ne or Ga l NAc i s s hown i n the l ower pa nel

wi th the NH a tta chment hi ghl i ghted i n green F A Ganglioside and NANA The s tructure of N-a cetyl neura mi ni c (NANA), a type of s i a l i c a ci d, i s

s hown i n the l ower pa nel (N-a cetyl group i ndi ca ted i n bl ue) [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rd edi ti on, Ja ypee Brothers

Medi ca l Publ i s hers (P) Ltd., 2009.]

From the ba s e mol ecul e of a s phi ngol i pi d (e.g., cera mi de), ca rbohydra te mol ecul es ma y a l s o be a tta ched to form a glycosphingolipid In

genera l , huma n gl ycos phi ngol i pi ds a re grouped i nto four ca tegori es

1 Cerebrosides—Cera mi de (s ee a bove) a tta ched to onl y a single gl ucos e or ga l a ctos e res i due, produci ng gl ucos yl cera mi de or

ga l a ctos yl cera mi de, res pecti vel y (Fi gure 3-4C) Cerebros i des a re i mporta nt i n the membra nes of mus cl e a nd nerve cel l s a nd a re l oca ted i nmyel i n, whi ch covers nerve a xons a nd ena bl es fa s t a nd effi ci ent conducti on of nerve i mpul s es Cerebros i des ma y a l s o be i nvol ved i n the

bi ndi ng of morphi ne a nd other opi a tes

2 Sulfatides—Ga l a ctos e-ba s ed gl ycos phi ngol i pi d mol ecul es , whi ch conta i n a s ul fur a tom-conta i ni ng s ul fa te group i n pl a ce of thephos phorous a tom (Fi gure 3-4D) Sul fa ti des a re found ma i nl y i n the bra i n a nd centra l a nd peri phera l nervous s ys tems but a re s een i n tra ce

a mounts i n other ti s s ues Sul fa ti des a re bel i eved to be i nvol ved i n the regul a ti on of cel l growth a nd s i gna l i ng a nd ma y s erve to both hel pform a nd, a l terna ti vel y, brea k down bl ood cl ots pos s i bl y by a ffecti ng the tra ns porta ti on of s odi um a nd pota s s i um i n a nd out of cel l s s uch a s

pl a tel ets Sul fa ti des a l s o ma y pl a y rol es a s a n a dhes i on mol ecul e, i ncl udi ng the recrui tment of i mmune cel l s to i nfl a med ti s s ue a nd the

bi ndi ng a nd repl i ca ti on of i nfl uenza vi rus es Cha nges i n the producti on of s ul fa ti des ha ve been noted a s one of the ea rl i es t i ndi ca tors of

Al zhei mer’s di s ea s e

3 Globosides—Gl ycos phi ngol i pi d mol ecul es wi th the ca rbohydra te mol ecul e N-acetyl-galactosamine (a k.a Ga l NAc) a l ong wi th two or more other

ca rbohydra te mol ecul es (Fi gure 3-4E) Gl obos i des a re found i n s evera l orga ns i ncl udi ng red bl ood cel l s , s erum, l i ver, a nd s pl een Al thoughthe functi ons of gl obos i des a re not wel l unders tood, they a re bel i eved to pl a y a n i mporta nt rol e i n cel l receptors Interes ti ngl y, the bi ndi ng

of Escherichia coli, a ba cteri um common i n uri na ry tra ct i nfecti ons , to cel l s i n the uri na ry tra ct i s bel i eved to occur through gl obos i des

4 Gangliosides—Gl ycos phi ngol i pi d mol ecul es wi th one or more a tta ched sialic acid mol ecul es , mos t often N-acetylneuraminic acid (a.k.a “NANA”),

a compl ex, ni ne-ca rbon ca rbohydra te mol ecul e (Fi gure 3-4F) There a re a l a rge number of di fferent ga ngl i os i des , whi ch di ffer i n thei r

s tructure dependi ng on the number a nd l oca ti on of the ca rbohydra te a nd NANA mol ecul es Ga ngl i os i des a re i nvol ved i n bi ndi ng,

recogni ti on, a nd s i gna l i ng between cel l s Al though ga ngl i os i des a re a bunda nt i n the nervous s ys tem, they a re a l s o bel i eved to pl a y a n

i mporta nt rol e i n bi ndi ng i mmune cel l s Ga ngl i os i des a re a l s o found i n l es s a bunda nce i n other cel l types Ga ngl i os i des a re a l s o bel i eved

to pl a y a rol e i n the bi ndi ng a nd entra nce i nto cel l s of the i nfl uenza vi rus a nd the toxi n tha t ca us es chol era

EICOSANOIDS Eicosanoid i s the genera l term for mol ecul es tha t a re a l l compos ed of 20-ca rbon fa tty a ci ds a nd i nvol ved i n s i gna l i ng The four ma jor groups of

ei cos a noi ds i ncl ude the prostaglandins (PGs), the prostacyclins (PGIs), the thromboxanes (TXs), a nd the leukotrienes (LTs) Functi ons of ei cos a noi ds

i ncl ude promoti on of i nfl a mma ti on (us ua l l y ω-6 deri ved), i mmune res pons e, neurol ogi ca l s i gna l i ng, regul a ti on of bl ood pres s ure, control of

pl a tel et a ggrega ti on/ di s a ggrega ti on, a nd modul a ti on of l evel s of tri a cyl gl ycerol s They a l s o ha ve di rect/i ndi rect effects on a va ri ety of

di s ea s es , i ncl udi ng ca rdi ova s cul a r a nd rheuma toi d pa thol ogi es , a mong other rol es The s i gna l i ng a cti ons of ei cos a noi ds a re ma i nl y

tra ns mi tted vi a G-protei n receptors (Cha pter 8)

Al l ei cos a noi ds a re produced from ei ther ω-6 acids (dihomo-gamma-linolenic acid (DGLA), arachidonic acid (AA), or a n ω-3 acid [eicosapentaenoic acid (EPA)] The predomi na nt s yntheti c pa thwa y for ei cos a noi ds i s vi a the ω-6, AA pa thwa y whos e products a re denoted by the s ubs cri pt “2”

(Fi gure 3-5) LTs a re produced from AA vi a a di fferent pa thwa y i l l us tra ted i n the fi gure Importa ntl y, ei cos a noi ds deri ved from ω-6/DGLA a nd theω-3/EPA precurs ors a re much l es s i nfl a mma tory/a nti -i nfl a mma tory i n na ture Increa s ed i nta ke of DGLA (di eta ry s uppl ements ), es peci a l l y EPA(“ω-3” fi s h oi l s ), res ul ts i n l owered a s s oci a ted di s ea s es vi a di rect competi ti on wi th the AA pa thwa y Medi ca ti ons s uch a s a s pi ri n,

nons teroi da l a nti -i nfl a mma tory drugs , a nd cycl ooxygena s e (COX)-2 i nhi bi tors a l s o decrea s e the i nfl a mma tory effects of PG, PGI, a nd TX

(col l ecti vel y known a s prostanoids) by di rect i nhi bi ti on of COX-1 or -2, whi ch a re key enzymes i n pros ta noi d s ynthes i s (Fi gure 3-5).

Corti cos teroi ds (e.g., predni s ol one) i nhi bi t phos phol i pa s e A2 (Fi gure 3-5)

Trang 37

Figure 3-5 Overview of Eicosanoid Synthetic Pathway Phos phol i pi ds genera ted a s noted a bove (s ee a l s o Fi gure 3-3A) provi de the ba s i c bui l di ng

bl ocks for the forma ti on of a ra chi doni c a ci d (AA), the s ource of a l l ei cos a noi ds The va ryi ng s yntheti c pa thwa ys comi ng from AA a re s hown See

a l s o Ta bl e 3-2 for a revi ew of the ma jor known ei cos a noi ds a nd thei r functi ons [Ada pted wi th permi s s i on from Na i k P: Bi ochemi s try, 3rdedi ti on, Ja ypee Brothers Medi ca l Publ i s hers (P) Ltd., 2009.]

Trang 38

TABLE 3-2 Overvi ew of Ei cos a noi ds

More s peci fi ca l l y, PGs a re ei cos a noi ds whos e ma jor functi ons i ncl ude regul a ti on of i nfl a mma ti on, s mooth mus cl e contra cti on (bl oodves s el s , ga s troi ntes ti na l , bronchi a l , a nd uterus ), neurol ogi ca l pa i n, pl a tel et functi on, hormone a cti vi ty, a nd cel l growth PGIs a re deri ved

di rectl y from a pros ta gl a ndi n precurs or (PGH2) a nd a re i mporta nt i n decrea s i ng pl a tel et functi on a nd, therefore, bl ood cl ot forma ti on a s wel l

a s di l a ti on of bl ood ves s el s TXs a re a l s o deri ved from PGH2 a nd, oppos i te of PGIs , a ct a s va s ocons tri ctors to promote pl a tel et a ggrega ti on a nd

bl ood cl ot forma ti on LTs , the fourth cl a s s of ei cos a noi ds , a re produced vi a a pa thwa y tha t devi a tes from the other ei cos a noi ds ’ producti on a t

AA (Fi gure 3-5) LTs a re ma i nl y s een i n i nfl a mma tory proces s es of the l ung, i ncl udi ng a s thma ti c rea cti ons a nd the i nfl a mma ti on a s s oci a ted

wi th bronchi ti s Speci fi c functi ons of the ma jor ei cos a noi ds a nd thei r rol e i n di s ea s e a nd trea tments a re revi ewed i n Ta bl e 3-2 a nd wi l l becovered further i n Secti on III

ABO Blood Groups: The huma n bl ood groups O, A, B, a nd AB a re determi ned by s peci fi c gl ycos phi ngol i pi ds found i n the red cel l membra ne The ba s i c gl ycos phi ngol i pi d, ca l l ed “H-substance,” i s compos ed of a s phi ngol i pi d connected to three ca rbohydra te mol ecul es a nd a

membra ne-bound protei n The a ddi ti on of s peci fi c, extra ca rbohydra te mol ecul e to a ga l a ctos e res i due on H-s ubs ta nce produces the fourcommon bl ood types a s fol l ows :

Eicosanoids and Inflammation: Infl a mma ti on i s often cha ra cteri zed by the four s i gns of ca l or, dol or, tumor, a nd rubor Ea ch of thes e fea tures

Trang 39

res ul ts , a t l ea s t i n pa rt, from the a cti on of one or more ei cos a noi ds Calor (wa rmth) i s ca us ed by the pros ta gl a ndi n PGE2 Dolor (pa i n) i s

hei ghtened vi a the a cti on of PGE2, whi ch a l s o i ncrea s es the s ens i ti vi ty of neurons Tumor (s wel l i ng) res ul ts from the l ea ka ge of pl a s ma from

bl ood ves s el s whos e permea bi l i ty i s i ncrea s ed by the l eukotri ene LTB4 Infl a mma tory rubor (rednes s ) res ul ts from the a cti on of

thromboxa ne TXA2, i ni ti a l l y rel ea s ed a fter i njury, whi ch s ubs equentl y i ncrea s es the concentra ti on a nd, therefore, the bl ood ves s el di l a ti on

a cti vi ty of PGE2 a nd LTB4, res ul ti ng i n engorged ves s el s a nd reddeni ng

CHOLESTEROL Cholesterol i s a n extremel y i mporta nt mol ecul e found onl y i n euka ryoti c orga ni s ms wi th a va ri ety of functi ons i n the huma n body Al though

huma ns ca n ma ke chol es terol , they ha ve to rel y on a compl ex mecha ni s m of bi ndi ng a nd modi fi ca ti ons by other mol ecul es s o tha t chol es terol

ma y be el i mi na ted from the body (s ee bel ow) As a res ul t, properl y control l i ng the da y-toda y a mount of chol es terol i n the body—a ba l a ncebetween producti on, el i mi na ti on, a nd the externa l i nfl uence of di eta ry i nta ke—ca n pl a y a key rol e i n hea l th a nd i l l nes s The functi ons ofchol es terol a re l i s ted bel ow

1 Chol es terol i s one of the es s enti a l l i pi d components of bi ol ogi ca l membra nes where i t i s a modul a tor of the fl ui di ty of membra nes The

a bi l i ty of membra nes to modi fy thei r s tructure a nd/or the a bi l i ty for other mol ecul es to be a bl e to move wi thi n the membra ne i s cri ti ca l forcel l s i gna l i ng, bi ndi ng, wound hea l i ng, i mmune res pons e, a nd s o on

2 Chol es terol s erves a s the pri ma ry s ource for the producti on of s teroi d hormones (s ee next s ecti on bel ow), bi l e s a l ts , a nd even vi ta mi n D.

3 Chol es terol meta bol i s m i s a l s o i mporta nt i n the regul a ti on of the tra ns porta ti on of l i pi ds throughout the body, a nd di s turba nce of thi s

s ys tem l ea ds to the depos i ti on of chol es terol i n the a rtery wa l l ca us i ng a theros cl eros i s , whi ch ul ti ma tel y l ea ds to hea rt a tta cks a nd s trokes

An unders ta ndi ng of thi s regul a ti on ha s l ed to i mporta nt trea tments for decrea s i ng the ri s k of thes e di s ea s es

The chol es terol mol ecul e ha s four ri ngs ma de of ca rbon a toms —three ri ngs ha ve s i x s i des a nd one ha s fi ve s i des —wi th a s i x-ca rbon ri ng

ta i l (Fi gure 3-6A) Mos t of the ca rbons a re s i ngl e bonded a nd, therefore, ha ve thei r ful l compl ement of hydrogen a toms The three-di mens i ona l

s tructure of chol es terol i s a pproxi ma tel y a fl a t pl a ne, expos i ng a l l of the hydrophobi c pa rts of the chol es terol mol ecul e to the envi ronment.Onl y one hydroxyl group wi th i ts hydrophi l i c na ture crea tes a ny cha rged qua l i ty to the chol es terol mol ecul e As a res ul t, chol es terol does not

l i ke to be expos ed to wa ter envi ronments , preferri ng to be s hi el ded by other hydrophobi c mol ecul es s uch a s l i pi ds or hydrophobi c pa rts ofprotei ns The i mpa ct of chol es terol ’s uni que s tructure a nd i ts rol e i n pl a s ma membra ne s tructure a nd fl ui di ty wi l l be exa mi ned further i nCha pter 8

Figure 3-6 Cholesterol Molecule (A) Unesterified and (B) Esterified A Unes teri fi ed chol es terol mol ecul e wi th free end hydroxyl group crea ti ng a hydrophi l i c cha rge i mporta nt i n bi ol ogi ca l membra ne pa cki ng B Es teri fi ed chol es terol mol ecul e wi th R group bonded by es ter bond to oxygen

from end hydroxyl group The R group i s us ua l l y a fa tty a ci d bonded to chol es terol by the enzyme l eci thi n chol es terol a cyl tra ns fera s e (LCAT).[Ada pted wi th permi s s i on from Ba rrett KE, et a l : Ga nong’s Revi ew of Medi ca l Phys i ol ogy, 23rd edi ti on, McGra w-Hi l l , 2010.]

However, s ome chol es terol i s a l s o found outs i de of bi ol ogi ca l membra nes i n a drena l gl a nds , bl ood, a nd other ti s s ues where i t i s oftenbonded vi a the hydroxyl group to a l ong fa tty a ci d a s a chol es terol es ter (Fi gure 3-6B) Thes e chol es terol es ters a re hi ghl y hydrophobi c a nd

i ns ol ubl e a nd ca n form fa tty l es i ons or “pl a ques ” i n the a rtery wa l l tha t ca n l ea d to hea rt a tta cks or s trokes Fortuna tel y, the huma n body ha sdevel oped a uni que wa y of a ddres s i ng thi s probl em, na mel y by formi ng l i poprotei ns (s ee bel ow a nd Fi gure 3-7)

Figure 3-7 Basic Lipoprotein Structure Li poprotei n compl exes a re compos ed of a centra l l i pi d core (chol es terol es ter a nd tri a cyl gl ycerol

mol ecul es ), a cha rged l i pi d outer s hel l (phos phol i pi d a nd chol es terol mol ecul es ), a nd s urroundi ng a poprotei ns tha t hel p to tra ns port

hydrophobi c l i pi d mol ecul es throughout the body [Ada pted wi th permi s s i on from Murra y RA, et a l : Ha rper’s Il l us tra ted Bi ochemi s try, 28thedi ti on, McGra w-Hi l l , 2009.]

Trang 40

Cholesterol, Phospholipids, Gangliosides, and Cancer: Emergi ng res ea rch ha s s hown tha t s ome ca ncer cel l s (e.g., meni ngos a rcoma a nd certa i n

l eukemi a s ) ha ve s i gni fi ca nt cha nges i n thei r cel l membra ne chol es terol , phos phol i pi d, a nd ga ngl i os i de content tha t a l ters the membra ne

fl ui di ty a s wel l a s l i pi d s i gna l i ng tha t produces unregul a ted growth or ca rci nogenes i s Thes e cha nges ca n a l s o ca us e res i s ta nce to a gents

us ed to trea t ca ncer Unders ta ndi ng how cha ngi ng membra ne compos i ti on l ea ds to thes e fi ndi ngs ma y hel p to devel op new a nd di fferent

ca ncer-fi ghti ng a gents wi th a uni que mecha ni s m of l i pi d a tta ck

LIPOPROTEINS Lipoproteins, a s the na me i mpl i es , a re formed from the compl exes of l i pi d a nd protei n mol ecul es Unl i ke gl ycol i pi ds , i n whi ch s i mpl e bonds

connect the pri nci pa l component mol ecul es , l i poprotei ns a re fa r more compl ex a nd form l a rge pa rti cl es conta i ni ng s evera l l i pi d cl a s s es a ndprotei n Thei r compl exi ty emerges from the pri ma ry functi on of l i poprotei ns , na mel y the tra ns porta ti on a nd del i very of fa tty a ci ds ,

tri a cyl gl ycerol , a nd chol es terol to a nd from ta rget cel l s i n a va ri ety of orga ns (s ee a l s o Cha pter 7 for further di s cus s i on) Thus , a l though

gl ycol i pi ds once produced a nd i n thei r fi na l l oca ti on rema i n there for rel a ti vel y l ong peri ods of ti me, l i po-protei ns a re more tra ns i ent Thebondi ng a nd s tructure of l i poprotei ns refl ect thi s cha ra cteri s ti c

A s i mpl i fi ed model of a l i poprotei n i ncl udes a center core compos ed of chol es terol es ter a nd tri a cyl gl ycerol mol ecul es s urrounded by a nouter s hel l of phos phol i pi ds a nd chol es terol mol ecul es wi th thei r hydrophobi c a rea s i nwa rd towa rd the l i pi d core a nd thei r cha rged,

hydrophi l i c a rea s fa ci ng outwa rd towa rd the a queous envi ronment (Fi gure 3-7) Speci a l i zed protei ns , known a s apoproteins, wra p a round theouter s hel l of the l i po-protei n pa rti cl e a l s o i nvol ved i n i ntera cti ons wi th externa l wa ter The compos i ti on of l i poprotei n pa rti cl es va ri es butthey ca n be broa dl y ca tegori zed dependi ng on thei r dens i ty a s s hown i n Ta bl e 3-3 Li poprotei ns , thei r components , functi on, meta bol i s m, a ndmedi ca l i mpl i ca ti ons wi l l be di s cus s ed i n much more deta i l i n Cha pters 11 a nd 16

TABLE 3-3 Ba s i c Li poprotei n Cha ra cteri s ti cs

BILE SALTS Bile salts, compos ed of bi l e a ci ds conjuga ted wi th gl yci ne or ta uri ne (Fi gure 3-8A), a re produced i n the l i ver di rectl y from chol es terol a nd a re

i mporta nt i n s ol ubi l i zi ng di eta ry fa ts i n the ma i nl y wa tery envi ronment of the s ma l l i ntes ti ne After producti on i n the l i ver a nd pri or to

s ecreti on i nto the ga l l bl a dder a nd/or di ges ti ve s ys tem, they a re often bonded to the a mi no a ci d gl yci ne (Cha pter 1) or ta uri ne, a deri va ti ve ofthe common a mi no a ci d cys ti ne (Cha pter 1), to i ncrea s e thei r wa ter s ol ubi l i ty (Fi gure 3-8B) Gl yco- a nd ta uro-bi l e a ci ds a re a l s o ca l l ed a sconjuga ted bi l e a ci ds

Figure 3-8 A-B Major Bile Acids and Bile Salts Found in Humans A Bi l e s a l ts , i ncl udi ng the pri ma ry forms chol i c a ci d a nd chenodeoxychol i c a ci d,

a re produced by the l i ver a nd commonl y found i n huma ns Remova l of hydroxyl groups (OH) by i ntes ti na l ba cteri a produces the s econda ry bi l e

a ci ds deoxychol i c a ci d a nd l i thochol i c a ci d [Ada pted wi th permi s s i on from Ki bbl e JD a nd Ha l s ey CR: The Bi g Pi cture: Medi ca l Phys i ol ogy, 1s t

edi ti on, McGra w-Hi l l , 2009.] B The a ddi ti on of the a mi no a ci d gl yci ne (l eft) or the cys ti ne-rel a ted ta uri ne (bottom ri ght) i ncrea s es the

s ol ubi l i ty of the bi l e s a l ts [Ada pted wi th permi s s i on from Murra y RA, et a l : Ha rper’s Il l us tra ted Bi ochemi s try, 28th edi ti on, McGra w-Hi l l , 2009.]

Bile Salt Sequestrants: Medi ci nes tha t bi nd wi th or “s eques ter” a nd hel p excrete bi l e s a l ts a re s ometi mes us ed i n pa ti ents wi th hi gh

chol es terol l evel s i n thei r bl ood The remova l of thes e bi l e s a l ts ca us es further producti on of repl a cement bi l e a ci ds from the body’s

chol es terol s tore to a l l ow fa t di ges ti on, thereby l oweri ng the tota l chol es terol i n thes e pa ti ents However, s uch trea tments ca n i nterfere

wi th norma l l i pi d a bs orpti on a ffecti ng di eta ry requi rements a s wel l a s res ul ti ng i n the unpl ea s a nt s i de effect of fa tty, foul -s mel l i ng bowelmovements

LIPID-DERIVED HORMONES/VITAMIN DSteroid hormones , whi ch a re a l l produced from chol es terol (Fi gure 3-9), perform a va ri ety of di fferent functi ons i n the huma n body a s l i s ted

bel ow

Ngày đăng: 21/01/2020, 12:06

🧩 Sản phẩm bạn có thể quan tâm