Bài giảng Phương pháp tính: Số gần đúng và sai số trình bày những khái niệm cơ bản về số gần đúng và sai số, chữ số có nghĩa, biểu diễn số thập phân, cách viết số gần đúng, xác định sai số của hàm số biết sai số của các đối số,.... Mời các bạn cùng tham khảo nội dung chi tiết.
Trang 2N ỘI DUNG BÀI HỌC
Trang 3B ÀI TOÁN THỰC TẾ
H ÌNH : Sai số
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 4Số gần đúng và sai số Những khái niệm cơ bản
N HỮNG KHÁI NIỆM CƠ BẢN
Trang 5N HỮNG KHÁI NIỆM CƠ BẢN
Trang 6Số gần đúng và sai số Những khái niệm cơ bản
ĐỊNH NGHĨA 1.3
Đại lượng ∆ = |a − A| được gọi là sai số thật
sự của số gần đúng a.
Trong thực tế, do không biết số chính xác A, ta ước lượng một
điều kiện |A − a| É ∆ a được gọi là sai số tuyệt đối của số gần đúng a.
Vậy sai số tuyệt đối É ∆a
Chú ý Trong thực tế ta sẽ ký hiệu A = a ± ∆ a.
Trang 7Số gần đúng và sai số Những khái niệm cơ bản
ĐỊNH NGHĨA 1.3
Đại lượng ∆ = |a − A| được gọi là sai số thật
sự của số gần đúng a. Trong thực tế, do không biết số chính xác A, ta ước lượng một
điều kiện |A − a| É ∆ a được gọi là sai số tuyệt đối của số gần đúng a.
Vậy sai số tuyệt đối É ∆a
Chú ý Trong thực tế ta sẽ ký hiệu A = a ± ∆ a.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 8Số gần đúng và sai số Những khái niệm cơ bản
ĐỊNH NGHĨA 1.3
Đại lượng ∆ = |a − A| được gọi là sai số thật
sự của số gần đúng a. Trong thực tế, do không biết số chính xác A, ta ước lượng một
điều kiện |A − a| É ∆ a được gọi là sai số tuyệt đối của số gần đúng a.
Chú ý Trong thực tế ta sẽ ký hiệu A = a ± ∆ a.
Trang 9ĐỊNH NGHĨA 1.3
Đại lượng ∆ = |a − A| được gọi là sai số thật
sự của số gần đúng a. Trong thực tế, do không biết số chính xác A, ta ước lượng một
điều kiện |A − a| É ∆ a được gọi là sai số tuyệt đối của số gần đúng a.
Vậy sai số tuyệt đối É ∆a
Chú ý Trong thực tế ta sẽ ký hiệu A = a ± ∆ a CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 10Số gần đúng và sai số Những khái niệm cơ bản
VÍ DỤ 1.1
Giả sử A = π; a = 3.14. Do 3.13 = 3.14 − 0.01 < π < 3.14 + 0.01 = 3.15, nên ta có thể chọn ∆a = 0.01.
Mặt khác, 3.138 = 3.14 − 0.002 < π < 3.14 + 0.002 = 3.142,
do đó ta cũng có thể chọn ∆a = 0.002. Như vậy, với cùng một giá trị gần đúng, có thể có
Trang 11Số gần đúng và sai số Những khái niệm cơ bản
VÍ DỤ 1.1
Giả sử A = π; a = 3.14. Do 3.13 = 3.14 − 0.01 < π < 3.14 + 0.01 = 3.15, nên ta có thể chọn ∆a = 0.01. Mặt khác,
3.138 = 3.14 − 0.002 < π < 3.14 + 0.002 = 3.142,
do đó ta cũng có thể chọn ∆a = 0.002.
Như vậy, với cùng một giá trị gần đúng, có thể có
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 12VÍ DỤ 1.1
Giả sử A = π; a = 3.14. Do 3.13 = 3.14 − 0.01 < π < 3.14 + 0.01 = 3.15, nên ta có thể chọn ∆a = 0.01. Mặt khác,
3.138 = 3.14 − 0.002 < π < 3.14 + 0.002 = 3.142,
do đó ta cũng có thể chọn ∆a = 0.002. Như
Trang 13VÍ DỤ 1.2
Vận tốc của một vật thể đo được là
v = 2.8m/s với sai số 0.5%.Khi đó sai số tuyệt đối là
∆v = 0.5% × 2.8m/s = 0.014m/s.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 14Số gần đúng và sai số Những khái niệm cơ bản
ĐỊNH NGHĨA 1.4
chính xác A là đại lượng nhỏ hơn hoặc bằng
δ a, với δ a được tính theo công thức
Trang 15ĐỊNH NGHĨA 1.4
chính xác A là đại lượng nhỏ hơn hoặc bằng
δ a, với δ a được tính theo công thức
Trang 17Số gần đúng và sai số Biểu diễn số thập phân
C HỮ SỐ CÓ NGHĨA
dạng thập phân hữu hạn hoặc vô hạn
Trang 18C HỮ SỐ CÓ NGHĨA
dạng thập phân hữu hạn hoặc vô hạn
Trang 19Số gần đúng và sai số Biểu diễn số thập phân
Trang 20Số gần đúng và sai số Biểu diễn số thập phân
Trang 22Số gần đúng và sai số Biểu diễn số thập phân
ĐỊNH NGHĨA 1.6
Làm tròn một số thập phân a là bỏ một số
phân để được một số aengắn gọn hơn và gần đúng nhất so với a
Quy tắc.Để làm tròn đến chữ số thứk sau dấu chấm thập phân, ta xét chữ số thứk + 1sau dấu chấm thập phân làα k+1 Nếuα k+1Ê 5, ta tăngα k lên 1 đơn vị ; còn nếu α k+1< 5 ta giữ nguyên chữ số α k Sau đó bỏ phần đuôi từ chữ sốα k+1trở đi.
Trang 23Số gần đúng và sai số Biểu diễn số thập phân
ĐỊNH NGHĨA 1.6
Làm tròn một số thập phân a là bỏ một số
phân để được một số aengắn gọn hơn và gần đúng nhất so với a
Quy tắc.Để làm tròn đến chữ số thứk sau dấu chấm thập phân, ta xét chữ số thứk + 1sau dấu chấm thập phân làα k+1.
Nếuα k+1Ê 5, ta tăngα k lên 1 đơn vị ; còn nếu α k+1< 5 ta giữ nguyên chữ số α k Sau đó bỏ phần đuôi từ chữ sốα k+1trở đi.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 24Số gần đúng và sai số Biểu diễn số thập phân
ĐỊNH NGHĨA 1.6
Làm tròn một số thập phân a là bỏ một số
phân để được một số aengắn gọn hơn và gần đúng nhất so với a
Quy tắc.Để làm tròn đến chữ số thứk sau dấu chấm thập phân, ta xét chữ số thứk + 1sau dấu chấm thập phân làα Nếuα Ê 5, ta tăngα lên 1 đơn vị ;
còn nếu α k+1< 5 ta giữ nguyên chữ số α k Sau đó bỏ phần đuôi từ chữ sốα k+1trở đi.
Trang 25ĐỊNH NGHĨA 1.6
Làm tròn một số thập phân a là bỏ một số
phân để được một số aengắn gọn hơn và gần đúng nhất so với a
Quy tắc.Để làm tròn đến chữ số thứk sau dấu chấm thập phân, ta xét chữ số thứk + 1sau dấu chấm thập phân làα k+1 Nếuα k+1Ê 5, ta tăngα k lên 1 đơn vị ; còn nếu α k+1< 5 ta giữ nguyên chữ số α k Sau đó bỏ phần đuôi từ chữ sốα k+1trở đi.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 26VÍ DỤ 1.6
Làm tròn số π = 3.1415926535 đến chữ số thứ 4; 3; 2 sau dấu chấm thập phân nhận được các số gần đúng lần lượt là
3.1416; 3.142; 3.14.
Trang 27Số gần đúng và sai số Biểu diễn số thập phân
ĐỊNH NGHĨA 1.7
Sai số thực sự của aeso với a được gọi là sai
|a − a| + |a − A| É θe ae+ ∆a = ∆ae. Vìθ aeÊ 0 nên
các phép toán trung gian, chỉ nên làm trònkết quả cuối cùng
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 28Số gần đúng và sai số Biểu diễn số thập phân
ĐỊNH NGHĨA 1.7
Sai số thực sự của aeso với a được gọi là sai
|a − a| + |a − A| É θe ae+ ∆a = ∆ae. Vì θ aeÊ 0 nên
∆aeÊ ∆a.
các phép toán trung gian, chỉ nên làm trònkết quả cuối cùng
Trang 29ĐỊNH NGHĨA 1.7
Sai số thực sự của aeso với a được gọi là sai
|a − a| + |a − A| É θe ae+ ∆a = ∆ae. Vì θ aeÊ 0 nên
các phép toán trung gian, chỉ nên làm trònkết quả cuối cùng
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 30Số gần đúng và sai số Biểu diễn số thập phân
và b > 78.6789 khi làm tròn xuống đến 2 chữ
số lẻ sau dấu chấm thập phân ta được
b > 78.67.
Trang 31và b > 78.6789 khi làm tròn xuống đến 2 chữ
số lẻ sau dấu chấm thập phân ta được
b > 78.67.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 32Số gần đúng và sai số Biểu diễn số thập phân
ĐỊNH NGHĨA 1.8
Cho a ≈ A. Chữ số α k trong phép biểu diễn dưới dạng thập phân được gọi là đáng tin , nếu ∆a É 1
2 · 10k. Trong trường hợp ngược lại, chữ số α k được gọi là không đáng tin
VÍ DỤ 1.8
Số gần đúng a = 3.7284 với sai số tuyệt đối là
∆a = 0.0047 có 3 chữ số đáng tin là3, 7, 2 và 2 chữ số không đáng tin là 8, 4
Trang 33ĐỊNH NGHĨA 1.8
Cho a ≈ A. Chữ số α k trong phép biểu diễn dưới dạng thập phân được gọi là đáng tin , nếu ∆a É 1
2 · 10k. Trong trường hợp ngược lại, chữ số α k được gọi là không đáng tin
VÍ DỤ 1.8
Số gần đúng a = 3.7284 với sai số tuyệt đối là
∆a = 0.0047 có 3 chữ số đáng tin là3, 7, 2 và 2 chữ số không đáng tin là 8, 4
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 34Số gần đúng và sai số Biểu diễn số thập phân
2 Viết số gần đúng theo quy ước: mọi chữ số có nghĩa đều đáng tin Điều này có nghĩa là sai số tuyệt đối ∆a không lớn hơn một nửa đơn vị của chữ số cuối cùng bên phải.
Trang 35Số gần đúng và sai số Biểu diễn số thập phân
2 Viết số gần đúng theo quy ước: mọi chữ số có nghĩa đều đáng tin Điều này có nghĩa là sai số tuyệt đối ∆a không lớn hơn một nửa đơn vị của chữ số cuối cùng bên phải.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 362 Viết số gần đúng theo quy ước: mọi chữ số có nghĩa đều đáng tin Điều này có nghĩa là sai số
Trang 38Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
C ÔNG THỨC TÍNH SAI SỐ CỦA HÀM HAI BIẾN
Trang 39Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
C ÔNG THỨC TÍNH SAI SỐ CỦA HÀM HAI BIẾN
Trang 40Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
C ÔNG THỨC TÍNH SAI SỐ CỦA HÀM HAI BIẾN
Trang 41C ÔNG THỨC TÍNH SAI SỐ CỦA HÀM HAI BIẾN
Trang 42Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
Vậy sai số tuyệt đối của hàm sốu nhỏ hơnhoặc bằng
Trang 43Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
Vậy sai số tuyệt đối của hàm sốu nhỏ hơnhoặc bằng
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 44Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
Vậy sai số tuyệt đối của hàm sốu nhỏ hơnhoặc bằng
Trang 45Vậy sai số tuyệt đối của hàm số u nhỏ hơnhoặc bằng
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 46Sai số tương đối của hàm số u nhỏ hơn hoặcbằng
Trang 47Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
C ÔNG THỨC TỔNG QUÁT CỦA SAI SỐ
số x i (i = 1 n). Gọi X i , Y vàx i , y (i = 1 n) làcác giá trị chính xác và các giá trị gần đúngcủa đối số và hàm số Khi đó
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 48C ÔNG THỨC TỔNG QUÁT CỦA SAI SỐ
số x i (i = 1 n). Gọi X i , Y vàx i , y (i = 1 n) làcác giá trị chính xác và các giá trị gần đúngcủa đối số và hàm số Khi đó
Trang 49Sai số tương đối của hàm số y nhỏ hơn hoặcbằng
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 50Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
C ÔNG THỨC TỔNG QUÁT CỦA SAI SỐ
Trang 51C ÔNG THỨC TỔNG QUÁT CỦA SAI SỐ
Trang 52Xác định sai số của hàm số biết sai số của các đối số Công thức tổng quát của sai số
Trang 54¯= 1, (i = 1 n). Do đó,sai số tuyệt đối
∆y = ∆x1+ ∆x2+ + ∆x n
vàsai số tương đốicủa y nhỏ hơn hoặc bằng
Trang 55Xác định sai số của hàm số biết sai số của các đối số Sai số của tổng đại số
Trang 57Sai số tương đối của y nhỏ hơn hoặc bằng
Trang 59Xác định sai số của hàm số biết sai số của các đối số Sai số của tích
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 61Do đó sai số tuyệt đối của y nhỏ hơn hoặcbằng
∆y = δ y |y| = M × |47.132 × 47.111 × 45.234| =
1159.250261 ≈ 1159.2503.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 62Bài tập Bài tập tự luận
B ÀI TẬP
BÀI TẬP 1.1
Cho a = 1.85 với sai số tương đối δ a = 0.12%.
Tính sai số tuyệt đối của a.
Trang 63B ÀI TẬP
BÀI TẬP 1.1
Cho a = 1.85 với sai số tương đối δ a = 0.12%.
Tính sai số tuyệt đối của a.
Trang 64Bài tập Bài tập tự luận
BÀI TẬP 1.2
Làm tròn đến hai chữ số lẻ sau dấu chấm thập phân của các số trong các biểu thức sau:
Trang 65Bài tập Bài tập tự luận
BÀI TẬP 1.2
Làm tròn đến hai chữ số lẻ sau dấu chấm thập phân của các số trong các biểu thức sau:
Trang 66Bài tập Bài tập tự luận
BÀI TẬP 1.2
Làm tròn đến hai chữ số lẻ sau dấu chấm thập phân của các số trong các biểu thức sau:
Trang 67Bài tập Bài tập tự luận
BÀI TẬP 1.2
Làm tròn đến hai chữ số lẻ sau dấu chấm thập phân của các số trong các biểu thức sau:
Trang 68BÀI TẬP 1.2
Làm tròn đến hai chữ số lẻ sau dấu chấm thập phân của các số trong các biểu thức sau:
a = 12.6724;b = 1.5476;c É 12.8713;d Ê 1.2354.
Giải.
a = 12.6724 ⇒ a≈12.67.
b = 1.5476 ⇒ b 1.55.
Trang 69Bài tập Bài tập tự luận
BÀI TẬP 1.3
Xác định số các chữ số đáng tin trong cách viết thập phân của các số sau:
1 a = 1.3452,∆ a = 0.0023.
2 a = 154.2341,∆ a = 6.23 × 10−3.
3 a = 3.4167,δ a = 0.25%.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 70Bài tập Bài tập tự luận
BÀI TẬP 1.3
Xác định số các chữ số đáng tin trong cách viết thập phân của các số sau:
1 a = 1.3452,∆ a = 0.0023.
2 a = 154.2341,∆ a = 6.23 × 10−3.
3 a = 3.4167,δ a = 0.25%.
Trang 71BÀI TẬP 1.3
Xác định số các chữ số đáng tin trong cách viết thập phân của các số sau:
1 a = 1.3452,∆ a = 0.0023.
2 a = 154.2341,∆ a = 6.23 × 10−3.
3 a = 3.4167,δ a = 0.25%.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 72Bài tập Bài tập tự luận
Trang 73Bài tập Bài tập tự luận
Trang 74Bài tập Bài tập tự luận
Trang 75Bài tập Bài tập tự luận
Trang 77BÀI TẬP 1.4
Cho hình cầu có bán kính R = 5 ± 0.005(m) và
số π = 3.14 ± 0.002. Tính sai số tuyệt đối và sai
số tương đối của thể tích hình cầu.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 78Bài tập Bài tập tự luận
= 4
3 × (5)3× 0.002 + 4 × (3.14) × (5)2× 0.005 = 1.90333333 Shift-STO-M≈ 1.9034.
Do đó, sai số tuyệt đối nhỏ hơn hoặc bằng
1.9034
Trang 79Bài tập Bài tập tự luận
Giải. Xem π và R là những đối số của hàm
= 4
3 × (5)3× 0.002 + 4 × (3.14) × (5)2× 0.005 = 1.90333333 Shift-STO-M≈ 1.9034.
Do đó, sai số tuyệt đối nhỏ hơn hoặc bằng
1.9034
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 80Giải. Xem π và R là những đối số của hàm
= 4
3 × (5)3× 0.002 + 4 × (3.14) × (5)2× 0.005 = 1.90333333 Shift-STO-M≈ 1.9034.
Trang 81Sai số tương đối nhỏ hơn hoặc bằng
Trang 82Bài tập Bài tập tự luận
Trang 83Bài tập Bài tập tự luận
Trang 84Bài tập Bài tập tự luận
Trang 85B ÀI TẬP
BÀI TẬP 1.5
Cho
a = 15.00 ± 0.02,b = 0.123 ± 0.001,c = 137 ± 0.5. Hãy tính sai số tuyệt đối của
1 A = a + b + c
2 B = 20a − 100b + c
3 C = a + bc.
CuuDuongThanCong.com https://fb.com/tailieudientucntt
Trang 86Bài tập Bài tập tự luận
Trang 87Bài tập Bài tập tự luận
Trang 88Bài tập Bài tập tự luận
Trang 90Bài tập Bài tập tự luận
Trang 91Bài tập Bài tập tự luận
Trang 93Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.1
Biết A có giá trị gần đúng là a = 3.3317 với sai
số tương đối là δ a = 0.54%. Ta làm tròn a thành a∗= 3.33. Sai số tuyệt đối của a∗ là
Trang 94Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.1
Biết A có giá trị gần đúng là a = 3.3317 với sai
số tương đối là δ a = 0.54%. Ta làm tròn a thành a∗= 3.33. Sai số tuyệt đối của a∗ là
Trang 95Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.1
Biết A có giá trị gần đúng là a = 3.3317 với sai
số tương đối là δ a = 0.54%. Ta làm tròn a thành a∗= 3.33. Sai số tuyệt đối của a∗ là
Trang 96Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.1
Biết A có giá trị gần đúng là a = 3.3317 với sai
số tương đối là δ a = 0.54%. Ta làm tròn a thành a∗= 3.33. Sai số tuyệt đối của a∗ là
Trang 97BÀI TẬP 2.1
Biết A có giá trị gần đúng là a = 3.3317 với sai
số tương đối là δ a = 0.54%. Ta làm tròn a thành a∗= 3.33. Sai số tuyệt đối của a∗ là
Trang 98Sai số tuyệt đối của a∗ nhỏ hơn hoặc bằng
∆a∗ = ∆a + θ a∗ = δ a × |a| + |a∗− a| = 0.01969118.
Trang 99Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.2
Cho a = 5.5848 với sai số tương đối là
δ a = 0.67%. Số chữ số đáng tin trong cách viết thập phân của a là
Trang 100Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.2
Cho a = 5.5848 với sai số tương đối là
δ a = 0.67%. Số chữ số đáng tin trong cách viết thập phân của a là
Trang 101Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.2
Cho a = 5.5848 với sai số tương đối là
δ a = 0.67%. Số chữ số đáng tin trong cách viết thập phân của a là
Trang 102Bài tập Bài tập trắc nghiệm
BÀI TẬP 2.2
Cho a = 5.5848 với sai số tương đối là
δ a = 0.67%. Số chữ số đáng tin trong cách viết thập phân của a là
Trang 103BÀI TẬP 2.2
Cho a = 5.5848 với sai số tương đối là
δ a = 0.67%. Số chữ số đáng tin trong cách viết thập phân của a là
Trang 104Sai số tuyệt đối
∆a = δ a |a| = 0.67% × 5.5848 = 0.03741816. Các
Trang 105Bài tập Bài tập trắc nghiệm
Trang 106Bài tập Bài tập trắc nghiệm
Trang 107Bài tập Bài tập trắc nghiệm
Trang 108Bài tập Bài tập trắc nghiệm
Trang 110Sai số tuyệt đối của f nhỏ hơn hoặc bằng
∆f = | f x0|.∆x + | f y0|.∆y =
= |3x2+ y|.∆ x + |x + 3y2|.∆y =
= |3 × 0.89072+ 4.9954| × 0.0013+
+|0.8907 + 3 × 4.99542| × 0.0017 = 0.1383677692.
Trang 111CÁM ƠN CÁC EM ĐÃ CHÚ Ý LẮNG NGHE
CuuDuongThanCong.com https://fb.com/tailieudientucntt