1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2011-2012 - Sở GD&ĐT Hải Phòng (Bảng B)

1 235 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 177,25 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cùng tham khảo Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2011-2012 - Sở GD&ĐT Hải Phòng (Bảng B) dưới đây, giúp các em ôn tập lại các kiến thức đã học, đánh giá năng lực làm bài của mình và chuẩn bị kì thi sắp tới được tốt hơn với số điểm cao như mong muốn.

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO

HẢI PHÒNG

KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH Lớp 9 THCS NĂM HỌC 2011-2012

Môn Toán - Bảng B Thời gian làm bài: 150 phút, không kể thời gian giao đề

Đề thi có 01 trang

Bài 1: (2.0 điểm)

a. ChoA 37 5 2 ; B3 20 14 2  Tính A+B. 

b. Cho a,b,c là các số khác ) thỏa mãn a+b+c=0. Chứng 

minh:

3 2

Bài 2:(2.0 điểm)

a. Giải hệ phương trình:

 

b. Cho x, y, z là những số nguyên thỏa mãn điều kiện x4y4 z4chia hết cho 4. CMR: cả x,y,x  đều chia hết cho 4. 

Bài 3:(1.0 điểm)

Tìm các nghiệm nguyên của phương trình: x4 4x37x26x4y

Bài 4:(2.0 điểm)

Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A và C với đường tròn cắt tiếp tuyến vẽ từ  điểm B của đường tròn lần lượt tại P và Q. Trong tam giác ABCvẽ đường cao BH (H nằm giữa A 

và C). Chứng minh: HB là tia phân giác của PHQ  

Bài 5:(2.0 điểm)

Cho tam giác ABC nội tiếp (O). Đường phân giác của các góc BAC & ACB cắt nhau tại I 

và cắt đường tròn tâm O lần lựot tại E và D. Chứng minh: DE vuông góc với BI. 

Bài 6:(1.0 điểm)

Cho a, b, c là các số thực dương. Chứng minh rằng:

1

Dấu đẳng thức xảy ra khi nào? 

 

HẾT  

 

ĐỀ CHÍNH THỨC

Ngày đăng: 08/01/2020, 17:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w