Đề thi chọn HSG cấp trường môn Toán lớp 11 năm 2018-2019 có đáp án - Trường THPT Nguyễn Du nhằm giúp học sinh ôn tập và củng cố lại kiến thức, đồng thời nó cũng giúp học sinh làm quen với cách ra đề và làm bài thi học sinh giỏi. Mời các bạn cùng tham khảo ôn tập. Chúc các bạn thi tốt!
Trang 1SỞ GIÁO DỤC & ĐÀO TẠO BÌNH ĐỊNH
TRƯỜNG THPT NGUYỄN DU
ĐỀ THI HSG CẤP TRƯỜNG NĂM HỌC 2018 – 2019 MÔN TOÁN LỚP 11
Thời gian làm bài 180 phút
Bài 1 : (6đ) Giải các phương trình sau :
1) 3
4
2)
2 cos 2x
Bài 2 : (3đ) Chứng minh rằng : 4 4 4
a b c abc a b c
Bài 3 : (3đ) Trong mp Oxy , cho điểm K(3;4) và đường tròn (C) : x2 + y2 – 6x + 2y – 6 = 0 .Viết phương trình đường tròn (C’) tâm K cắt (C) tại hai điểm A , B sao cho AB là cạnh hình vuông
có 4 đỉnh thuộc (C)
Bài 4 : (4đ) Giải hệ phương trình :
2 2
xy x y x y
Bài 5 : (4đ) Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó
có 1 đáp án đúng Giả sử mỗi câu trả lời đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm Một học sinh không học bài nên đánh hú họa một câu trả lời Tìm xác suất để học sinh này nhận
điểm dưới 1
Trang 2ĐÁP ÁN ĐỀ THI HSG – KHỐI 11 – MÔN TOÁN – NH 2018-2019 Bài 1 :
1)
2 3
3
3
tgx 1 tgx 1
tgx 0
tg x 4tg x 5tgx 0
PT cosx sin x 1 sin x cos x 2 cos x sin x sinx cos x 0
cos x sin x 0
1 sin x cos x 2 cos x sin x sinx cos x
Mà
sin x cos x 1; sin x cos x 1 2 cos x sin x sinx cos x 2
1 sin x cos x 1 sin 2x
Vậy PT có nghiệm duy nhất x k2
4
Bài 2 : Ta có :
4 4 2 2
4 4 2 2
4 4 2 2
4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Bài 4 : ĐK: x 1, y 0
(1) y x ( y ) ( x y ) x2 y2 ( x y y )( 1 x y ) 0
TH 1 x y 0 (loại do x 1, y 0)
TH 2 2 y 1 x 0 x 2 y 1 thế vào pt (2) ta được
(2 y 1) 2 y y 2 y 4 y 2 2 y ( y 1) 2 y 2( y 1)
2
y y
Do y 0 y 2 Vậy hệ có nghiệm ( ; ) x y (5;2)
- Chú ý Do có thể phân tích được thành tích của hai nhân tử bậc nhất đối y (hay x) nên có thể giải pt
(1) bằng cách coi (1) là pt bậc hai ẩn y (hoặc x)
Bài 5 : Ta có xác suất để học sinh trả lời câu đúng là 1
4 và xác suất trả lời câu sai là 3
4
- Gọi x là số câu trả lời đúng, khi đó số câu trả lời sai là 10 x
- Số điểm học sinh này đạt được là : 4x 2(10 x) 6x 20
- Nên học sinh này nhận điểm dưới 1 khi 6 20 1 21
6
- Mà x nguyên nên x nhận các giá trị: 0,1, 2, 3
- Gọi Ai (i0,1, 2, 3) là biến cố: “Học sinh trả lời đúng i câu”
- A là biến cố: “ Học sinh nhận điểm dưới 1”
- Suy ra: A A 0 A1 A2 A3 và P A ( ) P A ( )0 P A ( )1 P A ( )2 P A ( )3
- Mà:
10 10
i i
10 3
10 0
i i