Đề khảo sát đầu năm học 2019-2020 môn Toán lớp 11 này sẽ là nguồn tài liệu hữu ích cho các bạn học sinh, giúp các bạn định hướng đúng đắn cách ôn tập kiến thức đã học cũng như chủ động tự kiểm tra kiến thức của bản thân.
Trang 11/6 - Mã đề 832
SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT THUẬN THÀNH SỐ 1
(Đề thi có 06 trang)
ĐỀ KHẢO SÁT ĐẦU NĂM HỌC 2019-2020
MÔN TOÁN – LỚP 1 1
Thời gian làm bài : 90 phút (không kể thời gian phát đề)
Họ và tên học sinh : Số báo danh :
Câu 1 Cho hai điểm A 4;1, B2;3 Phương trình đường tròn đường kính AB là
A x32y12 5 B. 2 2
x y
C. 2 2
Câu 2 Số nghiệm của phương trình 2x 4 x 1 0 là
Câu 3 Cho a b c d, , , hữu hạn, 4 3
f x
Tập nghiệm của bất phương trình f x 0 có dạng
A. a b; c; B. ;a b c; C. ; \ a b; D. a b; c d;
Câu 4 Cho góc thỏa mãn tan Giá trị của biểu thức 2 2 sin2 3sin cos2 2 4 cos2
5 sin 6 cos
A 9
13
65
P C 24
29
65
P
Câu 5 Cho hai điểm A 1; 2, B3;1 và đường thẳng : 1
2
Tọa độ điểm C thuộc để tam giác
ABC cân tại C là
A 7; 13
7 13
;
6 6
13 7
;
6 6
5 11
;
6 6
Câu 6 Tập các giá trị của tham số m để phương trình m21x22xm có hai nghiệm trái dấu là0
A. 1;1 B ; 1 0;1 C. ; 1 0;1 D. 1; 0 1;
Câu 7 Trong các công thức sau, công thức đúng là
A. cosa b cos cosa bsin sina b B. sina b sin cosa bcos sina b
C. sina b sin sina bcos cosa b D. cosabcos cosa bsin sina b
Câu 8 Tọa độ các tiêu điểm của Elip
1
9 1
là
A. F13 0; ,F2 3 0; B. F1 8 0; ,F2 8 0;
C F1 8 0; ,F2 0; 8 D. F10 2 2; ,F2 0 2 2;
Mã đề 832
Trang 22/6 - Mã đề 832
x
y
O 1
2
Câu 9 Đồ thị hình vẽ là đồ thị của một hàm số trong bốn hàm số được liệt
kê ở bốn phương án A, B, C, D dưới đây Hàm số đó là
A y2x24x 1 B yx22x 2
C yx22x1 D y 2x24x1
Câu 10 Cho tam giác ABC có AB6cm,BC10cm Độ dài đường trung tuyến xuất phát từ đỉnh A của
tam giác bằng 5cm Diện tích tam giác ABC là
Câu 11 Số đo góc o
22 30 được đổi sang rađian là
A
6
12
8
5
Câu 12 Rút gọn biểu thức tan sin
sin cot
ta được kết quả là
A 2 sin B sin C cos D tan
Câu 13 Cho hai góc nhọn a b, thỏa mãn cos 1; cos 1
a b Giá trị của biểu thức
P a b a b là
A 115
144
144
144
144
Câu 14 Phương trình ax2bx c 0 a0 có hai nghiệm âm phân biệt khi và chỉ khi
A
0
0
0
P
S
0
P
0 0 0
P S
0 0 0
a
S
Câu 15 2và 3 là hai nghiệm của phương trình
A x2 2 3x 6 0 B x2 2 3x 60
C x2 2 3x 6 0 D x2 2 3x 6 0
Câu 16 Cho cos 2 3, 2
Giá trị của tan là
A 5
5 2
1
2
Câu 17 Góc giữa hai đường thẳng 1: 2x y 100 và 2:x3y 9 0 là
A 0
45
Câu 18 Cho tam giác ABC biết A1; 2 , B5; 4 , C 1; 4 Đường cao AA của tam giác ABC có ' phương trình là
Trang 33/6 - Mã đề 832
A 3x4y 11 0 B 8x6y200 C 3x4y 11 0 D 8x6y 4 0
Câu 19 Tập nghiệm của bất phương trình 3 2 x là 1
A 1; 2 B 1; 2 C ;1 2; D ;1 2;
Câu 20 Cho điểm M1; 1 và đường thẳng : 3x4ym0 Số giá trị m 0 sao cho khoảng cách từ
M đến bằng 1 là
Câu 21 Cho đường tròn 2 2
C x y Tiếp tuyến của C song song với đường thẳng
d xy có phương trình là
A 2xy0hoặc 2xy100 B 2xy 1 0hoặc 2xy 1 0
C 2xy 1 0 D 2xy0
Câu 22 Phương trình tiếp tuyến tại M( ; )3 4 của đường tròn ( ) :C x2y22x4y 3 0 là
Câu 23 Tập nghiệm của hệ bất phương trình
2
là
A 13;5 B 1;5 C 3;5 \ 1 D 3;5 \ 1
Câu 24 Số nghiệm nguyên và lớn hơn của bất phương trình 4 4x2 x20 là
Câu 25 Phương trình tham số của đường thẳng đi qua 2 điểm A2;1 , B1;0 là
A x 1 3t
y t
1 2
y t
1
Câu 26 Hai cạnh của hình chữ nhật nằm trên hai đường thẳng có phương trình
4 – 3x y 5 0, 3x4 – 5y 0 Một đỉnh của hình chữ nhật là A2;1 Diện tích của hình chữ nhật là
Câu 27 Đường thẳng d có một vectơ chỉ phương là u 2;1
Một vectơ pháp tuyến của d là
A n 1; 2
B n 1; 2
C n 3; 6
D n 3; 6
Câu 28 Cho bất phương trình 23 1 *
4
x
x và các mệnh đề
(I): * 1 23x 1
4
x
.(II): Điều kiện xác định của * là x 2
(III): * 23x 1
4
x
.(IV): * 3x x24
Trang 44/6 - Mã đề 832
Số mệnh đề đúng trong các mệnh đề trên là
Câu 29 Biết A B C, , là các góc trong tam giác ABC Mệnh đề đúng là
A cotAC cotB B sinAC sinB C tanAC tanB D cosAC cosB
Câu 30 Mệnh đề sai trong các mệnh đề sau là
C sin6xcos6x 1 3sin2xcos2x D sin8xcos8x 1 4 sin2xcos2x
Câu 31 Rút gọn biểu thức cos 2020 x2019 ta được kết quả là
A sin 2020x B cos 2020x C sin 2020x D cos 2020x
Câu 32 Nếu tam giác ABC có 2 2 2
a b c thì
C Alà góc nhỏ nhất D Alà góc nhọn
Câu 33 Khi giải phương trình 3x2 1 2x1 1 , một học sinh làm theo các bước sau:
Bước 1: Bình phương hai vế của phương trình 1 ta được:
3 x 1 2 x 1
Bước 2: Khai triển và rút gọn 2 ta được: 2 0
4
x
x
Bước 3: Khi x 0, ta có 3 x 2 1 0 Khi x 4, ta có 3 x 2 1 0
Vậy tập nghiệm của phương trình là 0; –4
Nhận xét đúng nhất về lời giải trên là
A Sai ở bước 2 B Sai ở bước 3 C Sai ở bước 1 D Đúng
Câu 34 Trong các khẳng định sau, khẳng định đúng là
A x 1 3 x x 1 9 x2 B x 2x 2
C ( 2)
2
x x
x x
3 x x 2 x x 2 3 x x
Câu 35 Biết bất phương trình m x2 1 9x3m nghiệm đúng với mọi x khi mm0 Khẳng định đúng nhất về m là 0
C Có đúng hai giá trị m0 D m 0 0;5
Câu 36 Cho hình thoi ABCD có diện tích S 20, một đường chéo có phương trình d: 2xy 4 0 và
1; 3
D Biết đỉnh A có tung độ âm Tọa độ đỉnh A là
A A1; 2 B A5; 6 C A11; 18 D A1; 2
Trang 55/6 - Mã đề 832
Câu 37 Cho đường tròn C :x2y24x2y 1 0 và đường thẳng d có phương trình xy 1 0 Gọi
;
M a b là điểm thuộc đường thẳng d sao cho từ M kẻ được hai tiếp tuyến vuông góc đến C Khi đó
A a b B a2b2 4 C a 2 2 D a 2 4
Câu 38 Số giá trị m 1 để phương trình x 1 x2 có đúng hai nghiệm là m
Câu 39 Điều kiện cần và đủ của tham số m để phương trình 2 2 2
2 4 – 2 2 4 4 –1 0
x x m x x m có đúng hai nghiệm là
A 2 3
m
m
B 3 m 4 C 2 3 m 4 D
4
m m
Câu 40 Cho hai đường thẳng 1:xy 1 0,2: 2xy 1 0 và điểm P2;1 Gọi là đường thẳng đi
qua P và cắt hai đường thẳng tại hai điểm 1, 2 A B, sao cho P là trung điểm của AB Phương trình của
là
A x4y 6 0 B 4xy 9 0 C 4xy7 0 D x9y14 0
Câu 41 Từ hai vị trí A B, của một tòa nhà, người
ta quan sát đỉnh C của một ngọn núi Biết rằng độ
cao AB70m , phương nhìn AC tạo với phương
nằm ngang một góc 300, phương nhìn BC tạo với
phương nằm ngang một góc 15 30 '0 Ngọn núi có
độ cao so với mặt đất gần nhất với giá trị sau
A 135m B 195m
C 234m D 165m
Câu 42 Cho Elip E có tiêu cự bằng 6 và đi qua điểm A0;5 Gọi S là diện tích lớn nhất của hình chữ
nhật nội tiếp E Khi đó
A S 40 B 5 34
2
Câu 43 Số giá trị nguyên thuộc đoạn 20; 20 của tham số a để bất phương trình
2 (x5)(3x)x 2x nghiệm đúng với mọi a x 5;3 là
Câu 44 Ta biết rằng Mặt Trăng chuyển động quanh Trái Đất theo một quỹ đạo là một elip mà Trái Đất là
một tiêu điểm Elip có chiều dài trục lớn và trục nhỏ lần lượt là 769 266 km và 768 106 km Tính khoảng cách ngắn nhất từ Trái Đất đến Mặt Trăng, biết rằng các khoảng cách đó đạt được khi Trái Đất và Mặt Trăng nằm trên trục lớn của elip, ta được kết quả là
Trang 66/6 - Mã đề 832
A 384 053 km B 363 517 km C 384 633 km D 363 518 km
Câu 45 Cho tam giác ABC với các cạnh ABc AC, b BC, a Trong các mệnh đề sau, mệnh đề sai là
A Với mọi điểm M trong mặt phẳng ta luôn có aMA2bMB2cMC2 abc
B Nếu I là tâm đường tròn nội tiếp tam giác ABC thì aIA bIB cIC 0
C Nếu H là trực tâm của tam giác ABC thì sinAHAsinBHBsinCHC0
D Một vectơ chỉ phương của đường phân giác trong của góc A của tam giác ABC là
Câu 46 Số giá trị nguyên thuộc đoạn 100;100 của tham số m để phương trình
2
2
Câu 47 Cho a b c, , là các số thực dương thỏa mãn 2
0
f x ax bx với mọi x Giá trị nhỏ nhất c
min
F của biểu thức F 4a c
b
A Fmin 2 B Fmin 5 C Fmin 1 D Fmin 3
Câu 48 Số giá trị nguyên của tham số m để phương trình 2 2
x m xm m có hai nghiệm trái dấu, trong đó nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương là
Câu 49 Tam giác ABC thỏa mãn hệ thức
2
a
b c a
Khẳng định đúng nhất về tam giác
ABC là
A Tam giác ABC vuông cân B Tam giác ABC vuông
C Tam giác ABC cân D Tam giác ABC đều
Câu 50 Cho tam giác ABC nhọn có trực tâm H thuộc đường thẳng 3x4y 4 0 Đường tròn ngoại tiếp tam giác HBC có phương trình là
C x y
Giả sử M2; 3 là trung điểm của cạnh
BC Tọa độ đỉnh A là
A 1;0
2
A
2
A
3 5;
2
A
- HẾT -
Trang 7x y
O 1
2
SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT THUẬN THÀNH SỐ 1
Đ/A CHI TIẾT ĐỀ KS ĐẦU NĂM HỌC 2019-2020
MÔN TOÁN – LỚP 1 1
Câu 1: Đồ thị hình vẽ là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D
dưới đây Hàm số đó là
A. yx22x 2 B. y2x24x 1
C. y 2x24x1 D. yx22x1
Hướng dẫn giải Chọn B
Câu 2: Tập nghiệm của bất phương trình 3 2 x là 1
A. 1; 2 B. 1; 2 C. ;1 2; D. ;1 2;
Hướng dẫn giải Chọn C
Ta có: 3 2 x 1 3 2 1
x x
1 2
x x
Vậy tập nghiệm của bất phương trình là S ;1 2;
Câu 3: Cho cos 2 3, 2
Giá trị của tan là
A 5
2
5
1
2
Hướng dẫn giải Chọn A
2
Câu 4: Số nghiệm nguyên và lớn hơn 4 của bất phương trình 2
4x x2 0 là
Hướng dẫn giải Chọn C
2
x
x
Vậy có 4 nghiệm thỏa mãn yêu cầu
Câu 5: Phương trình tiếp tuyến tại M( ; )3 4 của đường tròn ( ) :C x2y22x4y 3 0 là
Hướng dẫn giải Chọn A
x y x y x y Phương trình tiếp tuyến với đường tròn ( )C tại điểm M( ; )3 4 là
( )(x ) ( )(y ) (x ) (y ) xy
Trang 8Câu 6: Cho hai điểm A 1; 2, B3;1 và đường thẳng : 1
2
Tọa độ điểm C thuộc để tam giác
ABC cân tại C là
A 7; 13
B 13 7;
6 6
C 7 13;
6 6
6 6
Hướng dẫn giải
Chọn C
1 ;2
C C t t
CACBCA CB t t t t
6
Suy ra 7 13
;
6 6
C
Câu 7: Cho tam giác ABC biết A1; 2 , B5; 4 , C 1; 4 Đường cao AA của tam giác ABC có ' phương trình là
A 3x4y 11 0 B 3x4y 11 0
C 8x6y 4 0 D 8x6y200
Hướng dẫn giải
Chọn A
Đường cao AA có vectơ pháp tuyến CB 6; 8 , qua A 1; 2
Nên phương trình tổng quát AA là: 6x 1 8 y 2 0 3x4y110
Câu 8: Cho điểm M1; 1 và đường thẳng : 3x4ym0 Số giá trị m 0 sao cho khoảng cách từ M
đến bằng 1 là
A 0 B 1 C 2 D 3
Hướng dẫn giải
Chọn B
2 2
,
5
5
m
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán
Câu 9: Cho bất phương trình 23 1 *
4
x
x và các mệnh đề
(I): * 1 23x 1
4
x
(II): Điều kiện xác định của * là x 2
(III): * 23x 1
4
x
* 3x x 4
Số mệnh đề đúng trong các mệnh đề trên là
Hướng dẫn giải
Chọn A
Câu 10: Đường thẳng d có một vectơ chỉ phương là u 2;1
Một vectơ pháp tuyến của d là
Trang 9A n 1; 2
B n 3; 6
C n 3; 6
D n 1; 2
Hướng dẫn giải
Chọn B
Câu 11: Biết bất phương trình m x2 1 9x3m nghiệm đúng với mọi x khi mm0 Khẳng định đúng nhất về m0 là
A Có đúng hai giá trị m0 B m 0 5; 1
C m 0 0;5 D m 0 2
Hướng dẫn giải
Chọn B
Bất phương trình đã cho tương đương với m29x 3m 1 0
Bất phương trình trên đúng với mọi x
m m
3 1 3
m m
m 3 Vậy m 0 5; 1
Câu 12: Cho a b c d, , , hữu hạn, 4 3
f x
Tập nghiệm của bất phương trình f x 0 có dạng
A a b; c d; B a b; c;
C ;a b c; D ; \ a b;
Hướng dẫn giải
Chọn B
Ta có:
x
f x
x
Câu 13: Góc giữa hai đường thẳng 1: 2x y 100 và 2:x3y 9 0 là
A 900 B 600 C 00 D 450
Hướng dẫn giải
Chọn D
Ta có: n 1 2; 1 ,
n
Câu 14: Phương trình tham số của đường thẳng đi qua 2 điểm A2;1 , B1;0 là
A 2 3
1
y t
1 2
y t
Hướng dẫn giải
Chọn B
Câu 15: Cho hai điểm A 4;1, B2;3 Phương trình đường tròn đường kính AB là
A x32y12 5 B x12y2210
C x12y2210 D x2y1220
Hướng dẫn giải
Chọn B
Trang 10Câu 16: Rút gọn biểu thức tan sin
ta được kết quả là
A cos B sin C tan D 2 sin
Hướng dẫn giải
Chọn A
Câu 17: Cho hai góc nhọn a b, thỏa mãn cos 1; cos 1
a b Giá trị của biểu thức
P a b a b là
A 119
144
144
144
144
Hướng dẫn giải
Chọn A
Câu 18: Nếu tam giác ABC có a2 b2c2 thì
C A là góc nhọn D A là góc nhỏ nhất
Hướng dẫn giải
Chọn C
Theo hệ quả định lí hàm số cosin ta có
b2 c2 a2
2bc
Vậy A là góc nhọn
Câu 19: Tọa độ các tiêu điểm của Elip
1
là
A F13 0; ,F2 3 0; B F1 8 0; ,F2 0; 8
C F10 2 2; ,F2 0 2 2; D F1 8 0; ,F2 8 0;
Hướng dẫn giải
Chọn D
E :
2 2
1
có a 3; b 1 c a2b2 8 Vậy E có các tiêu điểm là: F 1 8 0; ; F2 8 0;
Câu 20: Mệnh đề sai trong các mệnh đề sau là
sin xcos x 1 3sin xcos x
C sin2xcos2x1 D sin4xcos4x 1 2 sin2xcos2x
Hướng dẫn giải
Chọn A
Ta có:
sin x cos x sin x cos x sin x cos x 2 sin xcos x
1 4 sin cos 2 sin cos
Trang 11Câu 21: Tập nghiệm của hệ bất phương trình
2
là
A 13;5 B 1;5 C 3;5 \ 1 D 3;5 \ 1
Hướng dẫn giải
Chọn C
2
13
1
x x x
1
x x
Câu 22: Rút gọn biểu thức cos 2020 x2019 ta được kết quả là
A cos 2020x B cos 2020x C sin 2020x D sin 2020x
Hướng dẫn giải
Chọn A
Câu 23: Tập các giá trị của tham số m để phương trình 2 2
m x xm có hai nghiệm trái dấu là
A ; 1 0;1 B 1;1
C 1; 0 1; D ; 1 0;1
Hướng dẫn giải
Chọn A
m
m
Câu 24: Trong các công thức sau, công thức đúng là
A sina b sin cosa bcos sina b B cosa b cos cosa bsin sina b
C sina b sin sina bcos cosa b D cosabcos cosa bsin sina b
Hướng dẫn giải
Chọn B
Ta có: sina b sin cosa bcos sina b; cosa b cos cosa bsin sina b
Câu 25: Số đo góc 22 30o được đổi sang rađian là
A
8
12
6
5
Hướng dẫn giải
Chọn A
Câu 26: Trong các khẳng định sau, khẳng định đúng là
A ( 2)
2
x x
x x
2
x x x x
C 3 x x 2 x2 x 2 3 x x2 D x 2x 2
Hướng dẫn giải
Chọn A
Câu 27: Số nghiệm của phương trình 2x là 4 x 1 0
A 0 B 1 C 2 D Vô số
Hướng dẫn giải