1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập đại số đại cương

10 195 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 2,36 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đặc biệt nó đã là "sách cấm nang" của nhiểu giáo viẻn dạy toán trong các trường Đại học Sư phạm, Cao đẳng Sư phạm và của sinh viên các trường này.. Trong cuốn sách dó tác giả đã đưa ra m

Trang 1

B ừ HUY HIỂN

4.’

V-GO

Trang 3

BÙI HUY HIỀN

DẠI SỐ ĐẠI CƯƠNG■ ■

(Tái bản lăn th ứ nám)

NHÀ XUẤT BẢN GIÁO DỤC

Trang 4

Nhà xuất bản Giáo dục tại TP Hà Nội giữ quyển công bố tác phẩm.

Mậ tổ chức, cà nhàn muốn sử dụng tảc phẩm óưới mọi hình thức phải ơược sự đống ý của chủ sở hữu quyển tác giả.

04 - 2009/CXB/297 - 2117/GD Mã số : 7K 150h9 - DAI

Trang 5

LỜI NÓI ĐẦU

Cuốn Đại sô đại CKƠH^ cùa tác giả Hoàng Xuân Sính từ lâu nay

đã là mội tài liệu hũni ích cho nhiều người làm toán và cả những người học toán Đặc biệt nó đã là "sách cấm nang" của nhiểu giáo viẻn dạy toán trong các trường Đại học Sư phạm, Cao đẳng Sư phạm và của sinh viên các trường này

Trong cuốn sách dó tác giả đã đưa ra một khối lượng bài tập tương đối phong phú, đa dạng và đầy đủ Tuy vậy, trong đó có nhiều bài tập nhiều độc già chưa tự giải được Đế giúp cho độc giả

có một tài liệu hoàn chỉnh vé bộ sách Đại số Đại cương và thuận

lợi trong khi sử dụng nó, chúng tôi biên tập cuốn Bài tập đại sô'đại

cươii^ này.

Ngoài việc giải tường minh tất cả các bài tập trong cuốn Đại s ố

dại cươinỊ của tác giả Hoàng Xuân Sính chúng tôi có lựa chọn đưa

thêm một sô' bài tập nhầm giúp độc giả tham khảo và đi sâu hoíi vào những nội dung cơ bán trong cuốn sách lí thuyết đã đề cập đến Chúng tòi không có tham vọng đưa vào đây những bài tập quá khó hoặc có nội dung không găn với mục đích đã nêu trên

Cuốn sách này gồm hai phần Riần I tóm tắt lí thuyết và các để toán, phán II là lời giải và hướng dẫn Mỗi phần gồm sáu chương, thứ tự các chưoíig được trình bày theo đúng thứ tự các chương mục

trong cuốn Đ ại sô đại I IÍƠỈIỊÌ.

Trong phđn để toán, đầu mỗi chương có giành một phẩn đê tóm tất lí thuyết Trong phần lời giải đối với những bài tập dễ hoặc cách giải đơn giản chúng tôi chỉ cho lời giải vắn tắt Đối với những

Trang 6

bài có nhiểu cách giải khác nhau chúng tôi chi trình bày một cách giải ngấn gọn nhất

Khi viết cuốn sách này chúng tôi đã nhận được nhiéu điều chỉ dẫn quý báu của Giáo sư Tiến sĩ Khoa học Hoàng Xuân Sính, lác giả cuốn Đại số Đại cươiig Chúng tôi xin bày lỏ lòng biết ơn chân thành đối với Giáo sư

Hù Nội tliihii' 3 Iiăni 1996

TÍH ^ ià

Trang 7

LỜI T ự A C H O LẨN TÁI B Ả N C H Ỉ N H LÍ

Cuồn Bài tÚỊ} Đại sô Dại i inriiỊị dược xuâì bán lần dầu vào năm

1996 Từ khi phát hành, nó đã dược nhiều độc giả tìm đọc và sir dụng Vì lí do đó cho iới nay CUÔÌI sách đã íỉược tái bán nhiểu lần với sô lưtyiig phát hành khá lứn

Do sự phát triên khỏnti ngừng cúa Toán học hiện đại nên chương Irình giảng dạy niỏii Tọáii ớ nhiều trường Đại học luôn thay dối Đặc biệt, gần dây chưtnig trình Đại sò và Số học ở Khoa Toán cứa các trưòìig Đại học đã có sự thay đổi và điều chỉnh đáng

kể nhằm đáp ứng sự phát triến chung của Toán học và phù hợp với nãng lực học lập của sinh vièn trong giai đoạn mới

Theo yêu cầu của Nhà xuất bán Giáo dục và theo yêu cầu của nhiều độc giả, một lần nữa, chúng tỏi cho tái bản cuốn sách này và

bổ sung thẽiTi nhiều bài tập mang tính chất định tính

Chúng tỏi xin chân thành cám ơn những độc giả đã có nhiều ý kiến đóng góp cho cuốn sách trong những lần phát hành trước Hi vọng cuốn sách này vẫn sẽ là tài liệu học tập và tham khảo hữu ích cho sinh viên và học viên Cao h(K ớ các trường Đại học

Hà Nội thúng Ị năm 2005

rf« /• • -/

I ác ịỊici

5

Trang 8

BẨNÍỈ KÍ HIỆU

Kí hiệu cúa phép phù định

p, p Phú định của p

A Kí hiệu của phép hội

p A q p và q

V Kí hiệu của phép tuyển

p V q p hoặc q

-> Kí hiệu của phép kéo theo

p —> q p kéo theo q

Kí hiệu của phép tương đương p<->q p tương đưcmg q

t= p p là một luật ỉôgic

3 Lượng từ tồn tại

3 X P(x) Tồn tại X, P(x)

V Lượng từ tổng quát

V X P(x) Với mọi X, P(x)

P ( x ,y , .,z ) = Ọ (x ,y, .,z ) P ( x , y , z ) băng Ọ(x, y, .,z)

p (x, y , z) tương đương lỏgic với Ọ(x, y z)

N Tập hợp các sô tự nhiên

z Tập hợp các số nguyên

6

Trang 9

R

c

a \ b

A c B (A c B)

B 3 A (B 3 A)

A - B

A u B

A n B

0

CaB

A X B

(a, b)

O A

16

1

A

f :X Y

f

X->Y

Tập horp các số hữu tỉ

Tập hựp các sở ihực

Tập h(Ịfp các số phức

a là ước cúa b

A là tập con cùa tập hợp B

Hiệu cúa hai tập hợp A và B Hợp của hai tập hợp A và B Giao của hai tập hợp A và B Tập hợp rỗng

Phần bù của tập hợp B trong A Tích Đề-các của hai tập hợp A và B

Họ phần tử chỉ số hoá bời tập I

Họ tập hợp chỉ số hoá bởi tập 1 Cặp phần tử

Bình phưong Đề-các của tập A

Tích Để-các của họ tập hợp A j

Luỹ thừa Đề-các bậc I của tập hợp A

Ánh xạ f từ X đến Y

7

Trang 10

•x- '^x Hom (X, Y)

S(X)

<A>

<x>

Sn

■AX)

C(G) (a)

A s B

AỊxl A(x)

A|X|, X2, Xnl

C(a) ã

Kerf G H

V

Ánh xạ đổng nhất của tập X Tập hợp các ánh xạ từ X đến Y Tập hợp các song ánh từ X đến Y Nhóm sinh bời tập hợp A

Nhóm xyclic sinh bời phần tử X Nhóm các phép thế bậc n

Tập hợp các bộ phận cùa tập hợp X Tâm cúa nhóm G

Iđêan chính sinh bởi phần tử a Hai nhóm (vành, trường) A và B đãng cấu với nhau

Vành đa thức của ẩn X trên vành A Trường phàn thức của ẩn X trên miển nguyên A

Vành đa thức của n ẩn X|, X2, x„ trên vành A

Lớp các phần tử tưomg đương với phần

tử a

Ảnh của đồng cấu f Hạt nhân của đổng cấu f Nhóm thương của nhóm G trên nhóm con chuẩn tắc H

Vành thương cua vành V trên iđêan I

8

Ngày đăng: 06/01/2020, 23:46

TỪ KHÓA LIÊN QUAN

w