Derivative by first principleLet y = fx; y + Dy = fx + Dx\ average rate of change of function Above denotes the instantaneous rate of change offunction and is called finding the derivati
Trang 1MOD INTRODUCTION
Trang 2Derivative by first principleLet y = f(x); y + Dy = f(x + Dx)
\
(average rate of change of function)
Trang 3Derivative by first principleLet y = f(x); y + Dy = f(x + Dx)
\
(average rate of change of function)
\
Trang 4Derivative by first principleLet y = f(x); y + Dy = f(x + Dx)
\
(average rate of change of function)
Above denotes the instantaneous rate of change offunction and is called finding the derivative by first
principle/by delta method/by ab-initio/by fundamentaldefinition of calculus
\
Trang 5Q Find equation of tangent to curve
y = x 2 at (3, 9)
Trang 6Note that if y = f (x) then the symbols
have the same meaning.
Trang 7Derivative of standard functions
Trang 8(10) D(cosec x) = –cosec x cot x
Trang 9 Chain rule of derivative
Product rule
Quotient Rule
Trang 11Q.
Trang 12Q y = cos 2x
Trang 13Q y = sin3x
Trang 14Q y = sin–1x2
Trang 15Q y = x 3 – 3 x
Trang 16Q y = 3sin x
Trang 17Q ln2x
Trang 18Q D(tan(tan–1x))
Trang 19Q.
Trang 20Q D(cos–1x + sin–1x)n
Trang 21Q.
Trang 22Q.
Trang 24Q x sin–1x
Trang 25Q ex tan–1x
Trang 26Q If 3 functions are involved
D(f(x).g(x).h(x)) = f(x).g(x).h′(x) + g(x) h(x) f′ (x) + h(x).f(x).g′(x)
=
Trang 27Q Let F(x) = f(x) g(x) h(x) If for some x = x 0,
F'(x0); f' (x0 ) = 4f(x 0); g' (x0 ) = –7g(x 0) and
h' (x0 ) = k h(x 0) then find k
Trang 28Q If f(x) = (1 + x) (3 + x 2)1/2 (9 + x 3)1/3 then
f ′ (–1) is equal to
Trang 29Q Let f, g and h are differentiable functions If
f(0) = 1; g(0) = 2; h(0) = 3 and the derivatives
of their pair wise products at x = 0 are (fg)′ (0) = 6; (g h)′ (0) = 4 and (h f)′ (0) = 5 then compute the value of (fgh)′ (0).
Trang 30Q If f(x) = 1 + x + x2 + … + x100 then f ′ (1)
Trang 31Q f
Trang 32Q f
Trang 33Q f
Trang 34Q f
Trang 35Q If then
find a and b
Trang 36Q If find
Trang 37Q If , find
Trang 38Q If find
Trang 39Q Let g be a differentiable function of x If
for x > 0, g(2) = 3 and g′(2) = –2, find f ′ (2).
Trang 40If f ′ (x) is not defined on x = c then it is wrong to conclude that f(x) is not derivable at x = c In such cases, LHD at x = c and RHD at x = c.
f(x) = x 1/3 sin x at x = 0
Trang 41Q y = sin 3
Trang 42Q y = ln3tan2 (x4)
Trang 43Q y = cos –1
Trang 44Q y = cos –1
Trang 45Q y = ln (sec x)
Trang 46Q.
Trang 47Q y = sec 2 (f3 (x))
Trang 48Q.
Trang 49Exp (cos3 (tan–1x3)2)
Trang 50Q y = cos(ln x)
Trang 51Q y = f (1/x)
Trang 52Q Suppose that f is a differentiable function such
that f(2) = 1 and f ′ (2) = 3 and let g(x)
= f(x f(x)) Find g ′ (2)
Trang 53Assignment – 1 G.N Berman
Trang 55Q Q.
Q
Q
Trang 56Q Q.
Trang 58Q Find F ׳(0) and F ׳(–1).
Q (1) (x – a) (x – b) (x – c) (x – d)
(2) (x2 + 1)4 (3) (1 – x)20(4) (1 + 2x)30 (5) (1 – x2)10(6) (5x3 + x2 – 4)5 (7) (x3 – x)6
Trang 59(10) (11)
(12) y = (2x3 + 3x2 + 6x + 1)4
Trang 63Q y = sin x + cos x Q.
Trang 68Q y = ln sin x Q y = log
3 (x2 – 1)
Q y = ln tan x Q y = ln arccos 2x
Q y = ln4 sin x
Q y = arctan [ln (ax+b)] Q y = (1 + ln sin x)n
Q y = log2 [log3 (log5 x)]
Trang 72(i) A function which is the product or quotient of a
number of functions OR
LOGARITHMIC DIFFERENTIATION
Trang 73(i) A function which is the product or quotient of a
number of functions OR
(ii) A function of the form [f(x)]g(x) where f & g are
both derivable, it will be found convinient totake the logarithm of the function first & then
differentiate OR express = (f(x)) g(x) = eg(x).ln(f (x))and then differentiate
LOGARITHMIC DIFFERENTIATION
Trang 74Q If y = sin x sin 2x sin 3x…… sin nx, find y′.
Trang 75Q If f(x) = (x + 1) (x + 2) (x + 3) ……(x + n) then
f ′ (0) is
(C) (n!)(ln n (D) n!
Trang 76Q If f (x) = (x – n) n(101–n) then find
Trang 77Q Find derivative of
y = (sin x)ln x
Trang 78Q y = x tan x + (sin x) cos x
Trang 79Q.
Trang 80y = (xln x) (sec x)3x
Trang 81Q If y = (sin x)ln x cosec (ex (a + bx)) and a + b =
then the value of at x = 1 is
(A) (sin 1) ln sin (1) (B) 0
Trang 82Q If
Trang 83Q Find y′ (1)
Trang 84Q If f (x) = y = p2 + 2 x + x 2 + x 1/x , then find the
slope of the line perpendicular to the tangent on
the graph of y = f (x) at x = 1.
Trang 85Assignment – 2 G.N Berman
Trang 87Parametric Differentiation
Q In some situation curves are represented by the
equations e.g x = sin t & y = cos t If x = f (t) and y = g (t) then
Trang 88Q Find derivate of y w.r.t x if
x = a(cos t + t sin t) and y = a (sin t – t cos t)
Trang 89Q.
Trang 90Q x = a sec 2q ; y = a tan 2q
Trang 91Q x = a cos t and y=a sin t then,
find
Trang 92Q x = cos t + t sin t –t 2/2 cos t
y = sin t – t cos t –t 2/2 sin t
Trang 93Q y = a sin 3 t
x = a cos 3 t
Trang 94Derivative of f(x) w.r.t g(x)
If y = f (x) and z = g (x) then derivative of f (x) w.r.t.
g(x) is given by
Trang 95Q Derivative of (ln x)tan x w.r.t xx
Trang 96Q Derivative of cos–1 (2x2 – 1) w.r.t.
when x =
Trang 97Q Define derivative of w.r.t.
Trang 98Q Differential coefficient of esin–1x w.r.t e–cos–1x is
independent of x.
Trang 99Derivative of Implicit Function
(x, y) = 0
Trang 100Q If xy = e x–y then prove that
Trang 101Q If sin y = x sin (a + y) then prove that
Trang 102Q If find
(sin x > 0).
Trang 103Q.
Trang 105, prove that
Trang 106Q If = a(x–y) then prove that
Trang 107Q A curve is described by the relation
ln(x + y) = xey Find the tangent to the curve at(0,1)
Trang 108Q If y5 + xy2 + x3 = 4x + 3, then find at (2,1)
Trang 109Derivative of Inverse Function
Trang 110Q If y = f(x) = x3 + x5 and g is the inverse of f
find g′ (2)
Trang 111Q Let f(x) = exp (x3 + x2 + x) for any real number
x, and let g be the inverse function for f The
value of g′ (e3) is
Trang 112Q If g is the inverse of f and
prove that
Trang 113Q If f (x) = x3 + ex/2 & g(x) = f –1 (x)
Find g ′ (1)
Trang 114Q If for all x, y
f ′(0) exists & f ′(0) = – 1, f(0) = 1 find f(2).
Trang 115Q If for all x, y
f ′(0) exists & f ′(0) = 1, f(0) = 2 find f(x).
Trang 116Q If for all x, y
f ′(2) = 2 find f(x).
Trang 117Q If f(0) = 0, f '(0) = 2 then Differentiation of
y = f(f(f(f(f(x)))) at x = 0
Trang 118Q If
(A) equal to 0 (B) equal to 1/2(C) equal to 1 (D) non existent
Trang 119Q.
Trang 120nth Order Derivatives
Trang 121Q Find nth order derivative of sinx, cosx, xn, xn+1
Trang 122is double derivative of y w.r.t x
Q Find at x = if y = sint, x = cost
Trang 123Q.
Trang 125Q Use the substitution x = tanq to show that the
equation,
Trang 126Q Starting with
Trang 127Q If
Trang 128A homogeneous equation of degree n represents ‘n’
straight lines passing through the origin
Q If x3 + 3x2y – 6xy2 + 2y3 = 0, then
Trang 129Q.
Trang 130If ex+y = y2 then prove that
Trang 131Derivative of Determinants
Trang 132where all functions aredifferentiable then
This result may be proved by first principle and thesame operation can also be done column wise
Trang 133Remainder Theorem
Trang 134If (x – r) is a factor of the polynomial repeated m times then r is a root of the equation f ' (x) = 0 repeated (m – 1) times.
Trang 135then find f '(x)
Trang 136P is constant , if f " (0) = 0 find P
Trang 137is constant polynomial.
Q f, g, h are polynomial degree 2 then prove that
Trang 138Q If then
Trang 139Q If , find
Trang 140Q If , prove that
f '(x) = 3x2 + 2x (a2 + b2 + c2)
Trang 141Q If
then find coefficient of x in the expansion off(x)
Trang 142Q The new definition of derivative of a function is
given by
f '(x) =
& f(x) = xlnx find (f '(x))x = e
Trang 143Q x = a cosq, y = b sinq find
Trang 144L' Hospital's Rule (0/0, ∞/∞)
Trang 145Q.
Trang 146Find a and b if = 1
Trang 147Q.
Trang 148(A) (B) (C) (D) DNE
Trang 149Q.
Trang 150Q.
Trang 162Q f(x) be different function & f " (0) = 2 then