1. Trang chủ
  2. » Giáo Dục - Đào Tạo

MOD slides 340 kho tài liệu bách khoa

162 40 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 162
Dung lượng 666,01 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Derivative by first principleLet y = fx; y + Dy = fx + Dx\ average rate of change of function Above denotes the instantaneous rate of change offunction and is called finding the derivati

Trang 1

MOD INTRODUCTION

Trang 2

Derivative by first principleLet y = f(x); y + Dy = f(x + Dx)

\

(average rate of change of function)

Trang 3

Derivative by first principleLet y = f(x); y + Dy = f(x + Dx)

\

(average rate of change of function)

\

Trang 4

Derivative by first principleLet y = f(x); y + Dy = f(x + Dx)

\

(average rate of change of function)

Above denotes the instantaneous rate of change offunction and is called finding the derivative by first

principle/by delta method/by ab-initio/by fundamentaldefinition of calculus

\

Trang 5

Q Find equation of tangent to curve

y = x 2 at (3, 9)

Trang 6

Note that if y = f (x) then the symbols

have the same meaning.

Trang 7

Derivative of standard functions

Trang 8

(10) D(cosec x) = –cosec x cot x

Trang 9

 Chain rule of derivative

 Product rule

 Quotient Rule

Trang 11

Q.

Trang 12

Q y = cos 2x

Trang 13

Q y = sin3x

Trang 14

Q y = sin–1x2

Trang 15

Q y = x 3 – 3 x

Trang 16

Q y = 3sin x

Trang 17

Q ln2x

Trang 18

Q D(tan(tan–1x))

Trang 19

Q.

Trang 20

Q D(cos–1x + sin–1x)n

Trang 21

Q.

Trang 22

Q.

Trang 24

Q x sin–1x

Trang 25

Q ex tan–1x

Trang 26

Q If 3 functions are involved

D(f(x).g(x).h(x)) = f(x).g(x).h′(x) + g(x) h(x) f′ (x) + h(x).f(x).g′(x)

=

Trang 27

Q Let F(x) = f(x) g(x) h(x) If for some x = x 0,

F'(x0); f' (x0 ) = 4f(x 0); g' (x0 ) = –7g(x 0) and

h' (x0 ) = k h(x 0) then find k

Trang 28

Q If f(x) = (1 + x) (3 + x 2)1/2 (9 + x 3)1/3 then

f ′ (–1) is equal to

Trang 29

Q Let f, g and h are differentiable functions If

f(0) = 1; g(0) = 2; h(0) = 3 and the derivatives

of their pair wise products at x = 0 are (fg)′ (0) = 6; (g h)′ (0) = 4 and (h f)′ (0) = 5 then compute the value of (fgh)′ (0).

Trang 30

Q If f(x) = 1 + x + x2 + … + x100 then f ′ (1)

Trang 31

Q f

Trang 32

Q f

Trang 33

Q f

Trang 34

Q f

Trang 35

Q If then

find a and b

Trang 36

Q If find

Trang 37

Q If , find

Trang 38

Q If find

Trang 39

Q Let g be a differentiable function of x If

for x > 0, g(2) = 3 and g′(2) = –2, find f ′ (2).

Trang 40

If f ′ (x) is not defined on x = c then it is wrong to conclude that f(x) is not derivable at x = c In such cases, LHD at x = c and RHD at x = c.

f(x) = x 1/3 sin x at x = 0

Trang 41

Q y = sin 3

Trang 42

Q y = ln3tan2 (x4)

Trang 43

Q y = cos –1

Trang 44

Q y = cos –1

Trang 45

Q y = ln (sec x)

Trang 46

Q.

Trang 47

Q y = sec 2 (f3 (x))

Trang 48

Q.

Trang 49

Exp (cos3 (tan–1x3)2)

Trang 50

Q y = cos(ln x)

Trang 51

Q y = f (1/x)

Trang 52

Q Suppose that f is a differentiable function such

that f(2) = 1 and f ′ (2) = 3 and let g(x)

= f(x f(x)) Find g ′ (2)

Trang 53

Assignment – 1 G.N Berman

Trang 55

Q Q.

Q

Q

Trang 56

Q Q.

Trang 58

Q Find F ׳(0) and F ׳(–1).

Q (1) (x – a) (x – b) (x – c) (x – d)

(2) (x2 + 1)4 (3) (1 – x)20(4) (1 + 2x)30 (5) (1 – x2)10(6) (5x3 + x2 – 4)5 (7) (x3 – x)6

Trang 59

(10) (11)

(12) y = (2x3 + 3x2 + 6x + 1)4

Trang 63

Q y = sin x + cos x Q.

Trang 68

Q y = ln sin x Q y = log

3 (x2 – 1)

Q y = ln tan x Q y = ln arccos 2x

Q y = ln4 sin x

Q y = arctan [ln (ax+b)] Q y = (1 + ln sin x)n

Q y = log2 [log3 (log5 x)]

Trang 72

(i) A function which is the product or quotient of a

number of functions OR

LOGARITHMIC DIFFERENTIATION

Trang 73

(i) A function which is the product or quotient of a

number of functions OR

(ii) A function of the form [f(x)]g(x) where f & g are

both derivable, it will be found convinient totake the logarithm of the function first & then

differentiate OR express = (f(x)) g(x) = eg(x).ln(f (x))and then differentiate

LOGARITHMIC DIFFERENTIATION

Trang 74

Q If y = sin x sin 2x sin 3x…… sin nx, find y′.

Trang 75

Q If f(x) = (x + 1) (x + 2) (x + 3) ……(x + n) then

f ′ (0) is

(C) (n!)(ln n (D) n!

Trang 76

Q If f (x) = (x – n) n(101–n) then find

Trang 77

Q Find derivative of

y = (sin x)ln x

Trang 78

Q y = x tan x + (sin x) cos x

Trang 79

Q.

Trang 80

y = (xln x) (sec x)3x

Trang 81

Q If y = (sin x)ln x cosec (ex (a + bx)) and a + b =

then the value of at x = 1 is

(A) (sin 1) ln sin (1) (B) 0

Trang 82

Q If

Trang 83

Q Find y′ (1)

Trang 84

Q If f (x) = y = p2 + 2 x + x 2 + x 1/x , then find the

slope of the line perpendicular to the tangent on

the graph of y = f (x) at x = 1.

Trang 85

Assignment – 2 G.N Berman

Trang 87

Parametric Differentiation

Q In some situation curves are represented by the

equations e.g x = sin t & y = cos t If x = f (t) and y = g (t) then

Trang 88

Q Find derivate of y w.r.t x if

x = a(cos t + t sin t) and y = a (sin t – t cos t)

Trang 89

Q.

Trang 90

Q x = a sec 2q ; y = a tan 2q

Trang 91

Q x = a cos t and y=a sin t then,

find

Trang 92

Q x = cos t + t sin t –t 2/2 cos t

y = sin t – t cos t –t 2/2 sin t

Trang 93

Q y = a sin 3 t

x = a cos 3 t

Trang 94

Derivative of f(x) w.r.t g(x)

If y = f (x) and z = g (x) then derivative of f (x) w.r.t.

g(x) is given by

Trang 95

Q Derivative of (ln x)tan x w.r.t xx

Trang 96

Q Derivative of cos–1 (2x2 – 1) w.r.t.

when x =

Trang 97

Q Define derivative of w.r.t.

Trang 98

Q Differential coefficient of esin–1x w.r.t e–cos–1x is

independent of x.

Trang 99

Derivative of Implicit Function

(x, y) = 0

Trang 100

Q If xy = e x–y then prove that

Trang 101

Q If sin y = x sin (a + y) then prove that

Trang 102

Q If find

(sin x > 0).

Trang 103

Q.

Trang 105

, prove that

Trang 106

Q If = a(x–y) then prove that

Trang 107

Q A curve is described by the relation

ln(x + y) = xey Find the tangent to the curve at(0,1)

Trang 108

Q If y5 + xy2 + x3 = 4x + 3, then find at (2,1)

Trang 109

Derivative of Inverse Function

Trang 110

Q If y = f(x) = x3 + x5 and g is the inverse of f

find g′ (2)

Trang 111

Q Let f(x) = exp (x3 + x2 + x) for any real number

x, and let g be the inverse function for f The

value of g′ (e3) is

Trang 112

Q If g is the inverse of f and

prove that

Trang 113

Q If f (x) = x3 + ex/2 & g(x) = f –1 (x)

Find g ′ (1)

Trang 114

Q If for all x, y

f ′(0) exists & f ′(0) = – 1, f(0) = 1 find f(2).

Trang 115

Q If for all x, y

f ′(0) exists & f ′(0) = 1, f(0) = 2 find f(x).

Trang 116

Q If for all x, y

f ′(2) = 2 find f(x).

Trang 117

Q If f(0) = 0, f '(0) = 2 then Differentiation of

y = f(f(f(f(f(x)))) at x = 0

Trang 118

Q If

(A) equal to 0 (B) equal to 1/2(C) equal to 1 (D) non existent

Trang 119

Q.

Trang 120

nth Order Derivatives

Trang 121

Q Find nth order derivative of sinx, cosx, xn, xn+1

Trang 122

is double derivative of y w.r.t x

Q Find at x = if y = sint, x = cost

Trang 123

Q.

Trang 125

Q Use the substitution x = tanq to show that the

equation,

Trang 126

Q Starting with

Trang 127

Q If

Trang 128

A homogeneous equation of degree n represents ‘n’

straight lines passing through the origin

Q If x3 + 3x2y – 6xy2 + 2y3 = 0, then

Trang 129

Q.

Trang 130

If ex+y = y2 then prove that

Trang 131

Derivative of Determinants

Trang 132

where all functions aredifferentiable then

This result may be proved by first principle and thesame operation can also be done column wise

Trang 133

Remainder Theorem

Trang 134

If (x – r) is a factor of the polynomial repeated m times then r is a root of the equation f ' (x) = 0 repeated (m – 1) times.

Trang 135

then find f '(x)

Trang 136

P is constant , if f " (0) = 0 find P

Trang 137

is constant polynomial.

Q f, g, h are polynomial degree 2 then prove that

Trang 138

Q If then

Trang 139

Q If , find

Trang 140

Q If , prove that

f '(x) = 3x2 + 2x (a2 + b2 + c2)

Trang 141

Q If

then find coefficient of x in the expansion off(x)

Trang 142

Q The new definition of derivative of a function is

given by

f '(x) =

& f(x) = xlnx find (f '(x))x = e

Trang 143

Q x = a cosq, y = b sinq find

Trang 144

L' Hospital's Rule (0/0, ∞/∞)

Trang 145

Q.

Trang 146

Find a and b if = 1

Trang 147

Q.

Trang 148

(A) (B) (C) (D) DNE

Trang 149

Q.

Trang 150

Q.

Trang 162

Q f(x) be different function & f " (0) = 2 then

Ngày đăng: 16/11/2019, 21:04

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm