Trung tâm Asia PTi – Polytechnic & Technology Institute Of Asia Bài viết này trình bày phương pháp tính toán cấu kiện dự ứng lực chịu uốn ở trạng thái giới hạn cực hạn theo tiêu chuẩn Eu
Trang 1STRUCTURAL JOURNAL
TÍNH TOÁN CẤU KIỆN
DỰ ỨNG LỰC CHỊU UỐN THEO TIÊU CHUẨN EUROCODE
THS VÕ LINH PHƯƠNG
KS NGUYỄN PHI HÙNG
KS LƯU CÔNG QUỐC
Trang 2TIÊU CHUẨN EUROCODE
Ths Võ Linh Phương, Ks Nguyễn Phi Hùng,
Ks Lưu Công Quốc, Ks Nguyễn Tuấn Anh
Trung tâm Asia PTi – Polytechnic & Technology Institute Of Asia
Bài viết này trình bày phương pháp tính toán
cấu kiện dự ứng lực chịu uốn ở trạng thái giới
hạn cực hạn theo tiêu chuẩn Eurocode
(EN1992-1-1), trình bày từ các giả thiết ban
đầu, ý nghĩa và cách xác định các tham số
trong các công thức áp dụng, cho đến các
bước tính toán chi tiết để tìm được hàm lượng
thép bố trí hợp lý, phù hợp với hàm lượng thép
chịu uốn theo quy định của tiêu chuẩn cho cấu
kiện Bài viết cũng đưa ra ví dụ tính toán chi
tiết cho một cấu kiện chịu uốn thực tế.
Từ khóa: cấu kiện dự ứng lực; dầm chịu uốn;
căng sau; hàm lượng thép chịu uốn; thép dầm
chịu uốn; sàn chịu uốn; thép chịu uốn
Về Asia PTi www.asiapti.org
AsiaPTi là Trung tâm Khoa học Kỹ thuật và Công
nghệ Châu Á AsiaPTi được hình thành từ 3 mảng
chính: Huấn luyện đào tạo và bồi dưỡng nâng cao
nghiệp vụ; Công nghệ thông tin; Kỹ thuật công
trình, với định hướng nghiên cứu các ứng dụng
mới nhất về Khoa học quản lý, Khoa học kỹ thuật,
Khoa học công nghệ để chuyển giao đến những tổ
chức trong khu vực Châu Á, nhằm giúp các tổ
chức nâng cao năng lực phát triển, năng lực cạnh
tranh trong quá trình vận hành AsiaPTi chọn nền
tảng huấn luyện và đào tạo, bồi dưỡng nâng cao
nghiệp vụ để thúc đẩy quá trình chuyển giao các
ứng dụng cho các tổ chức thông qua việc đào tạo
nguồn nhân lực cho các lĩnh vực: Khoa học quản
lý; Khoa học kỹ thuật; Khoa học công nghệ mà
AsiaPTi nghiên cứu và ứng dụng thành công.
MỤC LỤC
1 Đặt vấn đề
2 Ký hiệu, ghi chú
3 Lý thuyết tính toán
3.1 Các giả thiết tính toán 3.2 Các trường hợp kiểm tra và tính toán cốt thép chịu uốn ở trạng thái cực hạn
3.3 Giới hạn chiều cao trục trung hòa 3.4 Các bước tính toán
3.5 Giới hạn hàm lượng cốt thép chịu kéo của cấu kiện chịu uốn
4 Ví dụ tính toán
4.1 Các thông số đầu vào thiết kế 4.2 Thực hiện tính toán
5 Nhận xét
6 Tài liệu tham khảo
1 ĐẶT VẤN ĐỀ
Tính toán cấu kiện chịu uốn là một trong các bài toán quan trọng trong thiết kế kết cấu công trình, các cấu kiện hay gặp nhất là dầm, sàn, móng bê tông cốt thép Đặc biệt với sự phát triển của công nghệ dự ứng lực hiện nay, các cấu kiện như dầm, sàn bê tông cốt thép thường được kết hợp với cáp dự ứng lực để
Trang 3giảm chiều cao tiết diện, giảm khối lượng thép,
bê tông nhằm tối ưu kết cấu cả về khả năng
chịu lực, hình dáng kiến trúc và kinh tế Vì vậy
việc có được cơ sở lý thuyết, các quy trình tính
toán thiết kế chính xác cho các cấu kiện dự ứng
lực chịu uốn là điều cần thiết cho các kỹ sư
tham gia thiết kế, thẩm tra, thẩm định các hồ sơ
thiết kế kết cấu cho các công trình xây dựng
Một trong những tiêu chuẩn đang được áp dụng
rất phổ biển trong thiết kế kết cấu bê tông dự
ứng lực vì tính chính xác, hiệu quả và an toàn
chính là Tiêu Chuẩn Châu Âu - Eurocode EN
1992-1-1: Thiết kế kết cấu bê tông và bê tông
cốt thép Bài viết này sẽ trình bày nội dung chi
tiết cách tính toán cấu kiện dự ứng lực chịu uốn
ở trạng thái giới hạn cực hạn (ULS) theo tiêu
chuẩn Eurocode EN 1992-1-1
Các cấu kiện chịu uốn thường gặp được thể
hiện trong các Hình 1-1, Hình 1-2 và Hình 1-3
Trong Hình 1-1, cấu kiện chịu uốn là hệ dầm
và sàn nằm trên cột Trong Hình 1-2, cấu kiện
chịu uốn là hệ sàn phẳng nằm trên cột Trong
Hình 1-3, cấu kiện chịu uốn là hệ sàn mũ cột
nằm trên cột Cấu kiện cột trong các hình này
cũng chịu uốn tuy nhiên cột chịu nén lớn nên
việc tính toán cột không thể giống như cấu kiện
chịu uốn thông thường mà phải kể đến ảnh
hưởng lớn của độ mảnh cột và lực nén tác dụng
lên cột Các mục bên dưới trình bày phương
pháp tính toán cấu kiện dự ứng lực chịu uốn có
thể áp dụng cho các cấu kiện dầm, sàn, sàn mũ
cột… có bố trí cáp dự ứng lực như thể hiện
trong các hình từ Hình 1-1 đến Hình 1-3
Hình 1-1 Hệ dầm sàn được đỡ bởi cột
Hình 1-2 Hệ sàn phẳng được đỡ bởi cột
Hình 1-3 Hệ sàn mũ cột được đỡ bởi cột
2 KÝ HIỆU, GHI CHÚ
a chiều cao của khối chịu nén trên tiết diện tính toán
As diện tích cốt thép chịu kéo
A 's diện tích cốt thép chịu nén
Ap diện tích cáp dự ứng lực
b bề rộng của tiết diện chịu uốn trong vùng chịu nén
dp chiều cao tính từ mép ngoài thớ bê tông chịu nén đến trọng tâm của cáp
ds chiều cao tính từ mép ngoài thớ bê tông chịu nén đến trọng tâm của thép chịu kéo
Trang 4d ’s chiều cao tính từ mép ngoài thớ bê tông
chịu nén đến trọng tâm của thép chịu nén
Ecm mô đun đàn hồi cát tuyến của bê tông
Es mô đun đàn hồi của cốt thép
fcd cường độ chịu nén tính toán của bê
tông
fck cường độ chịu nén đặc trưng của mẫu
bê tông lăng trụ ở 28 ngày tuổi
fctk cường độ chịu kéo đặc trưng của bê
tông
fctm giá trị trung bình cường độ chịu kéo của
bê tông
fpk cường độ chịu kéo đặc trưng của thép
ứng suất trước (cáp dự ứng lực)
fyk cường độ chảy dẻo đặc trưng của cốt
thép
fyd cường độ chảy dẻo tính toán của cốt
thép
f 's ứng suất nén trong cốt thép chịu nén
của dầm
εc biến dạng của bê tông chịu nén
εcu biến dạng nén giới hạn của bê tông
εs biến dạng của cốt thép chịu kéo
εuk biến dạng đặc trưng của cốt thép và cáp
dự ứng lực khi tải trọng lớn nhất
εud biến dạng giới hạn của cốt thép và cáp
dự ứng lực
γc hệ số riêng cho bê tông
γs hệ số riêng cho cốt thép hoặc cáp dự
ứng lực
η hệ số xác định cường độ bê tông theo
sơ đồ ứng suất trên tiết diện
λ hệ số xác định chiều cao tính toán của vùng bê tông chịu nén
3 LÝ THUYẾT TÍNH TOÁN 3.1 Các giả thiết tính toán
3.1.1 Tiết diện phẳng vẫn duy trì trạng thái phẳng trước và sau khi biến dạng
3.1.2 Biến dạng của cốt thép bám dính và cáp
dự ứng lực bám dính chịu kéo hay chịu nén đều
có cùng biến dạng với bê tông ở xung quanh chúng
3.1.3 Bỏ qua cường độ chịu kéo của bê tông 3.1.4 Ứng suất của vùng bê tông chịu nén được suy ra từ các biểu đồ ứng suất và biến dạng thiết kế tương ứng
3.1.5 Ứng suất của cốt thép và cáp dự ứng lực được suy ra từ biểu đồ ứng suất và biến dạng thiết kế tương ứng
Hình 3.1-1 Phân bố biến dạng ở trạng thái
giới hạn cực hạn (ULS) Ghi chú: εcu2 và εcu3 được cho trong bảng 3.1 EN1992-1-1, dễ thấy chúng bằng nhau ở tất cả các cấp bền bê tông.
Trang 53.1.6 Biến dạng ban đầu trong cáp dự ứng lực
được kể đến khi tính toán giá trị ứng suất trong
cáp
3.1.7 Biến dạng bê tông chịu nén phải giới hạn
đến εcu2 hoặc εcu 3 phụ thuộc vào biểu đồ ứng
suất, biến dạng sử dụng Biến dạng trong cốt
thép và cáp dự ứng lực phải giới hạn đến εud
(khi có khả năng áp dụng)
Hình 3.1-2 Các dạng gần đúng của biểu đồ
ứng suất – biến dạng vùng nén trong bê tông
(Từ trái qua: Biều đồ ứng suất trong bê tông,
Dạng Parabol, dạng song tuyến tính, dạng chữ
nhật)
Bảng 3.1-1 Biến dạng đặc trưng của cốt thép
khi chịu lực lớn nhất Tham khảo thêm trong
phụ lục C tiêu chuẩn EN 1992-1-1
Loại thép Biến dạng đặc trưng khi chịu
lực lớn nhất, εuk (%)
Ghi chú: εud được kiến nghị lấy bằng 0.9 εuk.
3.2 Các trường hợp kiểm tra và tính toán
cốt thép chịu uốn ở trạng thái cực hạn
Mục này sẽ trình bày các bước để xác định
diện tích thép chịu kéo và chịu nén nếu có theo
yêu cầu
Hình 3.2-1 Sơ đồ làm việc của tiết diện chịu uốn ở trạng thái giới hạn cực hạn
Theo Hình 3.1-2, dựa vào biểu đồ biến dạng trên tiết diện bê tông có thể chọn 3 loại biểu đồ để có được ứng suất tính toán của tiết diện Để các phép tính hình học đơn giản hơn,
ta chọn biểu đồ ứng suất theo hình chữ nhật Ta
có được sơ đồ ứng suất bê tông trên Hình 3.2-1
Điều kiện để tiết diện làm việc bình thường
ở trạng thái giới hạn cực hạn:
Mu<Mn (3.2-1) Với:
Mn=fpsAp(dp− λx
2 )+Asfs(ds− λx
2 ) (3.2-2) Trong đó:
M n khả năng chịu mômen uốn của tiết diện
có bố trí cáp và cốt thép chịu uốn
M u mômen uốn tính toán gây ra bởi tải trọng ngoài, ứng với tổ hợp ở trạng thái giới
hạn cực hạn Lưu ý M u cần phải kể đến mô-men thứ cấp do cáp dự ứng lực gây ra
f s cường độ, ứng suất làm việc của cốt thép trong trạng thái giới hạn cực hạn
f ps cường độ, ứng suất làm việc của cáp trong trạng thái giới hạn cực hạn
➢ Trường hợp 1: Cáp dự ứng lực đảm bảo
cho tiết diện đủ khả năng chịu mômen tính
Trang 6toán, M u ≤M n
0
Với M n0 là khả năng chịu mô-men uốn của tiết diện chỉ có cáp, không bố trí
thép chịu uốn
Khi đó tiết diện chỉ yêu cầu bố trí lượng cốt
thép tối thiểu As,min theo yêu cầu tại mục 3.5
của tài liệu này
➢ Trường hợp 2: Cáp dự ứng lực không đảm
bảo cho tiết diện đủ khả năng chịu mômen tính
toán nên cần bổ sung cốt thép chịu kéo:
Mu>Mn0
Tiết diện chỉ có cáp với diện tích Ap thì
không đủ khả năng để chịu mômen Mu, vậy
nên cần bổ sung cốt thép chịu kéo để đạt được
điều kiện Mu≤Mn Với Mn là khả năng chịu
mômen uốn của tiết diện có cáp và thép chịu
kéo Lượng cốt thép chịu kéo yêu cầu A s được
xác định thông qua việc giả định giá trị của x ,
sau đó tiến hành giải lặp sao cho giá trị Mn xấp
xỉ bằng M u Ta thấy M n0 tính được khi
A s =0 , M n tính được khi A s>0
➢ Trường hợp 3: Cốt thép chịu kéo và cáp
không đảm bảo cho tiết diện đủ khả năng chịu
mômen tính toán, Mu>Mn
Nếu Mu>Mn ,cốt thép chịu nén được bổ
sung để tăng khả năng chịu mômen của tiết
diện, hay để đạt điều kiện Mu≤M'n Với M 'n
là khả năng chịu mômen uốn của tiết diện có
cáp, thép chịu kéo và thép chịu nén Ngoài
cách bổ sung thép chịu nén ra, có thể tăng
cường độ bê tông, hoặc tăng kích thước tiết
diện để tăng khả năng chịu mômen của tiết
diện Khi đó các bước tính toán sẽ quay trở về
kiểm tra từ trường hợp 1 đến trường hợp 3 với cường độ bê tông hay kích thước tiết diện mới
3.3 Giới hạn chiều cao trục trung hòa
Chiều cao lớn nhất của trục trung hòa xmax tại tiết diện đang xét nên giới hạn nhỏ hơn giá
trị x u Khi thiết kế ở trạng thái giới hạn cực hạn, tiết diện được thiết kế để phá hoại dẻo Trong vùng cấu kiện bị chảy dẻo, tiêu chuẩn EN1992-1-1 khuyến nghị:
xu≤0, 45 ds đối với fck≤50 Mpa
xu≤0, 35 ds đối với fck>50 Mpa
3.4 Các bước tính toán Bước 1: Xác định chiều cao vùng bê tông chịu
nén tối đa xmax=xu theo mục 3.3 của tài liệu này
Bước 2: Xác định khả năng chịu mômen uốn
của tiết diện với trường hợp tiết diện chỉ có cáp, Mn0
Khi chỉ có cáp trong tiết diện, khả năng chịu mômen uốn của tiết diện Mn0 được xác định theo biểu thức (3.2-2) với As=0
Bước 2-1: Xác định chiều cao trục trung hòa x.
Dựa vào phương trình cân bằng lực kéo nén
trên tiết diện C=T (Hình 3.2-1), xác định
được chiều cao trục trung hòa x : C=Cc=ηfcdλbx
T=Tps=fpsAp C=T ⇔ ηfcdλbx=fpsAp⇔ x= fpsAp
η fcdbλ
fps được xác định giống như trong bước 3
tương ứng cho cáp bám dính hoặc không bám dính
Trang 7Mục 3.1.7 EN1992-1-1 quy định cho hệ số
λ , η :
λ =0.8;η =1 khi fck≤50 Mpa
λ =0.8−fck−50
400 khi 50 Mpa<fck≤90 Mpa
η=1−fck−50
200 khi 50 Mpa<fck≤90 Mpa
Bước 2-2: Tính toán khả năng chịu mômen uốn
của tiết diện.
Mn0
=Apfps(dp− λx
2 ) (3.4-1) Nếu x≤xmax và Mn0>Mu , tiết diện đảm
bảo đủ khả năng chịu lực
Nếu x>xmax và Mn0
>Mu , tiết diện vẫn đảm bảo đủ khả năng chịu lực nhưng chiều cao
vùng nén của bê tông lớn chứng tỏ cáp đang
được bố trí lớn hơn so với hàm lượng cần thiết
Nếu Mn0<Mu, tiết diện chưa đủ khả năng
chịu lực, cần bổ sung thêm cáp hoặc bố trí
thêm cốt thép chịu kéo theo bước 3 Thông
thường ta sẽ bổ sung cốt thép chịu kéo, bài toán
nên được thiết kế có sự hợp lý giữa hàm lượng
cáp và thép chịu kéo để tiết kiệm vật liệu
x là chiều cao trục trung hòa được xác
định bằng quan hệ biến dạng tương thích của
cốt thép và bê tông đạt đến giá trị biến dạng
giới hạn εcu3(εcu2), xem Hình 3.2-1 Trong đó
εcu2 là biến dạng hạn biến dạng của biếu đồ
Parabol, εcu 3 là biến dạng giới hạn ứng với biểu
đồ dạng đường thẳng tham khảo mục 3.1.7
EN1992-1-1
Bước 3: Trong trường hợp tiết diện chỉ có cáp
thì không đủ khả năng chịu mômen uốn,
Mu>Mn0 Bố trí cốt thép chịu kéo cho tiết diện
và xác định khả năng chịu mômen uốn của tiết
diện với trường hợp tiết diện có bố trí cả cáp và thép chịu kéo, Mn
Để tiết diện được thiết kế theo trạng thái phá hoại dẻo, giả thiết chiều cao trục trung hòa
x ( x≤xmax), sau đó tiến hành tính lặp để tìm
được diện tích cốt thép chịu kéo A s Thực hiện trình tự theo các bước từ bước 3-1 đến bước 3-3
Bước 3-1: Xác định giá trị ứng suất của cáp dự ứng lực.
Ứng suất trong cáp dự ứng lực bao gồm ứng suất hữu hiệu cộng với ứng suất tăng thêm
do tải trọng ngoài Đối với trường hợp thiết kế cho cáp dự ứng lực bám dính thì ứng suất tăng thêm được xác định dựa vào biến dạng tương thích với biến dạng bê tông Còn đối với cáp không bám dính, phần ứng suất tăng thêm được kiến nghị tại mục 5.10.8 EN 1992-1-1 như đã được trình bày ở phần b) của bước 3-1
a) Đối với cáp bám dính (bonded).
fps=E p εp≤fpk
γs (3.4-2)
εp=εpe+∆ εp (3.4-3) Trong đó:
εpe= Pe
ApEp và ∆ εp=0.0035(dp− x)
x
Với:
εpe Biến dạng hữu hiệu trong cáp do lực kéo cáp (sau khi đã trừ tổng tổn hao ngắn hạn
và dài hạn)
Δεp Biến dạng gia tăng do tải trọng ngoài gây ra
b) Đối với cáp không bám dính (unbonded).
Đối với cấu kiện dự ứng lực sử dụng các cáp loại không bám dính, tính toán sự gia tăng
Trang 8ứng suất trong cáp dự ứng lực dựa vào biến
dạng của toàn bộ cấu kiện Khi không thực
hiện được các tính toán chi tiết, có thể giả thiết
rằng sự gia tăng ứng suất trong cáp ở trạng thái
giới hạn cực hạn là Δσp , ULS giá trị ứng suất
gia tăng được khuyến nghị là 100 Mpa
Nếu sự tăng ứng suất được tính toán bằng
cách dựa trên tính toán biến dạng toàn bộ cấu
kiện, phải sử dụng giá trị trung bình của đặc
trưng vật liệu Giá trị gia tăng ứng suất
Δσpd=ΔσpyΔ p phải được xác định bằng cách
áp dụng hệ số an toàn riêng; tương ứng là
yΔ p ,sup=1.2 ;yΔ p ,inf=0.8 nếu áp dụng phân
tích tuyến tính với các tiết diện không có vết
nứt, cũng có thể giả thiết biến dạng giới hạn
thấp hơn và giá trị khuyến nghị cho cả hai là
yΔ p ,sup=yΔ p , inf=1.0
Bước 3-2: Xác định giá trị ứng suất của cốt
thép chịu kéo.
Dựa vào biến dạng tương thích giữa cốt
thép chịu kéo và bê tông, ta có biến dạng và
ứng suất tương ứng của cốt thép chịu kéo:
εs=0.0035(ds− x)
x
fs=Esεs≤fy
γs
Bước 3-3: Xác định diện tích cốt thép chịu kéo
A s
Dựa vào phương trình cân bằng lực kéo nén
trên tiết diện C=T (Hình 3.2-1), tính diện tích
cốt thép chịu kéo, từ đó xác định được khả
năng chịu mômen uốn của tiết diện có bố trí cốt
thép chịu kéo:
C=Cc=ηfcdλbx
T=Tps+Ts=fpsAp+fsAs
C=T ⇔ As=ηfcdλ x b − fpsAp
fs Giá trị Mn được xác định như sau:
Mn=Apfps(dp− λ x
2 )+Asfs(ds−λ x
2 )
Tính toán được lặp lại cho đến khi nhận được giá trị Mn lớn hơn Mu Giá trị As tương ứng là diện tích cốt thép chịu kéo cần tìm Thông thường bước 3 sẽ được thực hiện nhiều lần để tìm được hàm lượng thép đảm bảo
Mn gần sát với giá trị Mu Nếu x=xmax và Mn<Mu thì phải tính theo trường hợp tiết diện có bố trí thêm cốt thép chịu nén (bố trí cốt kép) như bước 4 Ngoài ra còn có thể tăng hàm lượng cáp, tăng cường độ bê tông hoặc tăng kích thước tiết diện rồi sau đó tính toán tại từ bước 1 cho đến khi tiết diện đủ khả năng chịu mômen tính toán
Bước 4: Trong trường hợp nhận được kết quả
sau cùng Mu>Mn ở bước 3 Bố trí thêm cốt thép chịu nén để tăng khả năng chịu mômen uốn của tiết diện
Giá trị mômen tăng thêm mà cốt thép chịu nén cần được bố trí để kháng lại:
Δ Mn=Mu−Mn Diện tích cốt thép chịu nén được tính như sau:
As'
(0.87 f 's−η fcd)(ds−ds'
) với fs'
=εcuEs[λ xmax−ds
'
λ xmax ]≤0.87 fyk
Giá trị cốt thép chịu kéo cần thêm vào để cân bằng cốt thép chịu nén:
Trang 9As0= Δ Mn
0.87 fyk(ds−ds
'
) Tổng lượng thép chịu kéo Σ As=As0+As
Bước 5: Kiểm tra hàm lượng cốt thép chịu kéo
so với hàm lượng cốt thép cho phép theo tiêu
chuẩn EN 1992-1-1 (mục 3.5 của tài liệu này)
3.5 Giới hạn hàm lượng cốt thép chịu kéo
của cấu kiện chịu uốn
Diện tích cốt thép chịu kéo không lấy nhỏ
hơn As,min tuân theo mục 9.2.1.1 EN1992-1-1
như sau:
As, min=0.26fctm
fyk btd Nhưng không nhỏ hơn 0.0013 btd
Trong đó:
bt là chiều rộng trung bình của vùng kéo;
đối với dầm chữ T với cánh chịu nén, chỉ có bề
rộng sườn là được tính toán là bt
fctm xác định theo cấp độ bền bê tông theo
bảng 3.1 EN1992-1-1
Ngoài ra, đối với các cấu kiện phụ, có thể
chấp nhận nguy cơ phá hoại giòn, As,min có thể
lấy bằng 1.2 lần diện tích cốt thép theo yêu cầu
tính toán khi kiểm tra trạng thái giới hạn độ
bền
Diện tích cốt thép chịu kéo hoặc chịu nén
không được lớn hơn As,max=0.04 Ac với Ac là
diện tích tiết diện đang xét
Ngoài ra để khống chế vết nứt, hàm lượng
thép dọc cần bố trí tuân theo mục 7.3
EN1992-1-1 Quý độc giả vui lòng xem thêm nội dung
kiểm tra vết nứt của cấu kiện chịu uốn được
trình bày trong các kỳ tiếp theo của tạp chí
Asia PTi
4 VÍ DỤ TÍNH TOÁN
Các thông số đầu vào thiết kế
Bài toán: Cho hệ kết cấu sàn dự ứng lực được
đỡ bởi 3 cột như Hình 4.1-1, tính hàm lượng cốt thép chịu uốn bố trí cho sàn tại gối cột giữa theo tiêu chuẩn Eurocode Bỏ qua mômen thứ cấp do cáp gây ra
Hình 4-1 Dải (dầm) thiết kế - Sàn dự ứng lực
Hình 4-2 Mặt cắt ngang và cao độ cáp trong
dải sàn tính toán
Bề rộng dải thiết kế b=6700 mm Chiều dày sàn h=230 mm
➢ Vật liệu:
• Bê tông
Chọn bê tông cấp độ bền C25/30
Cường độ chịu nén đặc trưng mẫu bê tông lăng trụ tại 28 ngày: fck=25 Mpa
Mô đun đàn hồi cát tuyến của bê tông:
Ecm=22 103
×[fcm/10]0.3
= 22×103
×[ (fck+8)/10]0.3
=31476 Mpa Giá trị trung bình của cường độ chịu kéo dọc trục của bê tông:
fctm=0.3 f(2 /3) ck
=0.3×25(2 /3)=2.6 Mpa
Hệ số điều kiện làm việc của bê tông theo mục 2.4.2.4 EN1992-1-1: γc=1.5
Trang 10• Cốt thép
Cường độ chảy dẻo của thép:
fyk=390 Mpa
Mô đun đàn hồi của thép:
Es=200000 Mpa
Hệ số vật liệu điều kiện làm việc của cốt
thép theo mục 2.4.2.4 EN1992-1-1: γs=1.15
Chiều cao làm việc của cốt thép:
ds=230−30=200 mm
• Cáp dự ứng lực
Đường kính danh định: 12.7 mm
Diện tích sợi cáp: 98.7 mm2
Mô đun đàn hồi của cáp: 200000 Mpa
Lực kéo đứt của cáp: fpk=1860 Mpa
Hệ số vật liệu điều kiện làm việc của cáp
theo mục 2.4.2.4 EN1992-1-1: γs=1.15
Chiều cao làm việc của cáp dự ứng lực:
dp=230−50=180 mm
Ứng suất hiệu quả trong cáp sau khi đã trừ
đi tất cả các tổn hao ngắn hạn và dài hạn
fse=1098 MPa
Dải tính toán được thiết kế với 12 sợi cáp
loại bám dính
➢ Nội lực:
Giá trị mômen tính toán ứng với tổ hợp ở
trạng thái giới hạn cực hạn của tiết diện bên
phải cột giữa được cho trước là −498.0 kNm
(Hình 4.1-3)
Hình 4-3 Mômen tính toán tại tiết diện
4.1 Thực hiện tính toán Bước 1: Xác định chiều cao vùng bê tông chịu
nén tối đa xmax=xu:
xmax=0 45 ds=0 45×205=92 25 mm
Bước 2: Xác định khả năng chịu mômen uốn
của tiết diện với trường hợp tiết diện chỉ có cáp, Mn0
Bước 2-1: Xác định chiều cao trục trung hòa x.
Phương trình cân bằng lực kéo nén trên tiết diện trường hợp chỉ có cáp dự ứng lực:
ηfcdab=fpsAp⇔ ηfcdλxb=fpsAp (4.1-1)
Trong đó:
fcd=fck
γc=25 1.5=16.67 Mpa
b=6700 mm
λ =0.8;η=1(fck≤ 50 Mpa) Tính ứng suất trong cáp fps:
εp=εpe+∆ εp
εpe=fpe
Ep= 1098
200000=0.0055
∆ εp=0.0035(dp− x)
x
fps=Epεp= 200000×(0.0055+0.0035×(180 − x)
x ) (4.1-2)
Ta có điều kiện fps≤fpk
γs , nên khi tính ra
được x phải tính lại fps và so sánh với fγpks
Từ phương trình (4.2-1) và (4.2-2) ta có: 1×16.67×0.8 x×6700 =
200000(0.0055+0.0035×(180− x)
⇔ 3.77×10−4x2− 0.002 x−0.63=0
⇔ x=43.62 mm