Hien nay, co kha nhieu nguoi quan tam den no boi no thuc su rat don gian, quyen ru va ban khong can phai "hoc vet" nhieu dinh ly de co the giai duoc chung.. Khi hoc bat dang thuc, hai di
Trang 1DIEN DAN TOAN HOC VIET NAM
1 Võ Quốc Bá Cần (nothing)
2 Ngo Dire Loc (Honey_ suck)
3 Trần Quốc Anh (nhocnhoc)
4 Seasky
5 Materazzi
Trang 2Tran Quoc Luat’s Inequalities
Vo Quoc Ba Can - Pham Thi Hang
February 25, 2009
Trang 3i
Copyright ©) 2008 by Vo Quoc Ba Can
Trang 4Preface
"Life is good for only two things, discovering mathematics and teaching mathematics.”
S Poisson
Bat dang thuc la mot trong linh vuc hay va kho Hien nay, co kha nhieu nguoi quan tam den no boi no thuc
su rat don gian, quyen ru va ban khong can phai "hoc vet" nhieu dinh ly de co the giai duoc chung Khi hoc bat dang thuc, hai dieu cuon hut chung ta nhat chinh la sang tao va giai bat dang thuc Nham muc dich kich thich su sang tao cua hoc sinh sinh vien nuoc nha, dien dan mathsvn da co mot so topic sang tao bat dang thuc danh rieng cho cac ca nhan tren dien dan Tuy nhien, cac topic do con roi rac nen ta can mot su tong hop lai thong nhat hon de cho ban doc tien theo doi, do la li do ra doi cua quyen sach nay Quyen sach duoc trinh bay trong phan chinh bang tieng Anh voi muc dich giup chung ta ren luyen them ngoai ngu va co the gioi thieu no den cac ban trong va ngoai nuoc Mac du da co gang bien soan nhung sai sot la dieu khong the tranh kho1, rat mong nhan duoc su gop y cua ban doc gan xa Moi su dong gop y kien xin duoc gui ve tac gia theo: babylearnmath@yahoo.com Xin chan than cam on!
Quyen sach nay duoc thuc hien vi much dich giao duc, moi viec mua ban trao doi thuong mai tren quyen sach nay deu bi cam neu nhu khong co su cho phep cua tac gia
Vo Quoc Ba Can
1H
Trang 5IV Preface
Trang 62 Let a,b,c be nonnegative real numbers such that a? + 5? + c? + abe = 4 Prove that the following inequality holds
a+h+ec > a?b? + bˆc? + cđ
3 Show that for any positive real numbers a,b,c, we have
a+bh+c+b6abe > Vabc(a+b+e)
4 Let a,b,c be nonnegative real numbers with sum 1 Determine the maximum and minimum values of
P(a,b,c) =(1+ab)? + (1+ hc)? + (1+ ca)?
5 Let a,b,c be nonnegative real numbers with sum | Determine the maximum and minimum values of
P(a,b,c) = (1 —4ab)* + (1 — 4c)? + (1 —4ca)’
6 Let a,b,c be positive real numbers Prove that
b+c eta atb ? 1 1 1
( + 5 + ¬ ) > 4(ab-+-be +ea) (+5).
Trang 7Show that if a, b,c are positive real numbers, then
a " b " c "3, Pb+ bet Ca—3abe
a+b b+c c+a/j — 4 (a+b)(b+c)(c+a) `
Let a,b,c be positive real numbers Prove that
(+b \(b +e) +a’) e+e +2 \7
§a2b7c2 — \ab+bc+caj/ `
Let a,b,c be positive real numbers Prove the inequality
(b+e)" (c-+a)" (a+)
a(b+c+2a) b(c+a+2b) c(a+b+2c) —
Let a,b,c be positive real numbers Prove the inequality
a(b+c+2a) b(c+a+2b) c(a+b+2c) — \b+c+2a c+a+2b a+†b+2cj,
Let a,b,c be positive real numbers Prove that
(b+c) (eta) (a+b)? sof 4 b "_
a(b+c+2a) b(c+a+2b) c(a+b+2c) — \b+c ct+a a+bj
Let a,b,c be positive real numbers Prove that
ab+het+ea > (b+c—a)(e+a—b)(at+b—c)(a +h +c°).
Trang 8a+b`+ể>——+——+_——+ b+c cta atb 2
Given nonnegative real numbers a,b,c such that ab+ bc+ca+abc = 4 Prove that
a +b? +c? +4+2(a+b+c)+3abe > 4(ab+be + ca)
Let a,b,c be real numbers with min {a,b,c} > 7 and ab + bc + ca = 3 Prove that
atbh+c+9abe > 12
Let a,b,c be positive real numbers such that a*b* + b*c? +¢7a? = 1 Prove that
(a? +b? +0°)? +abey/(a2+b2+02)3 > 4
Show that if a,b,c are positive real numbers, the following inequality holds
(a+b+ 6) (ab + be + ca)Ÿ + (ab + be + ca)3 > 4abe(a-+b+ e)Ÿ
Let a,b,c be real numbers from the interval [3,4] Prove that
b b
(atbt+e) (PO 4 ~4")\ 53/240? +2), C a b
Given ABC is a triangle Prove that
8 cos” A cos’ Bcos”C + cos2A cos2Bcos2C > 0
Let a, b,c be positive real numbers such that a+ 6+ =3 and ab+ be+ca > 2 max {ab, bc, ca} Prove that
a+h+ec > a?b? + bˆc? + cđ
Trang 9Problems
Trang 10Chapter 2
Solutions
"Don’t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs Is the hypothesis necessary? Is the converse true? What happens in the classical special case? What about the degenerate cases? Where does the proof use the hypothesis?”
P Halmos, / Want to be a Mathematician
Problem 2.1 Given a triangle ABC with the perimeter is 2p Prove that the following inequality holds
p-a p- "5+ pc ¬ at ‘Vp ~c Solution Setting x = p—a,y= p—bandz= p—c, thna=y+z,b =z+x andc=x+y The original inequality becomes
+Z Z4+X xX+ +Z Z+X x+
yee poy s/o peg op x y Zz x y fog Zz
By AM-GM Inequality, we have
We have to prove
5
Trang 116 Solutions
or equivalently,
y+Z + z†# + x1 > 6,
x y Zz which 1s obviously true by AM-GM Inequality
Equality holds if and only ifa=b=c L] Problem 2.2 Let a,b,c be nonnegative real numbers such that a* + b? +c? + abe = 4 Prove that the fol- lowing inequality holds
Leer ary = Lore ee
which 1s obviously true because
>przeinet SJ6r2eler3 = VEDjer3” Cục cyc Cục
and
Ler ary Leper
Our proof is completed Equality holds if and only if a=b=c=1 ora=b= vV2,c =0 and its cyclic
which leads us to prove the sharper inequality
6( +b> +03 +6abc) > (at+b+cP4+9VeR (a+b +c),
or
S(a +b> +07) — 3) ab(a+b) + 30abe > 9Ÿ222c2(a+ b+ e),
cyc
From Schur’s Inequality for third degree, we have
3(a +b? +03) — 33 _ab(a+b) + 9abe > 0,
Cục
Trang 12and we deduce our inequality to
2(a° +b? +0?) +2labe > WVeR(atb+e),
Again, the Schur’s Inequality for third degree shows that
4(a` + bŸŠ+c})+ 15abe > (a+b+e)Ÿ,
and with this inequality, we finally come up with
(a+b+c)? — Sabe +42abe > 18V.a2b2c2 (a+b +c), (at+b+c)> +27abe > 1842b2c2(a-+b+ c),
By AM-GM Inequality, we have that
2(a+b+c)> + 54abe (at+b+c)> + [(at+b+c)* +27abe + 27abc|
(a+b+e))+27a2»2c2(a+b¬+c) 9Ÿ/222c2(a+b-e)-+27Ÿa2b2c2(a+b+ e) 36VERC(a+b+e)
It shows that
(at+b+c)> +27abe > 1842b2c2(a-+b+ c),
which completes our proof Equality holds if and only ifa=b=c L] Solution 2 (by Seasky) Since the inequality being homogeneous, we can suppose without loss of generality that abc = 1 In this case, the inequality can be rewitten in the form
Trang 138 Solutions
So, the above statement holds and all we have to do is to prove that P(t,t,c) > 0, which is equivalent to each
of the following inequalities
P(a,b,c) =(1+ab)? + (1+ bc)? + (1+ ca)’
Solution It is clear that minP = 3 with equality attains when a = 1,b = c = 0 and its cyclic permutions Now, let us find max P We claim that max P = vi attains when đ — 5 = c=— 3 OF
100
(1 +ab)? + (1 +bce)? + (1+ ca)? < Te
19 aˆbŸ + bˆcˆ + c°a? + 2(ab + be + ca) < 57°
(ab + bc + ca)“ + 2(ab + be + ca) — 2abc < 7
2 46
(ab + be + ca-+ L)“ — 2abec < 7
According to AM-GM Inequality, we have
A(ab + bc + ca) — 6abc < 9°
which is obviously true by Schur’s Inequality for third degree,
1 10 A(ab + bc + ca) — 6abe < (1+ 9abc) — 6abe = 1+ 3abe < 1+3: WO
With the above solution, we have the conclusion for the requirement is minP = 3 and max P = = L]
Trang 14Problem 2.5 Let a,b,c be nonnegative real numbers with sum | Determine the maximum and minimum values of
P(a,b,c) = (1 —4ab)* + (1 —4be)? + (1 —4ca)?
Solution (by Honey_suck) Notice that
with equality holds when a=b=c= 3 And we conclude that min P = 3
Problem 2.6 Let a,b,c be positive real numbers Prove that
b+ + +b ( ¬ cle a 5 + a ) >4(eð+be+ea) (TS +555) : 1 11
Assuming that a > b > c, then using AM-GM Inequality, we have that
A4(ab + be + ca)(aˆbŸ + bˆc? + c?a”) = 16(a+b)?(ab+ be+ca)(a?b* + bc? + ca’)
A(a+b) [(a+ 6)? (ab + be + ca) +4(a°b? + bc? +.c7a’)| °
It suffices to show that
(a+b)? (ab+ be+ca)+4(ab* +b’?c? +c’) 2ab(a+b) + 2be(b +) + 2ca(c +a) > ab )
Trang 1510 Solutions
2 J,2 2 2 2 2
2ab(a+ b) +2c*(a+b) + 2c(a’ +b”) > (a-+6)(ab-+be-+ ca) +A Fe Fee) a
2 p2 2 (22 L p2 ab(a+b) +2c?(a+b)+c(a—b)* > 4a Aca +6")
For all real numbers m,n, p,x, y,z, we have the following interesing identity of Lagrange
(x+y +27) (me? +? + p) — (mx+ ny + pz)” = (my — nx)’ + (nz — py)? + (px— mz)’
Now, applying this identity with x = Vab,y = Vbc,z = \/ca,m = (a+ b)Vab,n = (b+c)vbc, and p = (c+a),/ca, we obtain
Trang 16which 1s obviously true because
(a+b)(a+c) = yetoyvare) (a+ b)(a+c)
Problem 2.8 Given a triangle with sides a,b,c satisfying a” + bˆ -} cˆ = 3 Show that
a+b b+e c+a >6
Va+b-c Vb+c-a Vvc+a-b_ `
Solution Firstly, to prove the original inequality, we will show that!
4a(b+e—a) 4b (cta—b) 4c(at+b—c)
ab+be+ca>
4a’ (b+ce—a)
|e ere Cục >a? +b? +? —ab—be—ca,
'We may prove this statement easily by using tangent line technique, the readers can try it! In here, we present a nonstandard proof
for it, this proof seems to be complicated but it 1s nice about its idea
Trang 17(b4+e? | (chap ~ (a+b420) ~ 2’
which yieds that
From (1), (2) and (3), we obtain
a’(2a—b—c) _ b(2b-c-a)? —(a’ —ab+b’) > (a+b)*(a+b— 2e)?
Using this inequality, we have to prove
(a+Ð)7(a+b—2e) 1 2 €(a+b—2c) _ 5
ae ae 3a+p+2o5 at) +—~ Gap SC (+0), (ạibp21 Ác 5 2 b
2 _ 222 ¿2 —2¿\2 (a+b)“(a+b—2c)“ _ đ(a+b—2c) > Tq„+p—2e)
(a+b) "- > I 2(a+b+2c)? (a+b)? ~ 4’
which can be easily checked Thus, the above statement is proved
Now, turning back to our problem, using Holder Inequality, we have
2
(cA) [eshte]: (m).
Trang 18Moreover, by AM-GM Inequality, we have
Ya = 3 (Le) (Le) (De) 3
+ + > 3
VWb+c-a vwc+a-b va+b-c -
Solution (by Materazzi) Applying Holder Inequality, we obtain
(a+b+c) > 9[2(ab + be+ ca) — 3)
Setting p =a+b-+e, then it /3 < p <3 and 2(ab+bce+ca) = p* —3 Thus, we can rewrite the above inequality as
? > op a 6), p`—9p?+54 >0, (3 — p)(18 + 6p — p*) > 0,
which is obviously true Equality holds if and only ifa=b=c= 1 L]
Trang 1914 Solutions
Problem 2.10 Show that ifa,b,c are positive real numbers, then
a + b + c S14 2abe a+b b+c c+ta™~ (a+b)(b+c)(c+a)
Solution The given inequality is equivalent to
2abe 2abe T2 at B+o(e+a) Ì a+901+o(+a)
Pu aha 2) =
Using the known inequality?
2abe Yop _ (a+b)(b+e)(e+a)'
cyc
we can deduce it to
Gab) are? (a+b)(b+c)(c+a) (a+b)(b+c)(c+a)’
Cục
abh+b’ce+ca+abe > \/2abc(a+b)(b+e)(c +a)
Now, we assume that c = min {a,b,c}, applying AM-GM Inequality, we have
ad °b+b°c+ca+abec = alab+c*)+hc(a+b)
+c)(b+
— a(a + ©)(b+‡ ©) x 9) + belatb) + a(a+c)(b+c)
? The proof will be left to the readers
Trang 2015 Hence, the given inequality can be rewritten as
Tụ 4abc ` ab + be + ca
4 (a+bð)(b+c)(c+a) —(a+Ð)} (b+c) (c+a)?
a—b\' + b—c\? +(——} >2-— _ c—a\ l6abe
l6abe _ (a+b)(b+c)(c+a) 2|[(a+ b)(b+c)(c +a) — 8abc|
(a+b)(b+c)(c+a)
2l + c)(a— b)(a— e) + (c+a)(b— e)(b —a) + (a+ b)(e— a)(e— 4)
(a+ b)(b+c)(c+a) _ 2 | aes (b—c)(b—a) oe):
(at+b)(at+c) (b+c)(b+a) (c+a)(c+bÐ)
ath b+e cta
which is obviously true Equality holds if and only if@ = 6 or b=c orc=a L]
Problem 2.12 Leta,b,c be positive real numbers Prove that
(a +b*)(b? Fe*)(c* +a") 5 C4+RP4+e2\"
Trang 2116 Solutions
(4a? + 1)(a+x) > 16ax(aˆ + 1— 2x), 32ax? — (16a` — 4a” + 16a— 1)x+a(4aˆ +1) >0, 2a(4x— 1)? + 2a(§x— 1) — (16a` — 4a” + 16a— 1)x+-a(4a” +1) >0,
2a(4x — 1)? + (1+ 4a’ — 16a*)x + a(4a? — 1) > 0, 2a(4x — 1)? — (2a— 1)(8a” + 2a + 1)x+a(4a? — 1) > 0,
which 1s true because
—4(2a —1)(8a* +2a4+ 1)x+4a(4a?—1) > 4a(4a* —1)— (2a—1)(8a* +2a+4+1)
(WP 4VIVP F224) =P FV 4ZICV FVLP 47 P)— Ve
Thus, we can rewrite the above inequality as
(eV tyr +27x°) [x+ty +2)“ +y +2”) 822 ty 22 +z+”)| >x43//2ˆ(x+ey +2)”
Now, we see that
(x+ty+2) “+ /+z7) —8(x 9” +y2Z +z7x”)
= yx" + 2) xy(x7 +y")+ 2xyz) x — 63x” y
= yx (x—y)(x—z) +3) xy(x — yy? +xyz) x > xyz) x
It suffices to prove that
xyo(xry $y Ze +2x°)(x+by+z) > xy (xtytz/’,
Py +y22 4+27x? > xyz(xty+z),
which 1s obviously true by AM-GM Inequality L] Solution 3 Similar to solution 2, we need to prove that
(FYI +22 42°) (ety tz) > 80P¥ tye +2")
By AM-GM Inequality, we have
(x+y+z) = x7 4y? +27 42xy+2yz+ 22x
4x7? 4y7z? 4zˆx?
IV x+y $2 +
Trang 2217 Hence, it suffices to prove that
Solution 4 ” Again, we wIll give the solution to the inequality
(FYI +22 42°) (ety tz) > 80P¥ tye +2")
Assuming that x > y > z, then by Cauchy Schwarz Inequality, we have
It suffices to prove that
syle ty) 202-432) + abe tye t2)(y-+2) + Oa 4 SER WVF 5 42? Yr? 422),
8 8(x +y) 3(x —y)? 21x? — 10xy+21y”) 2?
xy form 2 1) đợi + xyz rty+ vane | — = + ) +23(x+y) > 0
>This proof seems to be the most complicated but the idea is very interesting.
Trang 2318 Solutions
We have
xy | (x+y) 4/2(x?2 +32) — Aap] > xz | (xt y)4/2(x2 +32) —4xy] - òồ
Hence, it suffices to prove that
x—y)? x? — 10x 2) 2 f(z) =x l2) 2(x+y”) Ay + xy ety Than | — (21 oe ) +Z7(x+y) >0 Also, we have
ƒ(z) - fb) = § (y—z) (21x? + 13° — 18xy— 8xz — 8yz) > 0
2x(x? +y? +4xy) y(10x + 13y) ` 2x(x? +7 + 4xy) _ #(10x+ l3y)
(x+z)v2@?+y?)+4o 8x1y) 2 13)+42w 8x+y)
_— 8xÌ+22xy-—I5xy?— I3yỶ >0
Solution 5 (by Gabriel Dospinescu) We rewrite the inequality in the form
xz(x+y+z) >3 xÌ(y+z—*), cyc
It suffices to show that
which is just Schur’s Inequality for fourth degree