THE HADWIGER-FINSLER INEQUALITY REVERSE IN ANACUTE TRIANGLE Prof.dr.. Marian Dincă,Prof.Marius Drăgan,Prof.. Eduard Puschin In the paper1 the authors proposed the following inequality:
Trang 1THE HADWIGER-FINSLER INEQUALITY REVERSE IN AN
ACUTE TRIANGLE
Prof.dr Sorin Rădulescu,Prof Marian Dincă,Prof.Marius Drăgan,Prof.
Eduard Puschin
In the paper1 the authors proposed the following inequality:
In any acute triangle ABC are true the following inequality:
a2+b2+c2 ≤ 4 3 F + 2− 3
Abstract: In this paper for begining we shall prove the inequality 1 for the isosceles acute triangle
and then for any acute triangle.
Theorem 1.In any isoscel acute triangle ABC with the sides of lengths a, b, c
and area F and b = c are true the inequality 1
Proof :The inequality 1 may be written as :
a2 +b2 +c2
−4 3 F
a−b2+b−c2+c−a2 ≤ 2− 3
Using the notation b = c = x, because F = 12x2sinA and a = 2xsin A2, the right side ratio of inequality 2
may be written as
a2+b2+c2
−4 3 F
a−b2+b−c2+c−a2 = 4x2 sin2 A
2+2x2
−2 3 x2sinA
2 2xsin A
2−x
2 = 4sin2 A
2+2−2 3 sinA
2 2sinA
2 −1
2 = 21−cosA+2−2 3 sinA
2 2sinA
2 −1
2
; 3
= 4−2 cosA+ 3 sinA
2 2sinA
2−1
2 =
4−4 cosA⋅1+ 3
2 ⋅sinA
2 2sinA
2−1
2 = 4 1−cos A−π
3
8 sinA
2− 1 2
2 =
8sin 2 A
2 −π6
8 sinA
2−sin
π
6
2 =
32sin 2 A
4 − 12π cos 2 A
4 − 12π
32sin2 A
4−
π
12 cos 2 A
4+
π
12
=
cos 2 A
4 − 12π
cos 2 A
4+12π
= 1+cos A
2 −π6
1+cos A
2+π6
= 1+cos A
2 −π6
1+cos A
2+π6
− 1 +1 = cos
A
2 −π6 −cos A
2+π6
1+cos A
2+π6
+1
We shall consider the function f : 0, π2 → R, fA = 2sin
A
2 sin π
6
1+cosA
2+π6 +1
As A ≤ π2 , we have A2 + π
6 ≤ π
4 + π
6 = 3π
12 + 2π
12 = 5π
12 <
π
2, or in on equivalent form cos A2 + π
4 + π
6 also sinA2 ≤sinπ
4
it follow that fA ≤ fπ
2 and we have the inequality of the statement
Theorem 2 For any triangle ABC of semiperimeter s with incircle CI, r and circumcicle
CO, R there exist two isosceles triangles
A1B1C1and A2B2C2of semiperimeter s1and s2with incircle CI, r and circumcicle CO, R
Proof The straight line OI cat the circumcircle in it A1and A2.The tangents to the incircle from a point A1, cat the circumcicle in
B1and C1.The straight line B1C1is tangent to the incircle ,acording to Poncelet’s closure theorem.
The triangle A1B1C1is isosceles Similarly the tangents to the incircle from a point A2cat the circumcircle in B2and C2
The straght line B2C2is tangent to the incircle ,acording to Poncelet’s closure theorem it
follows that A2B2C2is isoscel.
As a1 = B1C1 = 2rR+r+d
R+d2
−r2 , b1 = c1 = A1C1 = A1B1 = R+r+dR+d
R+d2
−r2 , where
d =∣ OI ∣= R2− 2Rr and
a2 = B2C2 = 2rR+r−d
R−d2
−r2 , b2 = c2 = A2C2 = A2B2 = R+r−dR−d
R−d2
−r2 and as
s1 = 1a1+b1+c1 = 2R2+10Rr − r2+2R − 2r R2− 2Rr
Trang 2s2 = 2a2+b2+c2 = 2R2+10Rr − r2− 2R − 2r R2− 2Rr
acording with the W.J.Blundon inequality it follows that the inequality 4 is true
Proof of the inequality (1) If the point O exterior of the incircle C(I,r),rezult∣ OI∣= d ≥ r
, and the tangent to the incircle from a point O,cat
the circumcircle in B3and C3and the tangent to the incircle C(I,r) from a points B3and
C3cat the circumcircle C(O,R) in A3,
acording the Poncelet’s closure theorem.The triangle A3B3C3it is right angled
∢B3 A3C3 = π2,
Let s the semiperimeter of the acute angled triangle ABC and s3the semiperimeter of the triangle A3B3C3
Let the triangle A3B3C3tangent to the incircle C(I,r) in the points ; D.E.F ;where
D ∈ B3C3; E ∈ C3A3and F ∈ B3A3
we have A3F = A3E = x = rctgπ
4 = r, B3F = B3D = y = rctg B3
2 ,
C3D = C3E = z = rctg C3
2 ,
As B3C3 = B3D + C3D = y + z = 2R ,we shall obtain :s3=x + y + z = 2R + r ,it rezults that the inequality 5 is equivalent to :
R∑
ciclic
sinA ≥ r + 2R ,or ∑
ciclic
sinA ≥ R r +2 = ∑
ciclic
cosA + 1, or∑
ciclic
sinA −cosA ≥ 1 ,6 lets
A = π−α2 , B = π−β2 , C = π−γ2 , as A, B, C ∈ 0, π2
we have that α, β, γ ∈ 0, π ,and α + β + γ = π The inequality 6 is equivalented
to∑
ciclic
cosα
2 −sinα2 ≥ 1,or ∑
ciclic
cosα
2 −tgπ4sinα2 ≥ 1, or
∑
ciclic
cosα2 + π
4 ≥cosπ
4 = u, β2 + π
4 = v and γ2 + π
4 = w and using well-know identity:
cosu +cosv +cosw +cosu + v + w = 4∏
ciclic
cos u+v
2 it follows that:
∑
ciclic
cosα
2 +
π
4 +cos∑
ciclic
α
2 + π
4 = 4 ∏
ciclic
cosα+β4 + π
4 = 4 ∏
ciclic
cosπ−γ4 + π
4
or ∑
ciclic
cosα2 + π
4 −cosπ
ciclic
cosπ2 − γ
4 = 4 ∏
ciclic
sinγ4 ≥ 0 we shall obtain the
inequality 7
Using well-known identity: ab + bc + ca = s2+r2+4Rr and
a2+b2+c2 = 2s2− 2r2− 8Rr and F = sr, let 2− 3
3−2 2
= λ
The inequality 1 is equivalented to
4 3 sr + 2λ − 12s2− 2r2− 8Rr − 2λs2+r2+4Rr ≥ 0
or λ − 1s2+2 3 sr + 1 − 3λr2+4 − 12λRr = Es, R, r ≥ 0 8
As λ > 1, we shall obtain : Es, R, r ≥ Es3, R, r 9
In order to prove inequality 8 it will be sufficient to prove inequality Es3, R, r ≥ 0 ,what reprezent the inequality 1 for right angled triangle A3B3C3
We have F = bc2 , and a2 = b2+c2 .We shall obtain the following inequality:
2 3 bc + 2λ − 12b2+c2 − 2λ b2+c2b + c + bc ≥ 0, let b
b+c = x and b+c c = y obtain
2 3 xy + 2λ − 121 − 2xy − 2λ 1 − 2xy + xy ≥ 0 or
xy 3 + 2 − 5λ + 2λ − 1 ≥ λ 1 − 2xy ,let xy = t
As x + y = 1, we shall obtain : t ∈ 0; 14 ,let 1 − 2xy = θ ,θ ∈ 1
2 , 1, it will rezult that :xy = 1−θ 2
2 ,we shall obtain:
1−θ 2
2 3 + 2 − 5λ + 2λ − 1 − λ ⋅ θ ≥ 0 or 5λ − 3 − 2θ2− 2λθ − λ + 3 ≥ 0 ,
the equation 5λ − 3 − 2θ2− 2λθ − λ + 3 = 0 has a root θ1 = 1
2 and θ1θ2 = −λ+ 3
5λ− 3 −2
it follows that θ2 = 2 −λ+ 3
5λ− 3 −2
Trang 3and θ2 <
2 and 5λ − 3 − 2θ2− 2λθ − λ + 3 = 5λ − 3 − 2θ − θ1θ − θ2 ≥ 0
For ∣ OI ∣= d ≤ r, it shall rezult that any triangle is acute, let ∢B1A1C1 = α and
∢B2 A2C2 = β
sinα2 = r
R+d <
1 2
=sinπ4 , it follows that α2 < π
4 and α < π2 .As sinβ2 = r
2 or
r 2 ≤ R − d , or d ≤ R − r 2 , or
d2 ≤ R − r 2 2or R2− 2Rr ≤ R2− 2 2 Rr + 2r2or 2 − 1R ≤ r or R ≤ 2 + 1r ,this inequality is true,because
d ≤ r imply R2− 2Rr ≤ r2, or R − r2 ≤ 2r2 who imply R ≤ 2 + 1r we shall obtain:
sinβ2 ≤ 1
2
=sinπ
4 , it follows that β ≤ π
2
Because Es, R, r ≥ Es2, R, r and Es2, R, r ≥ 0 because is an inequality for acute triangle and isosceles triangle
We have inequality of the statement
References
1 Cezar Lupu,Constatin Mateescu,Vlad Matei,Mihai Opincariu:Refinements of the
Finsler-Hadwiger
reverse inequality,Gazeta Matematica seria A,nr 1-2(2010)p.49-53
2 P.G.Popescu,I.V.Maftei,J.L.Diaz-Barrero,M.Dincă:Inegalitati Matematice;Modele
Inovatoare,
Editura Didactica şi Pedagogica,2007
3 Marian Dincă,J.L.Diaz-Barrero: A new proof of an Inequality of Oppenheim, vixra
org:1008.0013
4 Marian Dincă,Mihaly Bencze:New generalisation Finsler-Hadwiger inequality:Octogon
Mathematical Magazine,2002