Lp(0, T ; Y ) C([0, T ]; Y )
HgVg
A B
Trang 10α = 0
ν = 0
Trang 21A : V → V ′hAu, vi = ((u, v)), u, v ∈ V.
D(A) = (H2(O))3 ∩ VAu = −P u ∀u ∈ D(A) P
B : V × V → V ′(B(u, v), w) = b(u, v, w), u, v, w ∈ V,
3
∂vj
b(u, v, w) = i,j=1Z ui wj dx.
∂xi X
Trang 22kuk2g ≥ η1|u|2g, ∀u ∈ Vg,
|Ag u|g2 ≥ η1kukg2, ∀u ∈ D(Ag ),
g
Trang 23c1|u|g 1/2kukg 1/2kvkg|w|g 1/2kwkg 1/2, ∀u, v, w ∈ Vg,
Trang 24Wt
Trang 25KK
Trang 27Q W (t), t ≥ 0 K
∞
X p
W (t) = λ′nβn(t)en, t ≥ 0,
n=1
hW (t), e
ni ,
p
λn′
βn(t) = 0,
Trang 32a b
dx ≤ ax + b,
dtx(t) ≤ (x(0) + b at − b
Trang 34u0
Trang 39ku(t) − u∗k ≤ Ce−δt, ∀t ≥ 0.
Oω = O\ω,
Vω = u ∈ (C0∞(Oω))3 : ∇ · u = 0
Trang 40(νAu + kP (1ω u), u) ≥ (νλ1 ∗(ω) − ε)|u|2, ∀u ∈ V.
|b(u, v, w)| ≤ γ|u|kvkH β |w|, u ∈ Vω, v ∈ (Hβ (O))3 ∩ V, w ∈ Vω,
γ∗(u∗) := sup {|b(u, u∗, u)| : |u| = 1} ≤ γ ku∗kH α
Trang 47d(φ + α2Aφ) + [νAφ + B(u, u) − B(u∗, u∗)]dt = σ(I + α2A)φdWt
φ(0) = u 0 − u∗.
Trang 48(I + α2A)−1
dφ + (I + α2A)−1[νAφ + B(u, u) − B(u∗, u∗)]dt = σφdWt
φ(0) = u 0 − u∗.
Trang 49dφ + (I + α2A)−1[νAφ + B(u, u) − B(u∗, u∗)]dt + 1
Trang 50λ1 1 2 2− c0 |f |) > 0
ℓ := 1 + α2λ1(ν + σ α2 λ3/4ν
1
ku(t) − u∗kα2 ≤ ku(0) − u∗kα2e2σW t e−2ℓt.P
lim Wt = 0,t
Trang 52gO
Trang 56dt (w(t), v)g + ν((w(t), v))g + ν(Cg w(t), v)g
Trang 58w = v∗ − u∗ u∗ = v∗
Trang 59∂ω f ∈ L2(O, g)
δ > 0
Trang 61µ1k = inf ν kukg2 + k Z
ω |ϕ1k|g2gdx : u ∈ Vg, |u|g = 1 .
µk1 ≤ νη1∗(ω), ∀k ∈ N∗,
Trang 65εη∗ Z0 z (s) 2
ds z(0) 2
ε{zn} L∞ (0, T ; Hg) ∩ L2 (0, T ; Vg)
z
n
zn ⇀∗z
Trang 66+ νAgz + νCg z + Bg(z, z) + Bg0z + kPg (1ω z) = 0 L2(0, T ; Vg′).dt
Trang 671 d |z(t)|g2 + νkz(t)kg2 + k(Pg (1ω z(t)), z(t))g
2 dt
Trang 691 |∇g| ∞ η∗(ω
)
γ∗(u∗)
ε
Trang 71M0 2 2 2
|ϕ − Ih(ϕ)|g≤ m0 c0h kϕkg , ∀ϕ ∈
Trang 72Vg,
Trang 74z(0) = u(0) − u∗ =: z0,
Trang 77M 0
Trang 84ω02m02k0η12k kL ∞
(0,T per ;D(A g ))
Trang 87L ∞ (0,T per ;D(A g ))|Agyper|g.
−bg(yper, yper, Agyper ) ≤ c3|yper|1g /2kyperkg |Agyper|3g /2,
≤ c3 khkL2∞ (0,T per ;D(A g ))|Agyper |g,
ω 2 η 1
0
Trang 88≤ c 3 khkL ∞ (0,T ;D(A)) |yper|1/2|Agyper|3/2,
ω
0η
11
≤ c 3 khkL ∞ (0,T ;D(A)) kyperk1/2|Agyper|3/2.
ω
0η1
+ c3|yper|1g /2kyperkg|Agyper|3g /2
+ c3 khkL2∞ (0,T per ;D(A g ))|Agyper|g
+ c23/4khkL ∞ (0,T per ;D(A g))kyperkg 1/2|Agyper|g 3/2
ω0η1
+ ν khkL ∞ (0,T per ;D(A g))|Agyper|g
ω0
Trang 92≤2R2 + 2Lh kF k
L2
∞ (0,T per ;D(A g )).
ω2η 1 0
ω0
√ 2Lh
Trang 93z 2 0.
1
Trang 96θ ∈[−τ,0]
d
dt u(t) = −νAgu(t) − νCgu(t) − Bg(u(t), u(t))
t > 0, + f + F (u(t ρ(t))),
Trang 102g
Trang 104∗
Trang 110E|u(t) − u∗|2g ≤M0e−α0 t
, t ≥ 0,
Trang 112nt0
Trang 117g
Trang 118•
Trang 119g
g
Trang 120g
g
Trang 121H m
g
Trang 125g
g
g
Trang 126R3