1. Trang chủ
  2. » Nông - Lâm - Ngư

Nitrate removal effectiveness of fluidized sulfur based autotrophic denitrification biofilters for recirculating aquaculture systems

9 48 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 1,34 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Sulfur-based autotrophic denitrification in static beds has proven successful for treating nitrate in groundwater, landfill leachate,andwastewatersKoenigandLiu,1996;Leeetal.,2008; Shaoetal

Trang 1

j ou rn a l h o m epa g e : w w w e l s e v i e r c o m / l o c a t e / a q u a - o n l i n e

Laura Christiansona,∗, Christine Lepinea, Scott Tsukudaa, Keiko Saitob,

Steven Summerfelta

a The Conservation Fund, Freshwater Institute, 1098 Turner Road, Shepherdstown, WV 25443, USA

b University of Maryland Baltimore County and Institute of Marine and Environmental Technology, 701 East Pratt St., Baltimore, MD 21202, USA

a r t i c l e i n f o

Article history:

Received 6 April 2015

Received in revised form 13 July 2015

Accepted 17 July 2015

Available online 21 July 2015

Keywords:

Denitrification

Autotrophic

Mixotrophic

Sulfur

Fluidized biofilter

Recirculating aquaculture

a b s t r a c t

Thereisaneedtodeveloppracticalmethodstoreducenitrate–nitrogenloadsfromrecirculating aqua-culturesystemstofacilitateincreasedfoodproteinproductionsimultaneouslywithattainmentofwater qualitygoals.Themostcommonwastewaterdenitrificationtreatmentsystemsutilizemethanol-fueled heterotrophs,butsulfur-basedautotrophicdenitrificationmayallowashiftawayfrompotentially expen-sivecarbonsources.Theobjectiveofthisworkwastoassessthenitrate-reductionpotentialoffluidized sulfur-basedbiofiltersfortreatmentofaquaculturewastewater.Threefluidizedbiofilters(height3.9m, diameter0.31m;operationalvolume0.206m3)werefilledwithsulfurparticles(0.30mmeffective par-ticlesize;staticbeddepthapproximately 0.9m)andoperatedintriplicatemode (PhaseI:37–39% expansion;3.2–3.3minhydraulicretentiontime;860–888L/(m2min)hydraulicloadingrate)and inde-pendentlytoachievearangeofhydraulicretentiontimes(PhaseII:42–13%expansion;3.2–4.8min hydraulicretentiontime).DuringPhaseI,despiteonlyremoving1.57±0.15and1.82±0.32mgNO3–N/L eachpassthroughthebiofilter,removalrateswerethehighestreportedforsulfur-baseddenitrification systems(0.71±0.07and0.80±0.15gNremoved/(Lbioreactor-d)).Lowerthanexpectedsulfate pro-ductionandalkalinityconsumptionindicatedsomeofthenitrateremovalwasduetoheterotrophic denitrification,andthusdenitrificationwasmixotrophic.Microbialanalysisindicatedthepresenceof Thiobacillusdenitrificans,awidelyknownautotrophicdenitrifier,inadditiontoseveralheterotrophic den-itrifiers.PhaseIIshowedthatlongerretentiontimestendedtoresultinmorenitrateremovalandsulfate production,butincreasingtheretentiontimethroughflowratemanipulationmaycreatefluidization challengesforthesesulfurparticles

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

1 Introduction

Theglobal demand for foodprotein must bebalanced with

increasedconcernfortheenvironmentalimpactcausedbythese

productionsystems.Land-basedclosed-containmentaquaculture

usingrecirculatingaquaculturesystems(RAS)areuniquelypoised

toproducehighlydesirableandvaluablefoodproductswhilealso

maintainingasmallenvironmentalfootprint.However,whilemost

RASaredesignedtoremovesolidsandrecyclewaterbacktothefish

culturetanks(SummerfeltandVinci,2008;TimmonsandEbeling,

2010),theinabilityofthesesystemstoremovenitrate–nitrogen

fromthewatersignificantlyarreststhisindustry’sultimate

eco-nomic and environmental sustainability For these aquaculture

∗ Corresponding author Tel.: +1 304 870 2241; fax: +1 304 870 2208.

E-mail address: L.Christianson@freshwaterinstitute.org (L Christianson).

systemstomorecompletelyaddressenvironmentalissues,itisnow criticalthateffortsfocusuponthereductionofnitrogenspeciesin effluentwaters.Importantly,theabilitytoconfidentlyand con-sistentlyremove nitratenitrogen fromRAS effluentmay allow expansionofthisindustryintolocalescurrentlyboundby strin-gentwaterqualitystandardsandmaypotentiallyallowincreased reuseoftreatedeffluents.Thereisacrucialneedtodevelop practi-calandcosteffectivemethodstoreduceRASnitrate–nitrogenloads

toallowtheirmaintainedorincreasedproductivitysimultaneously withattainmentofwaterqualitygoalsandgood environmental stewardship

Themostcommonwastewaterdenitrificationsystemsarebased

on heterotrophicdenitrification with the addition of methanol (Payne,1973).However,sulfur-basedautotrophicdenitrification, wherea reducedformofsulfur (e.g.,thiosulfate,elemental sul-fur) serves as the electron donor rather than organic carbon, presentsseveraluniquebenefits(Eq.(1)).Comparedtoheterotopic http://dx.doi.org/10.1016/j.aquaeng.2015.07.002

0144-8609/© 2015 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

denitrification, an autotrophic process does not require any

additional potentially expensive carbon source, and produces

less bacterial sludge thus simplifyingtreatment (Batchelor and

Lawrence,1978;KoenigandLiu,1996;ZhangandLampe,1999)

Elementalsulfurisapromisingsubstrateforautotrophic

denitrifi-cationasitisgenerallyinexpensiveandnon-toxic(Batchelorand

Lawrence,1978;SahinkayaandKilic,2014;Sahinkayaetal.,2014)

NO−3+1.10S+0.40CO2+0.76H2O+0.08NH+

4 →0.08C5H7O2N +0.50N2+1.10SO2 −

Amajordisadvantageofthisprocessisthatautotrophsgenerally

growata slowerratethanheterotrophs,thushavelower

deni-trificationrates(SahinkayaandKilic,2014).Majorby-productsof

concernfromsulfur-basedautotrophicdenitrificationaresulfate

andacidity(SahinkayaandKilic,2014)with4.57mgCaCO3

alka-linityconsumedand7.54mgsulfateproducedforeachmgNO3–N

reduced(Sahinkayaetal.,2014).Manysulfur-baseddenitrification

studiesuseamixofsulfurandlimestoneordolomitetobufferpH

andalkalinitydecreases(SahinkayaandKilic,2014;USEPA,1978)

Thepresenceofsulfurinthesystemcombinedwithlow-oxygen

conditionscouldalsoleadtosulfideproduction,thoughnotasa

resultofEq.(1).Anadditionalchallengeisthatelementalsulfur

isrelativelywater insoluble,meaningithasalimited microbial

availabilityatroomtemperature.BatchelorandLawrence(1978)

outlinedthatforelementalsulfur-baseddenitrificationtoproceed,

threestepswerenecessary:(1)thesulfurmustbesolubilized,and

(2)nitratemustbetransportedfromsolutiontothebiofilm

sur-face,where(3)itcanbetransportedthroughthefilmsoitcanbe

denitrified

Sulfur-based autotrophic denitrification in static beds has

proven successful for treating nitrate in groundwater, landfill

leachate,andwastewaters(KoenigandLiu,1996;Leeetal.,2008;

Shaoetal.,2010),andthisapproachpresentsauniqueoptionfor

treatmentof aquacultureeffluents (Sheret al., 2008) Nitrogen

removalratesfrompreviouslaboratorystudiesaregenerallyonthe

orderof0.1–0.4gN/(Ld)(LampeandZhang,1996;Sahinkayaand

Kilic,2014;Sahinkayaetal.,2014).Nitrogen(N)removal

perfor-mancemaybelimitedbyNloadingwithKimetal.(2004)observing

adeclineinNremovalbeyondloadingratesof2.5kgNO3–N/(m3

-d),andKoenigandLiu(1996)notingthatarealbasedloadingrates

(gN/m2-d) weretheirlimitingfactor ina packedsulfur bed.In

anaquacultureapplication,Sheretal.(2008)reportedtheuseof

autotrophicdenitrificationprovidedadualbenefitforrecirculated

waters;not onlywerenitratelevelsbroughtundercontrol,but

theoxidationofsulfideintheanaerobicallydigestedsludgehelped

safeguardagainstsulfidetoxicitywithinthesystem

Fluidizedbedreactorsareaprovenaquaculturewatertreatment

technologyduetotheirpluggingprevention,easeofmaintenance,

lowcostandefficienttreatment(Summerfelt,2006).Because

flu-idizedsandbiofiltersarecommoninthisindustry,theirapplication

asfluidizedsulfurautotrophicdenitrificationreactorscouldbea

naturalextensionofthetechnology.Fluidizedsulfurbiofiltershave

beenresearchedatthelabscale,withKimetal.(2004)showing

higherNremovalratesfromfluidizedsulfurbedsthanpacked

sul-furbeds.Thiswasduetotheabsenceofcloggingandgoodnitrate

transfertothesulfursurfaceinthefluidizedsystem.Inprevious

work,ChristiansonandSummerfelt(2014)determinedfluidization

velocitiesofcommercially-availablesulfurflakes,grains,and

pow-der,andconcludedthegrainsprovidedthemostrealisticoptionfor

full-scaletestingofafluidizedsulfur-baseddenitrificationbiofilter

Theobjectiveofthisworkwastoassessthenitratereduction

poten-tialoffluidizedsulfur-basedbiofiltersfortreatmentofaquaculture

wastewater

2 Methods and materials

2.1 Fluidizedsulfurbiofilterexperimentalset-up Threefluidizedsulfurbiofilters(285L,height3.9m,diameter 0.31m;Fig.1)wereoperatedatTheConservationFund’s Fresh-waterInstitute(Shepherdstown,WestVirginia,USA)for253days

toquantifynitrateremovalfromaquaculturewastewater(Phase I: 225days, 13 March 2014 to 23 October 2014; Phase II: 28 days, 24 October 2014 to 20 November2014) During Phase I, thethree biofilterswereoperatedintriplicatefashion,each flu-idizedat37–39%expansionwithahydraulicretentiontime(HRT)

of3.2–3.3minandahydraulicloadingrateof860–888L/(m2min) basedonthemeanflow rateof63–65L/min.TwoPhaseIstudy periods of relatively consistent influent nitrate concentrations wereselectedforanalysis;Periods1and2allowedevaluationat influentconcentrationsof2.0–5.0and7.6–17mgNO3–N/L, respec-tively(days57–92and190–225,respectively;sixsampleevents each).Phase IIutilized a differentflow ratein each biofilterto assess the impact of HRT on nitrate removal (i.e., no replica-tion;42–13%expansion;3.2–4.8minHRT;67–43L/minflowrate; influent8.5–15mgNO3–N/L)

The waste and wastewater treatment system and biofilter design has beenpreviously described byTsukuda et al.(2015) (Fig.2).In short,wastesludge fromtheproduction of rainbow trout(Oncorhynchusmykiss)andAtlanticsalmon(Salmosalar),was concentratedviamicroscreendrumfiltersandradialflowsettlers andwaspumpedtoaseriesofgravitythickeningsettlingcones.A holdingtankforthesupernatantoverflowfromthesettlingcones fedthethreefluidizeddenitrificationbiofilters.Overflowfromeach biofilterwastreatedusingaradialflowsettler.Biofilterbedheight

Trang 3

Fig 2. Process flow diagram for units involved with biofilter denitrification research

(Modified from Tsukuda et al., 2015 ); triplicate replication of settling cones,

biofil-ters, and radial flow settlers not shown Settling cones and radial flow settlers

drained every four weeks and bi-weekly, respectively, to prevent sludge

accumula-tion (off-site sludge disposal).

(2.82m;biofiltervolume0.206m3)wascontrolledwitha

shear-ingpumpatthetopofeachbiofilter.Thestaticsulfurbeddepth

wasapproximately0.9m,althoughthesulfurgrainsinallthree

biofilterswerereplenishedondays181and198followingan

unde-tectedwash-out(68kgorapproximately0.75mSperbiofiltertotal

replenished).Biofilterinfluentnitratelevelsweremanipulatedby

dosinga concentrated sodiumnitrate(NaNO3; 34.0gNO3–N/L)

solutionintothesupernatantholdingtank.Thespringwater

feed-ingtheRASwasnaturallyalkaline(≈275mgCaCO3/L),resultingin

highalkalinityofflows

Thesulfur grains had effective and calculating sizesof 0.30

(D10) and 1.31mm (D90), respectively, and a uniformity

coeffi-cientof3.1(GeorgiaGulfSulfur,CustomerCode1660,distributed

byPrinceAgri-Products,Inc., Quincy, Illinois,USA;Christianson

andSummerfelt,2014).Thisissmallerthanreportedparticlesize

rangesforothersulfur-baseddenitrificationstudiesasmosthave

usedgrainsrangingfrom2to16mm(KoenigandLiu,1996;Oh

etal.,2003; Sahinkayaet al.,2014).Sahinkaya and Kilic(2014)

reportedusingthemostcomparablesize(0.5–1.0mmgrains)ina

packedcolumnstudy,andintheonlyreportedfluidizedbedstudy,

Kimetal.(2004)used2.0–3.35mmsulfurgrains.Thesmallergrain

sizeusedhereprovidedadesirablehighspecificsurfacearea(SSA

bed:4110m2/m3)relativeto,forexample,a4.4mmmean

parti-clesizesulfurproductthathada1363m2/m3SSA(KoenigandLiu,

1996).Elementalsulfurpowderwasinitiallyusedinthefluidized

biofilters,butwasdiscontinuedduetofluidizationandwash-out

challenges.LampeandZhang(1996)similarlyreporteddifficultly

withpowderedsulfurinabatchreactor(i.e.,uniformmixingwas

problematic)

2.2 Waterqualityparametersandanalysis

Waterqualitysampleswerecollectedfromasamplingvalve

locatedat the backof each of thethree biofilters and directly

fromtheinfluent supernatant tank(i.e.,effluent samplevalues

werepooledasreplicatesduringPhaseI,n=3;influentsamples,

n=1) Water chemistry was analyzed weekly onsite, and both

studyphasesfollowedthesamesamplingroutine.Sampleswere

analyzed for chemical oxygen demand (COD), carbonaceous

biochemical oxygen demand (cBOD5), total ammonia nitrogen

(TAN),nitrite–nitrogen(NO2–N),nitrate–nitrogen(NO3–N),total

nitrogen(TN),alkalinity,pH,sulfate (SO4 − sulfide(S2 − total

suspended solids (TSS), total phosphorus (TP), and dissolved

reactivephosphorus(DRP)usingmethodsfromAPHA(2005)and HachCompany(2003).Temperature,dissolvedoxygen(DO),and oxidationreductionpotential(ORP)wereassessedatleasttwice weekly.Measurementsweremadedirectlyfromthesupernatant tank(influent)andtheopenbiofiltertops(effluent)utilizingboth inlineand handheldprobes(HACH HQ40dPortablemeter with either HACH IntelliCAL LDO101 or MTC101 ORP/redox probe; HACHpHDscDifferentialORPsensorwithHACHsc100controller; HACHAdvancedLDOProcessDissolvedOxygenProbewithHACH sc200controller).Flowratewasmeasuredalongtheinfluentpipes

toeachbiofilterandadjustedatleasttwiceweeklyconcurrently withtemperature,DO,andORPreadings,aswellaspriortothe weeklywaterchemistrysamplingevent(DynasonicsDXNPortable UltrasonicMeasurementSystem)

Nitrate–N, sulfide, and alkalinity removal rates were based upon:

Removal rate

=(influenttotalconcentrationexpanded−effluentbiofilter concentration)volume of 206×Lflow rate

(2) with sulfate production rates calculated similarly except the influentconcentrationwassubtractedfromtheeffluent.Statistical analysisconsistedoft-testingtoascertainsignificantdifferences betweeninfluent and effluentparameterconcentrations during bothstudyperiods,orinthecaseofnon-normallydistributeddata

asmostoftheconcentrationdataturnedouttobe,Mann–Whitney RankSumtestswereused(˛=0.05;SigmaPlot12.5).Nitrate–N removalefficiencywascalculatedas:

Removal efficiency

=(influent concentrationinfluent concentration−effluent concentration)×100%

(3) 2.3 CollectionandextractionofDNA

Samplesforscreeningthepotentialdenitrificationcommunity werecollectedfromallthreebiofiltersonthefinaldayofPhase

IPeriod2(day225) Biofilmattachedtothesulfur mediawere detachedbyvigorouslyvortexingasampleofsulfurmedia/biofilter waterin50mLsterileplasticconicaltubesfor5min.Theresulting suspensions of detached surface layer (SL) biofilms were cen-trifugedat10,000×gat4◦Cfor20minpriortoDNAextraction FollowingSLbiofilm detachment,themediaweredirectlyused forDNAextractionofinnerlayer(IL)biofilm.ThegenomicDNA wereextractedfromeachreactor’sSLandILbiofilmusinga Pow-erSoilDNAExtractionKit(MOBIOLaboratories,Inc.,Carlsbad,CA) followingthemanufacturer’sprotocol.Theconcentrationand qual-ityofextractedDNAweredeterminedbyabsorbanceat260nm and260/280nmratio,respectively(NanoDrop2000cUV-Vis spec-trophotometer; ThermoFisher Scientific, Inc., Wilmington, DE) IsolatedDNAwasstoredat−20◦C.

2.3.1 PCRamplification MicrobialcommunityDNAextractedfromthreebiofilterswere pooled in equal quantity and used to amplify nosZ fragments which encode the catalytic subunit Z of nitrous oxide reduc-tase.PrimersnosZ-F(5-CGYTGTTCMTCGACAGCCAG-3)andnosZ-R (5-CATGTGCAGNGCRTGGCAGAA-3)yieldingapprox.700bp frag-ments(Röschetal.,2002)wereused.PCRreactionmixtureswere preparedtocontain2×TaqPCRMasterMix(QIAGEN,Gaithersburg, MD),6pmolofeachforwardandreverseprimers,and100ngof genomicDNAinafinalvolumeof20␮L.ThePCRamplificationwas

Trang 4

onecycleat94◦Cfor20s(denaturation),at65◦Cfor30s

(anneal-ing),andat72◦Cfor40s(elongation);twocyclesat94◦Cfor20s

(denaturation);at62◦Cfor30s(annealing);72◦Cfor40s

(elonga-tion);threecyclesat94◦Cfor20s(denaturation);at59◦Cfor30s

(annealing);at72◦Cfor40s(elongation);fivecyclesat94◦Cfor20s

(denaturation);at57◦Cfor30s(annealing);at72◦Cfor40s

(elon-gation);twentyfourcyclesat94◦Cfor20s(denaturation);at55◦C

for30s(annealing);at72◦Cfor40s(elongation);andthen,final

extensionat72◦Cfor10mininaPTC-200PeltierThermalCycler

(MJResearch,Watertown,MA).Anegativecontrolprepared

with-outDNAwasincludedineveryPCRreactionperformedtotestfor

falsepositivescausedbycontamination.PCRproductswere

sepa-ratedandvisualizedbyelectrophoresisin1.2%agarosegelstained

withEtBr,andwerepurifiedfromexcisedgelslices(about700bp

sizeband)usingtheQIAquickGelExtractionKit(QIAGEN,Valencia,

CA)

2.3.2 Cloningandsequencing

PurifiedSLandILnosZampliconswereligatedintopCR4TOPO

vector, and vector with insert were transformed into OneShot

TOP10chemicallycompetentEscherichiacolicellsusingTOPOTA

CloningKitfollowingthemanufacturer’sinstructions(Invitrogen

LifeTechnologies,Carlsbad,CA).Ninety-sixtotalcloneswere

ran-domlyselectedfromeachSLandILnosZlibraryandwerecultured

forplasmidpreparation.PlasmidDNAswerepurified(Agencourt

SprintPrep384 HCKit, Agencourt Bioscience,Beverly, MA) and

sequencingwasperformedusinganABIPRISMgeneticanalyzer

(AppliedBiosystems,FosterCity,CA)withT7andT3primers

pro-vided in the cloning kit (Invitrogen) at the Biological Analysis

ServiceLaboratory,InstituteofMarineandEnvironmental

Technol-ogy(Baltimore,MD).Sequenceswereeditedandassembledusing

Sequenchersoftware(GeneCodeCorp.,AnnArbor,MI,USA),were

analyzedusing theBasicLocal Alignment SearchTool(BLASTn;

http://www.ncbi.nlm.nih.gov/BLAST), and were compared with

availablesequencesintheGenBankdatabasetocreateneighbor

joiningphylogenetictreestoaidtheselectionoftheclosest

refer-encesequences

2.3.3 Nucleotidesequenceaccessionnumbers

The41partialnosZsequencesthatweregeneratedinthisstudy

havebeendepositedinGenBankdatabaseunderaccession

num-bersKT252910toKT252950

3 Results and discussion

3.1 PhaseI:HighandlownitrateloadingataconsistentHRT

Nitrate reduction wasobserved duringboth Phase Iperiods

(Fig.3a).Althoughdifferencesbetweeninfluentandeffluentnitrate

concentrations were relatively small (Table 1; 1.57±0.15 and

1.82±0.32mgNO3–N/Lforthetwoperiods,respectively),thehigh

flowratesandcompactbiofiltervolumeresultedinmeanremoval

rates of 0.71±0.07 and 0.80±0.15g N removed/(L

bioreactor-d) for the two periods, respectively This is much higher than

the previously reported range of 0.1 to 0.4gN/(Ld) for

sulfur-baseddenitrification(LampeandZhang,1996;SahinkayaandKilic,

2014;Sahinkayaet al.,2014), butsimilartothelow endofthe

rangeforfluidizedsandbiofilterheterotrophicNremovalratesof

0.86–1.74gN/(Ld)(or35.8–72.6mgNO3–N/(Lh);reviewedbyvan

Rijnetal.,2006).Relativetopreviousexperimentswiththese

biofil-ters,Tsukudaetal.(2015)reportedremovalratesof0.4gN/(Ld)

whentheywereoperatedwithfluidizedsand.Christiansonand

Summerfelt(2014)reportedsandwasmuchlessexpensivethan

sulfurproductsforfluidizedbiofiltersonbothavolumetric and

surface area basis ($70–$200/m3 vs >$1000/m3, respectively;

Fig 3. Influent and effluent NO 3 –N (a), sulfate (b), and sulfide (c) concentrations during fluidized sulfur denitrification biofilter operation during Phase I (effluent

n = 3; mean ± standard error).

$0.02/m2 surfaceareavs.≈$0.30/m2 surfacearea, respectively), thoughafluidizedsandbiofilterwouldalsorequirepurchaseofa carbonsourcetofueldenitrification.Influentloadingaveraged1.46 and5.82gN/(Ld)forPeriods1and2,respectively.Nitrateremoval efficienciesaveraged50±4.6%and16±3.2%forthetwoPhaseI studyperiods,withtherelativelyhighefficiencyforPeriod1due

tothelowinfluentnitrateconcentration

Theoretically,theproductionofsulfateisproportionaltothe extentofautotrophicdenitrification,thussulfateproductionmay

bethebestindicatorofthisprocess(Ohetal.,2003;Sahinkayaetal.,

2014).BasedonEq.(1)andaverageremovalsof1.57and1.82mg

NO3–N/L, Periods 1and 2 shouldhave produced anaverageof 11.8and13.7mgSO4 −/L.However,only2.7±2.0and6.1±1.6mg

SO4 −/Lwereproducedduringthesetwoperiods,withno statis-ticallysignificantdifferencebetweeninfluentandeffluentsulfate concentrationsforeitherPeriods1or2(Table1;Fig.3b).Thisis

anindicationthatsomeoftheNremovalwaspotentiallydueto heterotrophicdenitrificationinadditiontoautotrophic.Justasthe elementalsulfur wasconvertedtosulfate, somesulfidepresent

in solution wasalsooxidized (Fig.3c; Table 1; mean removal: 6.19±1.82and8.64±1.04␮gS2 −/L).Sheretal.(2008)observed

thataRASsludgedigestionbasinalsoprovidedautotrophic deni-trification treatment with sulfide as the electron donor Dual functionalityofnitrateandsulfideremovalwouldbeamore signif-icantbenefitforRASwatersbeingrecirculatedtofishculturetanks

ascomparedtothetreatmentofeffluentwatershere

Reducedalkalinity,anotherindicatorofautotrophic denitrifica-tion,wasobservedherewithaveragedecreasesof16and12mg CaCO3/Lfrom the two Phase I study periods (Table 2) Others havereportedsignificantdropsinalkalinityduringsulfur-based denitrification studies(Koenigand Liu, 1996), and this may be

Trang 5

Table 1

Mean ± standard error influent and effluent parameter concentrations during two study periods of Phase I operation of a fluidized sulfur denitrification biofilter experiment where columns were run in triplicate; influent n = 6, effluent n = 18 with the exception of Period 2 cBOD 5 where influent n = 5, effluent n = 15; concentrations in mg/L except sulfide in ␮g S2−/L.

a Abbreviations: Total ammonia nitrogen (TAN); total nitrogen (TN); chemical oxygen demand (COD); carbonaceous biochemical oxygen demand (cBOD 5 ); total phosphorus (TP); dissolved reactive phosphorus (DRP).

b A statistically significant difference between influent and effluent concentrations existed for Period 1, but not Period 2 (t-test).

c No statistically significant difference between influent and effluent concentration for either Periods 1 or 2 (Mann–Whitney Rank Sum tests; ˛ = 0.05).

Table 2

Mean ± standard error flow rates and influent and effluent alkalinity, pH, dissolved oxygen, oxidation reduction potential, and water temperature during two study periods

of Phase I operation of a fluidized sulfur denitrification biofilter experiment; study Period 1: influent n = 14, effluent n = 42; study Period 2: influent n = 10, effluent n = 30.

a No statistically significant difference between influent and effluent concentration for either Periods 1 or 2 (Mann–Whitney Rank Sum tests; ˛ = 0.05).

thelargestoperationalchallengeofsuchasystem(KimandBae,

2000).Thenaturallyalkalinespringwaterusedintheon-siteRAS

herewasconsideredwell-bufferedenoughtonotrequirealkalinity

additionasFurumaietal.(1996)reportedtheoptimum

alkalin-ityforsulfur-basedautotrophicdenitrificationwas150–240mg/L

BasedonEq (1), removalof 1.57and 1.82mg NO3–N/Lshould

haveresulted in alkalinityconsumption of only 7.2and 8.3mg

CaCO3/L for Periods 1 and 2, respectively Likewise, based on

Nremoval rate(0.71and 0.80gN/(Ld)),alkalinityconsumption

shouldhavebeen3.2and3.7gCaCO3/(Ld)althoughitaveraged

7.1±2.7and5.3±2.3gCaCO3/(Ld)forthetwoperiods.The

simul-taneousoccurrence of heterotrophicdenitrification would have

reducedalkalinityconsumptionratherthanincreased

consump-tion, and while nitrification can consume alkalinity, there was

noconsistentchangeinTANconcentrationsacrossthebiofilters

Degradationof possibleaccumulatedsludge withinthebiofilter

mayhaveconsumedsomealkalinity,althoughthiscouldnotbe

ver-ified.Thevariabilityinalkalinitystandarderrorcomplicatedfurther

analysis

No major pHchanges were observed with theinfluent and

effluentboth averagingbetween7.33and7.39for bothperiods

(Table 2) Others have observed notable pH decreases (Koenig

andLiu,1996;SahinkayaandKilic,2014)withnitrite

accumula-tionpossibleatpHbelow 7.4(Furumaietal.,1996).Therewas

noaccumulationofnitritehereaslevelsweregenerallyslightly

reducedover thebiofilters(Table1;Fig.4).Watertemperature

betweentheinfluentandeffluentdidnotnotablyvary,although

a seasonal trend was observed Temperatures peaked between

days100–150(20June2014–09August2014)duringthewarmest

timeforthesegreenhouse-runexperiments(Fig.5a).Asexpected,

effluentDOconcentrationswerereducedtolessthan1.0mgDO/L

whenthecolumnswereoperatingasintended(Fig.5b),andto

lessthan0.5mgDO/Lduringbothanalysisperiods(Table2).This

indicatedastrongaerobicand/orfacultativeanaerobiccomponent existedwithinthebiofilters.Facultativeheterotrophicdenitrifiers usefree oxygenastheirelectron acceptorwhile it isavailable, becauseoxygenisamoreenergeticallyfavorableelectron accep-torthannitrate.Thus,heterotrophicdenitrificationandtheuseof nitrateasanelectronacceptorisreducedwhenfreeoxygenisstill present.Autotrophicdenitrificationhasbeendocumentedunder bothaerobicandanaerobicconditions(ZhangandLampe,1999) Thepotentialimpactofthesulfurwash-outwasevidentasearly

asday150wheneffluentDOlevelsincreased;additionalsulfur wasaddedondays181and198.Oxidationreductionpotentials

Fig 4.Influent and effluent nitrogen species concentrations during fluidized sulfur denitrification biofilter Phase I operation (effluent n = 3; mean ± standard error).

Trang 6

Fig 5.Influent and effluent temperature (a), dissolved oxygen (b), and oxidation

reduction potential (c) during fluidized sulfur denitrification biofilter operation from

Phase I (effluent n = 3; mean ± standard error).

werehighlyvariablethoughalwaysnegative,andwerereduced

slightlyacrossthebiofilterduringPeriod1butincreasedduring

Period2(Table2;Fig.5c).ThisincreaseinORPacrossthebiofilters

wasmainlyapparentbecausetheinfluentORPwasmorereduced

duringthisperiod;influentwaterqualitythroughoutthe

experi-mentwasvariableandsomewhatuncontrollableduetothenature

ofthisproductionaquaculturefacility’swastestream

Theterm“mixotrophicdenitrification”referstothe

simulta-neousoccurrenceofheterotrophicandautotrophicdenitrification

(Oh etal.,2003;SahinkayaandKilic,2014).Withthisrelatively

highCODand cBOD5 wastewater,it islikely mixotrophic

deni-trificationwasoccurring Oh etal (2003) observedaddition of

avarietyofsolubleorganicsources(methanol,ethanol,acetate)

didnot inhibitautotrophicdenitrification,although

supplemen-tationoforganiccarboninexcessdiddecreasesulfateproduction

Balancingtheautotrophic/heterotrophicreactionscanreducethe

alkalinityrequirementcausedbyautotrophicdenitrificationdue

toalkalinityproducedbyheterotrophs(Kimand Bae,2000;Lee

etal.,2001;Ohetal.,2003).Becauseheterotrophsgrowfasterthan

autotrophs,someorganiccarbonformsmaybepreferentially

uti-lizedbeforesulfurinamixotrophicdenitrificationreactor(Sunand

Nemati,2012).Availabilityoftheelectrondonormayplayarolein

thisaslimiteddissolutionofsolidsulfurparticlescanlimit

deni-trification,especiallyathigherNloadingrates(Kimetal.,2004)

SuitableCOD:NO3–Nratiosforheterotrophicdenitrificationareon

theorderof3:1to6:1(vanRijnetal.,2006),andinfluentvalues

hereaveraged74±7.5and7.2±1.3COD:NO3–NforPeriods1and

2,respectively,morethansufficienttofuelheterotrophic

denitri-fication(cBOD5:NO3–Nof24±4.9and3.3±0.5).However,during

Periods1and2,CODwasonlyreduced8.5±19and2.4±3.0mg

COD/L,respectively,andcBOD5 concentrationswerenotreduced

acrossthebiofilters(Table1).TheCOD:NO3–Nutilizationratios

were5.4and 1.3mgCODconsumed permgNremovedforthe

twoperiods,respectively.TheverylowutilizationratioforPeriod

2potentiallyindicatedrelativelymoreoftheNremovalwasdueto autotrophicvs.heterotrophicdenitrificationcomparedtoPeriod1 TheabsenceofmeasureablecBOD5reductionswaslikelyduetothe extremelyshortHRTs.Whileitislikelythatheterotrophic denitrifi-cationdidaccountforsomeofthenitrateremoval,internalcycling

ofsolidsmayhavecomplicatedtheCODbalances

3.2 PhaseI:Microbiologicalcharacterization Sequenceanalysisof 96randomlyselectedclonesfromeach thebiofilm surfacelayer(SL)and inner layer(IL) nosZlibraries revealedfourteenuniqueoperationaltaxonomicunits(OTUs)for

SL and nine for IL (Table3).The % Clone of similarsequences

in a library werecalculated for SL-nosZ and IL-nosZ,separately (Table3,upperforSL-nosZandlowerforIL-nosZ).ThenosZlibrary clonesintheSLbelongedto:Alphaproteobacteria(19.6%), Betapro-teobacteria(76.5%),andunclassifiedbacterium(4.3%);andintheIL belongedto:Alphaproteobacteria(2.2%),Betaproteobacteria(17.5%), andunclassifiedbacterium(80.4%).Similarlytopreviousfluidized sandbiofilterdenitrificationstudies(Tsukudaetal.,2015),the den-itrifyingmicrobialpopulationcontainingthenosZgeneintheSL wasmorediversethanintheIL.Here,morethan80%ofIL-nosZ cloneswerecloselyrelatedtotheunculturedbacteriumclone2–80 (AccessionJF509076.1).Thislackofdiversitymayhavebeenthe resultoflowerDOandhighersulfuravailability(electrondonor)

intheIL.Unculturedbacteriumclone2–80werealsofoundinthe

SLbiofilm,buttheirmuchhigher%cloneintheIL(4.3vs.80.4%

inSLvs.IL,respectively)maybeanindicationthereare sulfur-utilizingautotrophicdenitrifiersthathavenotyetbeenisolatedor identified

The microbial communities indicated that the encoding key enzymefordenitrification(nosZ)intheSLwaslargelyfrom Azoar-cus,ThaueraandParacoccusspp.,whichareknownasheterotrophic denitrifiers,andtheirpresence suggeststhegeochemical condi-tionsneartheSLweresuitablefor heterotrophicdenitrification compared to conditions in the IL In contrast, nosZ sequences belongingtoThiobacillusdenitrificans,anobligate chemolithoau-totrophicdenitrifier,weredominantintheILdenitrifyingmicrobial communitysuggestingILprovidedasuitablecultivating environ-mentforautotrophs,althoughthis wasonly4.3%oftheIL-nosZ clones(80.4%wereunculturedbacteriumclone2–80).The opti-malgrowthtemperatureofT.denitrificansisbetween28and32◦C (Shaoetal.,2010),andlowerwatertemperatureshere(13–22◦C; Fig.5a)mayhaveinfluencedthisrelativelylowpercentage.Among knownautotrophicdenitrifiers,theobligatechemolithoautotroph,

T.denitrificans, wasthefirsttobeisolatedand characterized,is capableofutilizingthiosulfate,tetrathionate,thiocyanate,sulfide andelementalsulfurastheelectrondonorfordenitrification,and

isthemostcommonlyreportedautotrophicdenitrifier(Parketal.,

2010,2011;Chenetal.,2013;Xuetal.,2014).Thedetectionof nosZgenesfromautotrophicdenitrifiersinbothSLandILbiofilms stronglyindicatedthecapabilityoffluidizedsulfurbiofiltersto cul-tivateandenrichautotrophicdenitrifyingbacteriaforremovalof nitrate,evenunderrelativelyshortHRTscomparedtopacked sul-furreactorstudies.Inaddition,theco-existenceofautotrophicand heterotrophicdenitrifierssuggeststhesereactorsprovided condi-tionstocultivatebothtypesofbacteriawhichcanofferuniqueand efficientmixotrophicnitrateremoval(Ohetal.,2001)

3.3 PhaseII:Hydraulicretentiontimeimpactonautotrophic denitrification

Wheneachbiofilterwasoperated independently,Nremoval and sulfate production showed a weakly increasing trend at increasing HRTs (Fig.6a and b) Based onthe regression slope

Trang 7

Table 3

Nearest neighbor of the nitrous-oxide reductase (nosZ) gene clones in the surface layer (SL, upper part of table) and inner layer (IL, bottom part of table) of the biofilm.

nearest neighbor

a The closest matching sequence was identified using Blastn at the NCBI and selected by neighbor joining phylogenetic analysis from Blastn hits.

(−0.0405gN/(Ld) per L/min of flow rate), decreasingthe flow

rateapproximately20L/minwouldprovideanadditional0.81gN

removed/(Ld)whichequatedtoanadditional167gNremoved/d

forthesebiofilters.Removalofsulfidealsotendedtoincreaseat

higherHRTs,thoughthisregressionwasevenlessstrongly

corre-lated(Fig.6a).Forfluidizedsystems,thisreductioninflowrateto

achievealongerHRTisatradeoffresultinginlessfluidizationofthe

sulfurparticles,andthustheHRTwouldneedtobeincreasedviaa largerbiofilter.Arecommended60%expansion,aswasmodeledin ChristiansonandSummerfelt(2014),wouldhaverequiredaflow rateofover80L/minandyieldedanHRTofonly2.5mininthese biofilters.OtherreportedHRTsforpackedorcontinuouslystirred sulfurdenitrificationreactorshavebeenontheorderof3to24h (LampeandZhang,1996;Leeetal.,2001;SahinkayaandKilic,2014;

Fig 6.Nitrate–N and sulfide removal rate (a) and observed and theoretical sulfate production rate, (b) across a range of flow rates, hydraulic retention times, and fluidization

Trang 8

HRTfor complete Nreduction dependedupon thesulfur

parti-clesize,andshowedgreaterthan30minwasrequiredfora40%

nitrateremovalefficiencyusingtheirsmallestsulfursizefraction

(2.8–5.6mm)inpackedbeds.Ataloadingof2.2kgN/(m3-d),Kim

andBae(2000)reportedanHRTof2.34hinapackedbedprovided

completedenitrification.LoadingduringPhaseIIwasbetween2.7

and6.7kgN/(m3biofilter-d),thusagreaterHRT,inapackedbedat

least,wouldhavebeenrequiredforcompleteNremoval.Theonly

comparablefluidizedbedstudyreportedanHRTof0.19h(empty

bedcontracttime)andbedexpansionof25–30%(2–3.35mmsulfur

particlesize;Kimetal.,2004).Undertheseconditions,greaterthan

90%removalefficiencywasachievedfromaninfluent

concentra-tionof20mgNO3–N/L.However,Kimetal.(2004)alsoreported

a decline in N removal-performancewhen N loadingexceeded

2.53kgN/(m3-d),asthepresentstudydid.Ideally,thisstudywould

havebeenimprovedifthebiofilterswere2–3mtallerorifaslightly

smaller-sizedsulfurparticlecouldhavebeenidentified,because

bothoptionswouldhaveincreasedtheHRTwithinthe

denitrifica-tionbed

4 Conclusions

Despiteonlyremoving1.57±0.15and1.82±0.32mgNO3–N/L

each pass through the biofilter during Phase I, removal rates

werethehighestreportedforsulfur-baseddenitrificationsystems

(0.71±0.07and0.80±0.15gNremoved/(Lbioreactor-d)).Lower

than expectedsulfate production indicated someof the nitrate

removalwasduetoheterotrophicdenitrificationalthoughthere

wasnostatisticallysignificantdecreaseinCODorcBOD5

concentra-tionsbetweentheinfluentandeffluent.Mixotrophicdenitrification

wasverifiedviathepresenceofbothheterotrophicandautotrophic

denitrifiers.PhaseIItendedtoindicatethatlongerretentiontimes

mayresultin morenitrateremovaland sulfateproduction, but

increasingtheretentiontimethroughflowratemanipulationmay

create fluidization challenges for these sulfur particles

Opera-tionally,thesulfurparticleswilldegradeovertime,andoptimizing

thebalanceoffluidizationvelocityversusHRTmaybechallenging

Acknowledgements

The authors wish to thank theHerrick Foundation (Detroit,

Michigan,USA)fortheirgracioussupport.Thisresearchwas

addi-tionallysupportedbytheUSDAAgriculturalResearchServiceunder

Agreementno.59-1930-0-046.AdebtofgratitudeisduetoShanen

CoganandFredFordfortechnicalassistanceandIssraArifforinitial

assistancewiththetesting

References

APHA, 2005 Standard Methods for the Examination of Water and Wastewater,

21st ed American Public Health Association, Washington, DC.

Batchelor, B., Lawrence, A.W., 1978 A kinetic model for autotrophic denitrification

using elemental sulfur Water Res 12 (12), 1075–1084.

Chen, L.X., Li, J.T., Chen, Y.T., Huang, L.N., Hua, Z.S., Hu, M., Shu, W.S., 2013 Shifts in

microbial community composition and function in the acidification of a

lead/zinc mine tailings Environ Microbiol 15 (9), 2431–2444.

Christianson, L., Summerfelt, S., 2014 Fluidization velocity assessment of

commercially available sulfur particles for use in autotrophic denitrification

biofilters Aquacult Eng 60, 1–5.

Furumai, H., Tagui, H., Fujita, K., 1996 Effects of pH and alkalinity on

sulfur-denitrification in a biological granular filter Water Sci Technol 34

(1–2), 355–362.

Hach Company, 2003 DR/4000 Spectrophotometer Procedures Manual, 11th ed.

Hach Company, USA.

Kim, E., Bae, J., 2000 Alkalinity requirements and the possibility of simultaneous

heterotrophicdenitrification during sulfur-utilizing autotrophic denitrification.

Water Sci Technol 42 (3–4), 233–238.

Kim, H.R., Lee, I.S., Bae, J.H., 2004 Performance of a sulphur-utilizing fluidized bed

Koenig, A., Liu, L.H., 1996 Autotrophic denitrification of landfill leachate using elemental sulphur Water Sci Technol 34 (5–6), 469–476.

Lampe, D.G., Zhang, T.C., 1996 Evaluation of sulfur-based autotrophic denitrification In: Proceedings of the HSRC/WERC Joint Conference on the Environment, Great Plains/Rocky Mountain Hazardous Substance Research Center.

Lee, D.U., Lee, I.S., Choi, Y.D., Bae, J.H., 2001 Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification Process Biochem 36 (12), 1215–1224.

Lee, H.W., Park, Y.K., Choi, E., Lee, J.W., 2008 Bacterial community and biological nitrate removal: comparisons of autotrophic and heterotrophic reactors for denitrification with raw sewage J Microbiol Biotechnol 18 (11), 1826–1835.

Oh, S., Yoo, Y., Young, J., Kim, I., 2001 Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions J Biotechnol 92 (1), 1–8.

Oh, S., Bum, M., Yoo, Y., Zubair, A., Kim, I., 2003 Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: batch experiments Water Sci Technol 47 (1), 237–244.

Park, S., Lee, J., Park, J., Byun, I., Park, T., Lee, T., 2010 Characteristics of nitrogen removal and microbial distribution by application of spent sulfidic caustic in pilot scale wastewater treatment plant Water Sci Technol 62 (6), 1440–1447.

Park, S., Yu, J., Byun, I., Cho, S., Park, T., Lee, T., 2011 Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions Bioresour Technol.

102 (15), 7265–7271.

Payne, W., 1973 Reduction of nitrogenous oxides by microorganisms Bacteriol Rev 37 (4), 409–452.

Rösch, C., Mergel, A., Bothe, H., 2002 Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil Appl Environ Microbiol 68 (8), 3818–3829.

Sahinkaya, E., Kilic, A., 2014 Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction Water Res 50, 278–286.

Sahinkaya, E., Kilic, A., Duygulu, B., 2014 Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent Water Res 60, 210–217.

Shao, M.F., Zhang, T., Fang, H.H.P., 2010 Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications Appl Microbiol Biotechnol 88 (5), 1027–1042.

Sher, Y., Schneider, K., Schwermer, C.U., van Rijn, J., 2008 Sulfide-induced nitrate reduction in the sludge of an anaerobic digester of a zero-discharge recirculating mariculture system Water Res 42 (16), 4386–4392.

Summerfelt, S.T., 2006 Design and management of conventional fluidized-sand biofilters Aquacult Eng 34 (3), 275–302.

Summerfelt, S.T., Vinci, B.J., 2008 Better management practices for recirculating aquaculture systems In: Tucker, C.S., Hargreaves, J.A (Eds.), Environmental Best Management Practices for Aquaculture Blackwell Publishing, Ames, IA,

pp 389–426 (Chapter 10).

Sun, Y., Nemati, M., 2012 Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters Bioresour Technol 114, 207–216.

Timmons, M.B., Ebeling, J.M., 2010 Recirculating Aquaculture, second ed Cayuga Aqua Ventures, Ithaca, NY.

Tsukuda, S., Christianson, L., Kolb, A., Saito, K., Summerfelt, S., 2015 Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters Aquacult Eng 64, 49–59.

USEPA, 1978 Autotrophic Denitrification Using Sulfur Electron Donors (EPA-600/2-78-113) U.S Environmental Protection Agency, Washington, DC.

van Rijn, J., Tal, Y., Schreier, H.J., 2006 Denitrification in recirculating systems: theory and applications Aquacult Eng 34 (3), 364–376.

Xu, X.J., Chen, C., Wang, A.J., Yu, H., Zhou, X., Guo, H.L., Yuan, Y., Lee, D.J., Zhou, J., Ren, N.Q., 2014 Bioreactor performance and functional gene analysis of microbial community in a limited-oxygen fed bioreactor for co-reduction of sulfate and nitrate with high organic input J Hazard Mater 278, 250–257.

Zhang, T.C., Lampe, D.G., 1999 Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments Water Res 33 (3), 599–608.

Dr Laura Christiansonhas been a Research Agricultural Engineer for The Conserva-tion Fund’s Freshwater Institute, Shepherdstown, WV since 2013 She finished her Ph.D in Agricultural Engineering (Co-Major: Sustainable Agriculture) at Iowa State University in December 2011 where her dissertation focused on improvement of agricultural drainage water quality through the use of denitrification “woodchip” bioreactors During her Ph.D., she spent a year in New Zealand studying agricultural water quality and denitrification technologies as a Fulbright Fellow Laura previ-ously completed a M.S in Biological and Agricultural Engineering at Kansas State University and a B.S in Biosystems Engineering at Oklahoma State University.

Christine Lepineis a Research Technician for The Conservation Fund’s Freshwater Institute (TCFFI), Shepherdstown, WV She has been with TCFFI since 2014, originally starting as a Research Intern She also recently graduated magna cum laude from Shepherd University with a B.S in Environmental Studies, Concentration of Resource Management.

Scott Tsukudais the Director of Operations at The Conservation Fund’s Freshwater Institute (TCFFI), Shepherdstown, WV, with his focus on energy monitoring and

Trang 9

auditing Some of his past work has included MS Excel computer modeling, PLC

programming, denitrification technologies and alternative waste treatment systems

demonstration He is a member of the Instrumentation, Systems and Automation

Society (ISA) and the Institute of Electrical and Electronics Engineers (IEEE) plus

holds a M.S in Agricultural Engineering and a B.S in Agricultural Engineering from

Cornell University Past certifications include Microsoft Certified Systems Engineer

(MCSE) He is currently Certified Energy Manager (CEM).

Dr Keiko Saitohas been a Research Assistant Professor at University of

Mary-land Baltimore County’s Institute of Marine and Environmental Technology since

2010 Her research focuses on aquatic microbial ecology and aquacultural

micro-biology, and on applying molecular approaches to link the critical roles of

microbial community composition, functional diversity, ecosystem processes, and

bio-degradation/remediation She is working toward development and improve-ment of microbially mediated waste treatment technologies for next-generation aquaculture practices.

Dr Steven T Summerfelt,Professional Engineer, is Director of Aquaculture Systems Research at The Conservation Fund’s Freshwater Institute (TCFFI), Shepherdstown,

WV, where he has been an employee since 1992 He is Project Leader on TCFFI’s USDA-ARS project titled, “Development of Sustainable Land-based Aquaculture Pro-duction Systems” and has authored or co-authored of over 60 refereed papers, 9 book chapters, and a book titled “Recirculating Aquaculture Systems” Steve has designed several large private and public fish culture facilities using closed-containment technologies He has B.S., M.S., and Ph.D degrees in the fields of chemical and environmental engineering.

Ngày đăng: 27/09/2019, 10:25

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm