1. Trang chủ
  2. » Nông - Lâm - Ngư

Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system ph

9 30 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 744,63 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Predictionoffeedintakebythesalmonsmoltwasestimated accordingtofishsizeandwatertemperatureusingalgorithms pro-videdbythefeedsupplier.Thedayafterbeginningeachtreatment, theaverageweightandn

Trang 1

j ou rn a l h o m epa g e : w w w e l s e v i e r c o m / l o c a t e / a q u a - o n l i n e

a The Conservation Fund Freshwater Institute, 1098 Turner Road, Shepherdstown WV 25443, USA

b Nofima, NO-6600 Sunndalsøra, Norway

c Faculty for Agricultural and Environmental Sciences, University of Rostock, Jusus-von-Liebig-Weg 6, 18059 Rostock, Germany

d AVS Chile SA, Imperial 0655, Of 3A, Puerto Varas, Chile

a r t i c l e i n f o

Article history:

Available online 24 November 2014

Keywords:

RAS

Salmon

Alkalinity

Nitrification

CO 2

Biofilter

a b s t r a c t Whenoperatingwaterrecirculatingsystems(RAS)withhighmake-upwaterflushingratesinlocations thathavelowalkalinityintherawwater,suchasNorway,knowledgeabouttherequiredRAS alkalin-ityconcentrationisimportant.FlushingRASwithmake-upwatercontaininglowalkalinitywashesout valuablebaseaddedtotheRAS(asbicarbonate,hydroxide,orcarbonate),whichincreasesfarm operat-ingcostswhenhighalkalinityconcentrationsaremaintained;however,alkalinitymustnotbesolow thatitinterfereswithnitrificationorpHstability.Forthesereasons,astudywasdesignedtoevaluate theeffectsofalkalinityonbiofilterperformance,andCO2strippingduringcascadeaeration,withintwo replicatesemi-commercialscaleAtlanticsalmonsmoltRASoperatedwithmovingbedbiologicalfilters Alkalinitytreatmentsofnominal10,70,and200mg/LasCaCO3weremaintainedusingapHcontroller andchemicaldosingpumpssupplyingsodiumbicarbonate(NaHCO3).Eachofthethreetreatmentswas replicatedthreetimesineachRAS.BothRASwereoperatedateachtreatmentlevelfor2weeks;water qualitysamplingwasconductedattheendofthesecondweek.Aconstantfeedingof23kg/day/RASwas providedevery1–2h,andcontinuouslighting,whichminimizeddiurnalfluctuationsinwaterquality RAShydraulicretentiontimeandwatertemperaturewere4.3daysand12.5±0.5◦C,respectively,typical

ofsmoltproductionRASinNorway

Itwasfoundthatalownominalalkalinity(10mg/LasCaCO3)ledtoasignificantlyhighersteady-state TANconcentration,comparedtowhen70or200mg/Lalkalinitywasused.Themeanarealnitrification ratewashigheratthelowestalkalinity;however,themeanTANremovalefficiencyacrosstheMBBRwas notsignificantlyaffectedbyalkalinitytreatment.TheCO2strippingefficiencyshowedonlyatendency towardshigherefficiencyatthelowestalkalinity.Incontrast,therelativefractionoftotalinorganiccarbon

comparedtothehigheralkalinities(70and200mg/LasCaCO3).Despitethis,whencalculatingthetotal lossofinorganiccarbonfromRAS,itwasfoundthatthedailylosswasaboutequalat10,and70mg/L, whereasitwashighestat200mg/Lalkalinity.pHrecordingsdemonstratedthatthe10mg/Lalkalinity treatmentresultedinthelowestsystempH,thelargestincreasein[H+]acrossthefishculturetanks,as wellasgivinglittleresponsetimeincaseofalkalinitydosingmalfunction.RapidpHchangesunderthe relativelyacidicconditionsat10mg/Lalkalinitymayultimatelycreatefishhealthissuesduetoe.g.CO2or

ifaluminiumorothermetalsarepresent.Inconclusion,Atlanticsalmonsmoltproducersusingsoftwater make-upsourcesshouldaimfor70mg/Lalkalinityconsideringtherelativelylowlossofinorganiccarbon comparedto200mg/Lalkalinity,andtheincreasedpHstabilityaswellasreducedTANconcentration, comparedtoloweralkalinityconcentrations

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/3.0/)

Abbreviations: HRT, hydraulic retention time; MBBR, moving bed bioreactor; TSS, total suspended solids; TAN, total ammonia nitrogen; TIC, total inorganic carbon; RAS, tecirculating aquaculture system.

∗ Corresponding author Tel.: +1 304 870 2211; fax: +1 304 870 2208.

E-mail address: s.summerfelt@freshwaterinstitute.org (S.T Summerfelt).

http://dx.doi.org/10.1016/j.aquaeng.2014.11.002

0144-8609/© 2014 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/3.0/ ).

Trang 2

1 Introduction

Waterrecirculatingaquaculturesystems(RAS)areincreasingly

used toproduce Atlantic salmonsmolt (Bergheim et al., 2009;

Dalsgaardetal.,2013;Kolarevicetal.,2014).Thesesystemsare

oftenintensive, operating with low systemflushing rates, high

stockingdensities,pureoxygensupplementation,biofiltrationto

removeammonia,and variousformsofaerationtoremove

dis-solvedcarbondioxide(CO2).Pureoxygensupplementationisused

tosupporthigher feedloads andincreasedfishproductionin a

given RAS, but this alsocreate conditions where elevated

lev-elsof dissolved CO2 canaccumulate if inadequate air-to-water

contacting is not provided (Summerfelt et al., 2000) Fish can

sense and will avoid areas of high dissolved CO2 (Clingerman

etal., 2007), when possible.However,chronicexposureto

ele-vatedconcentrationsofdissolvedCO2 hasbeenassociated with

reducedgrowth(Danleyetal.,2005;Fivelstadetal.,2007),reduced

conditionfactor(Fivelstadetal.,1998,2003a,2003b),and

nephro-calcinosis (Landolt, 1975; Fivelstad et al., 1999; Hosfeld et al.,

2008)insalmonids.Inaddition,freeacidproducedduring

nitri-ficationreactswithbicarbonatealkalinityinthewaterreleasing

morecarbondioxidethantheautotrophicnitrifyingbacteria

con-sume(U.S.EPA,1975).Theconversionoftotalammonianitrogen

(TAN) tonitratenitrogen(NO3–N)withnitrifyingbacteria

con-sumesapproximately0.15–0.19kgsodiumbicarbonate(NaHCO3)

forevery1kgoffeedconsumedbythefish(Davidsonetal.,2011)

And,ifthisalkalinitylossisnotcompensatedforby

supplemen-tationwitha base(such assodium hydroxide orNaHCO3),the

alkalinityandpHofthesystemwilldecrease(LoylessandMalone,

1997).The loss of alkalinityand the increase of dissolved CO2

arebothconditionsthatreducethepHoftherecirculatingwater

accordingtoacid–baseequilibriumofthecarbonatesystem(e.g

Loyless andMalone,1997; Colt,2006).Asstockingdensity and

systemhydraulicretentiontimeinRAShaveincreasedinrecent

years,applicationoftechnologiestocontrolalkalinity,pH,and

dis-solvedCO2havebecomesignificantlymoreimportant.Preventing

largedropsinpHcanbecriticaltopreventsolubilizingmetals,such

asaluminium,becauseoftheirtoxiceffectonfish(Skogheimand

Rosseland,1986;Fivelstadetal.,2003b)

Carbondioxideisexcreted(alongwithammonia)throughthe

fish’sgillsinproportiontoitsfeedandoxygenconsumptionrate

AconsiderableamountofdissolvedCO2 isalsoproducedinthe

biofilter(SummerfeltandSharrer,2004).ControllingdissolvedCO2

fromaccumulatingtodetrimentallevelsisparticularlyimportant

in fishfarmsthat useintensivewater recyclingsystems These

systemsuseoxygenationunitstocreatehighlevelsofavailable

dis-solvedoxygenintheculturetanks,butoxygenationunitsprovide

insufficientgasexchangetostripmuchdissolvedCO2.Inaddition,

theconcentrationofdissolvedCO2 produced withintheculture

tankcanbequitelargewhenpureoxygenationisused,withup

8–12mg/L of dissolved CO2 produced in a single pass at high

stockingdensities.DissolvedCO2 isstrippedfromthe

recirculat-ingwater,typicallyafterthebiofilterandbeforetheoxygenation

process(Summerfeltetal.,2000;SummerfeltandSharrer,2004)

DissolvedCO2strippingisbasedontheprinciplethatthepartial

pressureofCO2inaircontactedwithwaterislessthanthepartial

pressureoftheCO2dissolvedinthewater.ThedissolvedCO2

there-forecomesoutofsolutionandisstrippedoffasagas.Increasing

thevolumeofairflowthatiscontactedwiththewaterflowwill

increasethedissolvedCO2thatcanberemoved

Maintaining adequate alkalinity concentrations has been

reportedtobecriticalforsustainingnitrification,i.e.,the

wastewa-terliteraturereportsthat40–80mg/L(asCaCO3)istheminimum

alkalinityrequiredtosupportnitrification(Paz,1984;Biesterfeld

et al.,2003).Villaverde et al (1997)reported a linear increase

in nitrification efficiency of 13% per unit pHincrease frompH

5.0 to8.5 Rusten etal (2006)foundthat thenitrification rate droppedtoonlyhalfoftheoriginalratewhenalkalinitydropped fromapproximately115mg/LasCaCO3 (pH7.3)to57mg/L(pH 6.7)inabench-scaleexperiment performedusingbiofilm carri-erscollectedfromaturbotfarm’smovingbedbiologicalreactor (MBBR).Moreover,Colt(2006)warnsthatthenitrificationprocess slowsdownatlowpHandChenetal.(2006)recommend main-taininganalkalinityof200mg/LasCaCO3tosupportnitrification whenwaterexchangerateisminimal.RASoperatedatsuboptimal alkalinitycouldtheoreticallyencounterlargerpHswings,higher concentrationsofTANandNO2–Nifnitrificationefficiencydrops, andmicrobialcommunityinstability(Mydlandetal.,2010),which maybeharmfultothefish.However,theconsequencesof oper-atingaRASwithoutadequatealkalinityhavebeenlittlestudied, particularlyforsystemsusedtoproduceAtlanticsalmon.Thisis

aspecieswhichissensitivetoelevatedconcentrationsofnitrite nitrogenwithoutconcurrentchlorideadjustments(Gutierrezetal.,

2011),torelativelylowlevelsofNH3–N(Kolarevicetal.,2013),and

CO2 (Fivelstad,2013).Researchisneededtodetermineif main-taininganalkalinityof80–200mg/LasCaCO3 isreallybeneficial, becauseoperatingathighalkalinitylevelswillincreasethecostof supplementationwithbase.Interestingly,highnitrificationratesat lowpHandalkalinityhavebeenreportedpreviouslyinlaboratory scalereactorexperiments(TarreandGreen,2004).When operat-ingRASwithhighmake-upwaterflushingratesinlocationssuchas Norwaythathavelowalkalinityintherawwater(Kristensenetal.,

2009),knowledgeaboutrequiredRASalkalinitywillbe particu-larlyimportant.Furthermore,sinceithasrecentlybeenproposed thatlargertankscalesincreaseperformanceinsalmon(Espmark

etal.,2013),wewantedtostudyeffectsofalkalinityinlargerscale RAS.Forthesereasons,astudywasdesignedtoevaluatetheeffects

ofalkalinityonCO2strippingduringcascadeaeration,plus biofil-terperformancewithinsalmonsmoltsemi-commercialscaleRAS operatedwithmovingbedbiologicalfilters.Thegoalofthestudy wastotestthefollowinghypotheses,thatincreasingalkalinity con-centrationsfrom10to200mg/LinaRASwill(1)stabilizesystem

pH,(2)decreaseNO2–NandTANconcentrationsandvariability, and(3)increaseTANremovalefficiencyandremovalrateacross theMBBR.Finally,wehypothesizethat(4)ahigheralkalinitywill decreaseCO2removalefficiency,andincreasetotalinorganic car-bon(TIC)removal,acrossforced-ventilationcascadedegassersand thusleadtoelevatedcostsassociatedwithbicarbonatedosing

2 Materials and methods

ThestudieswereconductedattheNofimaCentrefor Recircula-tioninAquacultureatSunndalsøra,Norway,describedinTerjesen

etal.(2013) 2.1 Experimentaltreatments Alkalinityoftherecirculatingwaterwasmaintainedatthree treatmentlevels,i.e.,atnominal10,70,and200mg/LasCaCO3, usinganonlinepHelectrode(Sensorex8000CD-pHwithsolution groundandamplifier,GoldenGrove,USA)locatedinthesumpat thebaseoftheCO2strippingcolumn.EachpHprobewasequipped withanautomaticcleaningsystem;a waterjetprogrammedto flush the probe each tenth minute (Storvik Aqua, Sunndalsøra, Norway).Thisautomaticcleaningwasfoundtobeclearlynecessary

tomaintainstablepHduringthe14daysofeachtreatmentreplicate (Kolarevi ´cetal.,2011).ThepHprobeswerecalibratedusingMerck two-pointbuffers(Merck,Darmnstadt,Germany),eachweek,right aftera treatmentperiod ended, andafter sevendays intoeach treatment.AdedicatedpHcontroller(ModelWPD320,Walchem, Holliston,MA)wasusedtocontrolachemicaldosingpump(Model

Trang 3

tomaintaina pHset-point in each RAS Ground well water at

Nofimain Sunndalsøracontains around 6–20mg/Las CaCO3 of

alkalinity,dependingonseasonandthepumpwellinuse(Terjesen

etal.,2013)

Thus,apHcontrolsystemwasusedtocontrolthetreatment

alkalinitybecause,accordingtoacid–baseequilibriumin

freshwa-terwithlowammonialevels,waterpHisanapproximatemeasure

ofthealkalinitywhenthewatertemperatureanddissolvedCO2

concentrationremainconstant(Summerfeltetal.,2001).Changes

indissolvedCO2donotaffectalkalinity,perthedefinition,butdo

affectthewaterpH.Thus,strippingdissolvedCO2increasesthepH

ofwaterasitdecreasesthetotalinorganiccarbonconcentration,

butitdoesnotchangethealkalinityconcentration.Maintaininga

constantdissolvedCO2concentrationrequiredmaintaininga

con-stantCO2productionrateandremovalrateforagivenalkalinity

treatment.ArelativelyconstantCO2productionratewasachieved

bymaintainingacontinuousphotoperiodforthefish,constantdaily

feedrateof23kg/day/RAS,andfeedingevery1–2h, 24haday

Continuouslightingandfeeding24hdailyhavebeenfoundto

min-imizediurnalfluctuationsinwaterquality,i.e.,thechangeinTAN,

CO2,O2,andTSS,concentrationsacrosstheculturetank(Davidson

etal.,2009;Kolarevicetal.,2009).Watertemperaturewaslogged

eachfifthminuteintheCO2-degassersump,andwasmaintained

at12.8±0.4◦C(SD)(RAS1)and12.7±0.4◦C(RAS2)throughoutthe

study

EachtreatmentwasreplicatedthreetimesintworeplicateRAS,

i.e.,sixquasi-replicateswereprovidedforeachtreatment(Table1)

BothRASwereoperatedateachtreatmentlevelfor2weeks;water

qualitysamplingwasconductedattheendofeachsecondweek

Theexperimentaldesign,bothintermsofreplicatesystems,and

lengthofperiods,wasnecessary tomakethis studyat a

semi-commercialscalepossible.Thestudylasted20weeks,becausethe

firsttreatmenttestedhadtoberepeatedduetopHinstabilities

duringthestartofthetrial(Table1)

2.2 Waterrecirculatingsystems

TwoRASwereusedinthisstudy(Fig.1).EachRAScontained

56.2m3oftotalwatervolume,includingten3.3m3culturetanks,

abeltfilter(ModelSFK400with60␮mbeltsieveopening,

Sal-snes,Namsos,Norway),threecentrifugalpumps(1.5kW/pump,ITT

Flygt,Trondheim,Norway)tolift0.75m3/mineach,at6mhead,

froma sump followingthe beltfilter, a movingbed bioreactor

(MBBR), a forced ventilated cascade aeration column for

strip-pingCO2 fromthewaterflowingbygravity outoftheMBBR, a

pumpsumpbelowthedegasserof1.9m3volume,threecentrifugal

pumps(3kW/pump,ITTFlygt),toliftanominalflowof0.75m3/min

eachagainst12–13mheadfromasumpatthebaseofthestripping

column,andadownflowbubblecontactor(AquaOptima,

Trond-heim,Norway)toaddpureoxygengastothewaterjustbefore

itenteredeachculturetank.EachMBBRcontainedthree7.0m3

chambersthat each contained3.5m3 of media(BiofilmChip P,

KrügerKaldnes,Sandefjord,Norway)witha specificsurfacearea

of900m2/m3(manufacturersstatement)

ToensurethatthewasteloadontheMBBRapproachedmaximal

capacityatarelevantculturetankwaterqualityforAtlanticsalmon

smolt(0.2–0.7mg/LTAN)(Dalsgaardetal.,2013;Terjesenetal.,

2013),datafromTerjesenetal.(2013)wasusedtocalculatethe

requiredmediaareainthepresentstudy.Theseauthorsfoundthat

thecapacityofallthreechamberscombinedintheRAS1(orRAS2)

MBBRwas 61kgfeed/day,calculated toequal 2083gTAN

pro-duced/day,at50%feedprotein,tomaintainmaximal0.7mg/LTAN

inthereturnflowfromtheculturetanks,at14◦Cand1.9m3/min

flow.Inthepresentstudyareducedfeedloadof23kg/day/RAS,

was used Based on Terjesen et al (2013) this feed load

(47%proteininfeed,seebelow)shouldresultin700gTAN/day/RAS releasedtotheculturetankwater(nitrogenretentionof53%for Atlanticsalmonparr,Grisdale-HellandandHelland,1997).Atthe temperatureof12.8◦Cusedinthepresentstudy,thisTAN produc-tionwouldrequireone-thirdofthetotalMBBRarea(i.e.3140m2), givinga68%TANremovalto0.22mg/Lintheeffluent,andrequire

a 1.1m3/minsystemflow rate.Thus, therecirculatingwater at thisflowratewasonlypumpedthroughoneofthethreeMBBR chambers(thelast)perRASduringthepresentstudy(Fig.1) TheCO2strippingcolumnusedcontained1.6mdepthofrandom packing(2.4m3ofNor-Pacrings5cmdiam.,JaegerEnvironmental Products,Houston,TX,USA) andusedafantoventilate10 vol-umesofairforeveryonevolumeofwaterpassingcounter-current throughthecolumn.Thedownflowbubblecontactorswere con-nectedtoonecontrolcircuitandonlineO2probe(ModelDO6441, Sensorex)perculturetank.Theoxygencontrollerwasusedto main-taindissolvedoxygenintheculturetanksatbetween85%and90%

ofsaturation.AlthoughtheseRASareequippedwithsystemsfor ozonation,therecirculatingwaterwasnotozonatedduringthe study,toensurethatanynitriteaccumulationduetothealkalinity treatmentscouldoccurfreely,withoutbeingoxidizedbyozone WaterflowratethrougheachMBBRandmake-upwaterflow rate were measured using magnetic flow meters (Sitrans FM Magflo, Siemens, Munich, Germany) with continuous data log-ging(eachfifthminute).Waterflowthrougheach MBBR(RAS1:

1147±8l/min, RAS2; 1148±7l/min) and make-up water flow (RAS1:9±0l/min,RAS2;9±0l/min)wereheldconstant through-outthestudy,andwassimilarbetweentheRAS Thus,99.2%of theflowwasreusedeachpassthroughtheRAS,andthedaily sys-temwaterexchangeofeachRASwas23%,i.e.themeanhydraulic retentiontimewithineachRASwasestimatedtobe4.3day.The meanhydraulicretentiontime(HRT)throughthe3.3m3fish cul-turetanks,7m3MBBRchamber,andthe1.9m3 sumpbelowthe CO2-degasserwere29min,5.3min,and1.9min,respectively.Note,

pHwascontinuouslymonitoredimmediatelyafterthecascade col-umninthesumpfordosingsodiumbicarbonateandcontrolling pH/alkalinity.The approximately 1.9minHRT within thesump allowedthedehydrationofcarbonicacid,i.e.,theratelimitingstep witha22shalf-life,andreallocationofbicarbonateand carbon-ate(bothnearlyinstantaneous)toreturntoacid–baseequilibrium (Kern,1960;GraceandPiedrahita,1994)andachieveastablepH immediatelyfollowingCO2stripping

Thebiofiltershadbeenconnectedtotankswithfeedingsalmon parrforaleastsixmonthspriortothebeginningofthestudyto thoroughlyestablishthebiofilterswithbacteria.Tenweeksprior

totheexperiment,allpipeswerecleaned,andtheCO2degasser mediataken outandthoroughlycleaned.Thebiofiltermediain eachRASweretakenout,mixedbetweenRAS1/2toensuresimilar biofilmandMBBRmicrobiota,andthenreturnedinequalvolume (3.5m3)totheRASs.Subsequently, each RASwasstocked with similarbiomass,andmaintainedonequalfeedload(seebelow) untilstartofthetrial.AllroutineworkonbothRASwasconducted equally,andatapproximatelythesametimeeachday.Inaddition, alldailyflushing/scrubbingofsediments(i.e.,thebeltfilter)and flushingoftankswasdoneafterwaterqualitysamplinghadbeen completedfortheday

2.3 Atlanticsalmon Atlantic salmon parr of SalmoBreed strain (SalmoBreed AS, Bergen,Norway)wasused.Thefishwerestockedintofive3.3m3 culturetanksineachRASsevenweeksbeforeinitiatingdata col-lection,leavingfivetankswithwatercirculatingatsamerateas

intheothertanks,butwithnofish.Toavoidtoohighfishdensity, rightaftersamplingperiod8,halfthenumberoffishofallfivetanks weremovedintothefivepreviouslyemptytanks.Atthestartofthe

Trang 4

Table 1

Experimental treatment schedule Both RAS were operated at each nominal treatment level for 2 weeks and each treatment was replicated three times in each of the two replicate RAS.

Last treatment day Treatment period Nominal RAS#1 alkalinity (as CaCO 3 ) Nominal RAS#2 alkalinity (as CaCO 3 )

a Treatment period 1 (10 and 70 mg/L alkalinity) was repeated after the final treatment, due to pH instabilities at the start of the study.

experiment(startofperiod1)eachoffivetanksperRAScontained

3935salmonparrofinitialsizeof61.1±1.6g(SD)

The salmon parr were fed commercial diets (EWOS Micro,

Bergen, Norway)with 3mm pelletsizes throughout thestudy

Whenchangingfeedlots (i.e.differentshipmentsof same feed

type),samplesweretakenandanalyzedforproximate

composi-tion,accordingtoTerjesenetal.(2013),toensurethatminorfeed

changesdidnotinfluencethesystemloads.Theaverageproximal

chemicalcomposition(%w/woffeed“asis”)was94.0±0.7(SD)dry matter,46.9±0.8crudeprotein,22.4±0.5fat,and8.3±0.1ash Predictionoffeedintakebythesalmonsmoltwasestimated accordingtofishsizeandwatertemperatureusingalgorithms pro-videdbythefeedsupplier.Thedayafterbeginningeachtreatment, theaverageweightandnumberofindividualfishpertankwere recordedinordertoquantifythebiomassoffishineachtank.Based

ontheseinputs,thenumberoffishthathadtoberemovedfrom

Legends:

Belt fi lter w/sludge discharge

Degasse r

Pump sump withpH probe

WRAS

1 or 2

Central water treatment room

hall 1 or 2 Oxygenaon

Pump sump with alka-linitysupply

Fis h tank Sidewall drain Swirl

separator w/sludge discharge

Fish tank

Fis h tank

Movi ng bed bioreactor

Make-up water

pH con trol

NaHCO3 reservoir

RAS flow Make-up flow MBBR inlet not in use

pH control data Alkalinity flow

Fig 1.Process flow drawing of the two RAS used in this study Only three fish tanks are shown, out of the 10 culture tanks that were used in each RAS during this study Refer to section 2.2 for description of components Note that the moving bed bioreactor contains three chambers, but flow was only added at the head of the chamber closest

Trang 5

Table 2

Mean pH and alkalinity (±s.e.) measured in the sump below the CO 2 stripping column for the three nominal alkalinity treatments, i.e., 10, 70, and 200 mg/L Values represent analyses of samples collected each 14th day of each treatment (n = 6 per treatment).

Nominal alkalinity (as CaCO 3 ) RAS #1 alkalinity (as CaCO 3 ) RAS #2 alkalinity (as CaCO 3 ) RAS #1 pH RAS #2 pH

eachsystemtomaintainthe23kg/day/RASfeedratewas

calcu-lated.Thefishbiomasswasadjustedaccordinglythatsameday

2.4 Waterqualitymonitoring

Waterqualitysampleswerecollectedafter14daysintoeach

treatmentreplicate.Eachsamplingeventwasdoneatthesame

timeeach14thday,startingat08:00andcompletedintwohours,

at10:00AM.Water samplesfor TAN(total ammonia nitrogen),

NO2–N(nitritenitrogen),NO3–N(nitratenitrogen),TSS(total

sus-pendedsolids),CO2,alkalinity,pHandTIC(totalinorganiccarbon)

werecollectedbeforeandaftertheMBBR.Inaddition,CO2,

alkalin-ity,pHandTICwerealsosampledaftertheCO2strippingcolumn,

i.e.,inthesumpbelowtheCO2strippingcolumn.Handheldmeters

wereused forpH determination (HachHQ40D withPHC10101

electrodes,HachLange,Düsseldorf,Germany),andthesewere

two-pointcalibratedusingNBSbufferseachdayofuse.Insomecases,

dissolvedCO2wasalsoestimatedusinganOxyguardportableCO2

analyzer(Oxyguard,Birkerød,Denmark).Alkalinitywasmeasured

bytitrationaccordingtoStandard Methods(APHA,2005),using

aHACHDigitalTitratorModel16900(Hach,Loveland,Colorado,

USA),andaOrion720ApluspHmeter.TAN,NO2–N,andNO3–N

sampleswereanalyzedusinganautoanalyzer(FlowSolutionIV,OI

Analytical,CollegeStation,TX,USA),accordingtoU.S.E.P.AMethod

350.1(U.S.EPA,1983)forTANandU.S.E.P.AMethod353.2(U.S

EPA,1983)forNO3–NandNO2–N.TICwasanalyzedonfresh

sam-pleskeptonice,collectedwithsiphonsandwithoutair-bubbles

intoglassflaskswithtaperedstoppers,accordingtomethod6/93

Rev.B(PerstorpAnalytical,Perstorp,Sweden);furtherdetailsare

providedbyTerjesenetal.(2013).TICwasalsousedtocalculate

dissolvedCO2,usingpH,andtemperaturemeasuredatthesame

timeandlocationaswhencollectingwatersamplesforTIC

anal-ysis.ThecarbonatesystemconstantsinSummerfeltetal.(2001)

wereusedinthecalculations

2.5 Statisticalanalyses

Dataarepresentedasthetreatmentmeans±s.e.unless

other-wisenoted.SPSS(Chigaco,IL,USA)syntaxwrittenforrandomized

designs was used to assign alkalinity treatments randomly to

experimentalperiodandtoRAS#,withtheconstraintthatno

treat-mentwasallowedtofollowdirectlyafterasimilartreatment,in

thesameRAS(Table1).Priortostatisticalanalysesallpercentage

datawerearcsinesquareroottransformed.Analysesontheeffects

ofalkalinityweredoneusingone-wayANOVAsinSPSS.If

signifi-cant(p<0.05),Tukey’sposthoctestsweresubsequentlyappliedto

determinebetween-treatmentsignificantdifferences

3 Results and discussion

ThepHcontrollermaintainedrelativelyconstantalkalinityfor

eachtreatmentreplicate(i.e.,for10,70,and200mg/L)throughout

thestudy(Table2).Forexample,tomaintainthelowdose

alkalin-itytreatment,thepHwascontrolledat6.66±0.13and6.43±0.01

inthesumpbelowtheCO2strippingcolumninRAS#1andRAS

#2,respectively,while alkalinityinthesame locationaveraged

11±1mg/Land9±1mg/LasCaCO3,respectively.Themediumand

highdosealkalinitytreatmentsweremaintainedsimilarlyusingpH control(Table2)

Significantdifferenceswerefoundbetweenthequasi-steady stateTANconcentrationmeasuredbetweenalkalinity concentra-tionsattheMBBRinlet,MBBRoutlet,anddegassersump(Table3) The mean TAN concentration entering the MBBR was reduced from 0.65±0.08mg/L at the nominal 10mg/L alkalinity treat-mentcomparedto0.43±0.04mg/Land0.39±0.05mg/LofTANat thenominal70mg/Land200mg/Lalkalinitytreatments, respec-tively.The mean TANconcentrationexiting theMBBR dropped from 0.39±0.06mg/Lat the 10mg/L as CaCO3 alkalinity treat-mentcomparedto0.22±0.03mg/Land0.23±0.04mg/LofTANat the70mg/Land 200mg/LasCaCO3 alkalinitytreatments.These resultssuggestthat theMBBR wasabletomaintainlowerTAN concentrationswhenalkalinityconcentrationsenteringtheMBBR weremaintainedatnominal70or200mg/LasCaCO3 compared

toa sustainedalkalinityofonly10mg/LasCaCO3 alkalinity.No differencesinsteadystateTANconcentrationweredistinguished betweenalkalinitytreatmentsof70mg/Land200mg/LasCaCO3 Hence,ourhypothesisthatincreasedalkalinityreducesTAN con-centrationsinRASforAtlanticsalmonsmoltswassupportedbythe results.InRASforAtlanticsalmonsmolts,arelativelylowTAN con-centrationismaintained,evenaslowas0.2mg/L(Dalsgaardetal.,

2013).HenceinsuchRAS,theTANsubstrateconcentrationwillnot

besaturating.ItmustthereforebenotedthatinRASoperatedfor otherfishspecies,athigherintensitiesandmuchhigher steady-stateTANlevels,thealkalinityrequirementmaybedifferentfrom thatfoundinthepresentstudy

Regardingnitriteconcentrations,unlikeforTAN,nosignificant differenceswereobservedbetweentreatments,whichaveraged 0.42–0.58mg/L,andwerequitevariable(Table3).Inthesametype

ofRAS,wehaveearliershownthatalthoughTANandCO2removal capacitywashigherthananticipatedusingcommondimensioning rules,nitriteremovaldidnotmeetspecificationsbecausehigher than0.1mg/LNO2–Nwasobserved.Inastudycomparingfixedbed andmovingbedreactorsSuhrandPedersen(2010)foundno differ-encesbetweenthebioreactorsystemsinaccumulationofNO2–N Thefindingthattheexperimentaltreatmentsdidnotaffectnitrite

inthepresentstudy,suggestthatinthisset-up,nitriteremovalwas notlimitedbyalkalinity.ThemeanNO3–Nconcentrationexiting theMBBRrangedfrom40to42mg/Lforthethreetreatments.No significantchangecouldbedistinguishedeitherinNO3–N concen-trationacrosstheMBBR,whichindicatesthatequalTANconversion

toNO3–Noccurredforthethreetreatmentsaswasintendedwith theuseofequalfishfeedloadingthroughoutthestudy

ThemeanarealnitrificationrateacrosstheMBBRrangedfrom 0.09to0.14g/d/m2 (Table4).Thereweresignificantdifferences betweenthemeanarealnitrificationratesacrosstheMBBR,i.e., 0.14±0.02g/d/m2and0.09±0.02g/d/m2,calculatedatthe alka-linitytreatmentsof10mg/Land200mg/LasCaCO3,respectively

NodifferencesweresuggestedinTANremovalefficiencyacrossthe MBBRinasinglepass,withremovalefficienciesrangingfrom41

to50%removalforeachtreatment(Table4).Interestingly,these resultssuggestthatthemeanarealnitrificationrateswere signifi-cantlyhigheratanominalalkalinityof10mg/LasCaCO3compared

to200mg/LasCaCO3,whichisoppositeofourhypothesis Com-paredtopreviousstudies,thearealnitrificationratesreportedhere

Trang 6

Table 3

TAN concentration (±s.e.) measured at the MBBR inlet, MBBR outlet, and degasser sump, plus NO 2 –N concentration measured at the MBBR outlet, at the low (10 mg/L), medium (70 mg/L), and high (200 mg/L) alkalinity concentrations Values represent analyses of samples collected each 14th day of each treatment (n = 6 per treatment).

Nominal alkalinity (as CaCO 3 ) TAN MBBR inlet (mg/L) TAN MBBR outlet (mg/L) TAN Degasser sump (mg/L) NO 2 –N MBBR outlet (mg/L)

a,b Treatment means not sharing a common letter are significantly different (p < 0.05).

weresimilartothearealratesmeasuredacrossthesameorlarger

MBBRsinthesamefacility,exceptinthisotherstudyallthreeMBBR

chamberswereutilized(Terjesenetal.,2013).PfeifferandWills

(2011)reportedanarealnitrificationrateapproximatelytwicethat

measuredinthepresentstudy;however,inthatstudythe

temper-aturewashigherat24–25◦C.Twofactorsmayexplainthehigher

arealremovalrateatloweralkalinity.First,weshouldnotethatthe

TANproductionrateshouldbethesameforalltreatmentsbecause

thesameamountoffeedwasconsumeddailythroughoutthestudy

Thus,thedifferenceintheMBBRarealnitrificationratesbetween

treatmentscouldbeexplainedbyTANremovalonsurfacesoutside

oftheMBBR,i.e.,nitrificationcouldhaveoccurredinbiofilmsthat

hadformedonpipe,sump,tankandCO2strippingcolumnpacking

surfaces.Thehigheralkalinitytreatment(200mg/L)mayhave

sup-portedmorenitrificationactivityoutsideoftheMBBRthanthelow

alkalinitytreatment,whichwouldexplainthelowerareal

nitrifica-tionratewithintheMBBRatthehigheralkalinity.Thishypothesis

tendstobesupportedbythehigherTANconcentrationsmaintained

duringtheloweralkalinityconditions,possiblybecauselessTAN

wasremovedonsurfacesoutsideoftheMBBRunderlowalkalinity

conditions.AsecondexplanationisalsobasedontheinletTAN

con-centrationthatwashigheratthe10mg/Lnominalalkalinity;earlier

nitrificationkineticstudiesdemonstratesthatincreasedsubstrate

concentrationresultinhigher removalrates (Chenet al.,2006;

Rustenetal.,2006),asindeedfoundinthepresentstudy

How-ever,atthelowestalkalinitytreatment,10mg/L,theMBBRoutlet

concentrationwashigher(Table3 i.e.atthislowalkalinitylevel

thesamelowoutletTANconcentrationwasnotmaintained.Thisis

indicatedalsobytheunchangedremovalefficiency(Table4 and

theeffectlikelyledtothehighersteady-stateTANlevelat10mg/L,

asdiscussedabove.Theresultsinvitetoamoredetailed

investi-gationabouttheremovalratesatdifferentinletconcentrations,

atthethreealkalinitylevels.Possibly,atabove70mg/Lalkalinity,

theremovalrateatlowerinletconcentrationsarehigher,thanat

lowalkalinity,consideringourfindingsofanunchangedefficiency

despiteasignificantlylowerinletTANconcentration.Thepresent

arealnitrificationrateswerecomparabletotheratesreportedby

Rustenetal.(2006).However,asshowninFig.8BofTerjesenetal

(2013),themeasuredremovalratesinthesametype ofRASas

inthepresentstudy,werehigheratthelowesteffluentTAN

con-centrations,thancouldbepredictedfromRustenetal.(2006).In

conclusion,futurestudiesshouldinvestigatethehypothesisthat

thisMBBRisparticularlyefficientatverylowinletTAN

concen-trations,butthatatsuchlowsubstrateconcentrationsalkalinity

shouldbeatorabove70mg/LasCaCO3

ThedissolvedCO2concentrationenteringthedegasserdidnot

differsignificantly betweenalkalinity treatments,and averaged

6.8±0.7mg/L(calculatedfromTIC),and7±0mg/L(measuredwith

probe).TheabsoluteremovalofTIC(Table5)wasgreateratthe

highestalkalinity(1.65mg/LTICremoved)thanatthetwolower

alkalinitytreatments(0.97and0.93mg/LTICremoved).Thisis

sup-portedbythefindingsof Coltetal.(2012),thatthedifferences

betweentrueCO2removal(equaltothedecreaseinTIC)andthe

apparentCO2removal(equaltothedecreaseinCO2concentration

afterre-equilibration) aresmall for lowalkalinitiesin

freshwa-terbut arelargerin highalkalinities.A tendency(p=0.11)was

Table 4

The mean areal nitrification rate (±s.e.), and mean TAN removal efficiency (±s.e.) across the MBBR for the low (10 mg/L), medium (70 mg/L), and high (200 mg/L) alkalinity treatments Values represent analyses of samples collected each 14th day

of each treatment (n = 6 per treatment).

Nominal alkalinity (as CaCO 3 )

Areal nitrification rate a

(g/d/m 2 )

TAN removal efficiency (%)

10 mg/L 0.14 ± 0.02 B 41 ± 5

70 mg/L 0.11 ± 0.01 AB 50 ± 3

200 mg/L 0.09 ± 0.02 A 43 ± 3

A,B Treatment means not sharing a common letter are significantly different (p < 0.05).

a Areal nitrification rate was calculated by multiplying the flow rate of recirculat-ing water passing through the biofilter with the change (i.e., inlet minus outlet) in the combined TAN plus NO 2 –N concentration across the biofilter; this product was then divided by the total estimated surface area of media in the biofilter.

observed however,suggesting a higherCO2 strippingefficiency

atthe10mg/Lnominalalkalinitytreatmentwhenmeasuredwith probe(Fig.2 butthiswasnotfoundwhenCO2concentrationwas calculatedfromtheTICconcentration,pH,andtemperaturedata ThemeanCO2removalefficienciesrangedfrom54to63%acrossthe 1.6mtallforced-ventilatedaerationcolumns.Thisisquite effec-tiveconsideringthatthemeanCO2inletconcentrationwasunder

7mg/L.Incomparison, Moran(2010)reports thatCO2 stripping efficiencyaveraged75–77%acrossa1.65mpackingdepth(similar

tothepresentstudy)ataninletconcentrationof10mg/L(slightly higherthanthepresentstudy)infreshwaterwhenmeasuredwith

aCO2probe.Theresultsonthemeanremovalefficiencyare com-parabletoearlierstudiesinthisRASwhichwasdesignedtoavoid

Nominal alk alinity

40 45 50 55 60 65

70

CO2 from TIC CO2 from probe

Fig 2.Mean (± s.e.) CO 2 stripping efficiency recorded across the forced ventilated cascade aeration columns at the three alkalinity treatments, i.e., 10 mg/L, 70 mg/L, and 200 mg/L as CaCO 3 Note that the white hatched bars and grey hatched bars represent stripping efficiency where CO 2 concentrations were calculated from TIC measurements or probe measurements, respectively Values represent analyses of samples collected each 14th day of each treatment (n = 6 per treatment) Strip-ping efficiency was calculated from the difference in the column inlet and outlet

Trang 7

Table 5

Total inorganic carbon (TIC) loss at the three alkalinity treatments, divided into loss through nitrification, degasser, gain from make-up water, and loss through the overflow

in the degasser sump.

a Calculated using TAN removal for the three treatments ( Table 3 system flow rate, and an alkalinity consumption of 7.07 g CaCO 3 per g TAN removed in nitrification ( Chen

et al., 2006 ).

b The make-up water TIC concentration refers to measurements on samples collected after period 10.

CO2levelsabove10mg/L(Terjesenetal.,2013),concentrationsthat

mayhaveadverseeffectsonAtlanticsalmonperformance,health

andwelfare(Fivelstad,2013)

Results from the present study did not support our fourth

hypothesis, i.e., that increased alkalinity would decrease CO2

removalefficiency.WehadassumedthatdissolvedCO2 removal

efficiency would decrease across the cascade column at high

alkalinitiesbecause the CO2 concentration at the outlet of the

columnwouldbepartlyreplenishedbyashiftinacid–base

equi-librium from this largepool of carbonate.However, Colt et al

(2012)suggests that in freshwater,there is no practical

differ-ence(i.e.,<1%difference)betweentheapparentCO2removalrate

andthetrueCO2removalratewhenthealkalinityis100mg/Las

CaCO3 (2meq/L)orless.Theynotethatthedifferencein

appar-ent CO2 removal rate and the true CO2 removal rate would

beless than or equal to5%when the alkalinityis 200mg/L as

CaCO3(4meq/L).Thus,forpracticalpurposes,CO2strippingisnot

impactedbyacid–base equilibriumatthehigheralkalinity

con-centrationstested.Fromthe perspectiveof asteady-state mass

balance,this suggeststhattheconcentrationof CO2

accumulat-inginidenticalRASthatarereceivingthesamefeedrateandare

operatedatthesamewaterflowratewouldhavethesame

steady-stateCO2concentrationexitingtheculturetank(andexitingthe

biofilter),becauseCO2productionandremovalarenotimpacted

byalkalinityunderthealkalinityrangetypicallyusedinRAS.Thus,

dissolvedCO2strippingefficiencyispredictedtobeafixed

prop-ertyofadegassingunit,irrespectiveofalkalinityunderfreshwater

conditions,whenalkalinityis≤200mg/LasCaCO3

TheTICconcentrationincreasedwithalkalinity,andwas

sig-nificantlydifferent(p<0.001) betweenalltreatments,as would

beexpected.Inthedegasserinlet,TICaveraged2.5±0.8mg/Lat

10mg/Lnominalalkalinity,21.0±1.3mg/Lat70mg/Lalkalinity,

and41.3±5.1mg/Lat200mg/Lnominalalkalinity.Atthelowest

alkalinitytreatment,nominal10mg/L,therelativeCO2-fractionin

TICincreasedbecausethepHwasalsoreduced(Table2).This

dif-ferenceinTICcompositioninfluencedthefateofthecarbonwhen

passingtheCO2 degasser.WhentheRASwaterenteredtheCO2

strippingcolumnat10mg/Lalkalinity,asmuchas38%ofthe

sys-temcarbonwasremoved.Incontrast,atthetwohigheralkalinities

only4%oftheTICwaslostwhenpassingthedegasser(Fig.3)

Overalltreatments,TICremovalfromtheRASaveragedonly

0.2–0.3g/min due tonitrificationand 1.1–1.9g/mindue toCO2

stripping (Table 5) We also estimate that TIC removal due to

thenitrificationwithintheCO2strippingcolumn(probably<10%

ofnitrificationoccurringintheMBBRbasedonsurfaceareaand

concentration),wouldamounttoonly0.02–0.03g/min.Thus,loss

ofTICtonitrificationintheCO2strippingcolumnisnegligiblein practicecomparedtothelossduetoCO2stripping

TheRASpHwassignificantlyloweratanalkalinityof10mg/L thanatthetwohigheralkalinitytreatments(Table2).Itwasalso observedthatpHoscillationsweremorepronouncedatthelowest alkalinity,sincelittlebuffercapacityexistedandthedosing con-trollerthereforeproduced moreunder-and overshootingofthe set-point.Furthermore,wefoundasignificantinverselinear corre-lation(r2=0.96,p<0.001,n=20,datalog10transformed)between alkalinity and the difference between degassersump [H+] and MBBRinlet[H+].Thus,asexpectedtheH+concentrationincreased morethroughtheculturetanksatloweralkalinity.Whenswitching alkalinitytreatments,therateofthepHdeclineacceleratedfrom

200mg/Lalkalinity,to70mg/L,andwasespeciallyrapiddowntoa

pHtypicalofthe10mg/Ltreatment(Fig.4).Thistrendisanalogous

tothesituationthatwilloccurduringalkalinitydosingmalfunction Hence,ina RASoperatedatvery lowalkalinity,thetime avail-ableforreplacingthedosingequipment,beforeadverseeffectson thefishoccurfromhighCO2,willbeconsiderablylessthanwhen operatingat70or200mg/Lalkalinity

Nominal alkalinity

0 10 20 30 40

50

B

Fig 3. Mean (± s.e.) of the relative amount of total inorganic carbon (TIC) removed across the forced ventilated cascade aeration columns at the three nominal alka-linity treatments, i.e., 10 mg/L, 70 mg/L, and 200 mg/L as CaCO 3 Values represent analyses of samples collected each 14th day of each treatment (n = 6 per treatment).

Trang 8

6.0

6.5

7.0

7.5

8.0

8.5

200 mg/L alk, pH 7.98 Time day 0, end dosing

pH 7.68, 2.5 days,

-0.12 pH /day

pH 6.4, 5 days,

-0.5 pH/day

Dosing re-establi shed

Fig 4. Effect of stopping alkalinity dosing on RAS pH, at a constant feed loading to

the system Note the accelerating decline in pH with time Alkalinity dosing was

re-established at pH 6.4 The pH values of 7.98, 7.68, and 6.4 were typical of alkalinities

of nominally 200 mg/L, 70 mg/L, and 10 mg/L as CaCO 3 , respectively.

AlkalinitydosingconstitutesacostfortheRASfarmer.Thisis

especiallyevidentwhenusingsoftmake-upwatersourcesthatare

lowinalkalinity,whichisthecaseatmanylocationsinNorway

(Kristensenetal.,2009)butnotine.g.,EasternU.S(Davidsonetal.,

2011).Whenthemake-upwatersourceislowinalkalinity,dosing

ofe.g.,bicarbonatemustbeused.Thedecisiononthecontrolled

alkalinityconcentrationmustbebasedoneffectsonthefish,

nitri-fication,degassing,pHstabilityandlossofcarbonthroughtheRAS

loop.Aninorganiccarbonbudgetwasmadeforthethree

exper-imentaltreatmentsinthepresentstudy(Table5 incorporating

componentsthatdifferedbetweentreatments.Themostsignificant

componentwasthelossofTICthroughthedegasser.The200mg/L

alkalinitytreatmentshowedthehighestabsolutelossthroughthe

degasser,aswellasfortotalinorganiccarbonlossoutofthe

sys-tem(includingTIClosttowaterflushing;Table5).Althoughonly

4%oftheTICenteringthedegasserisremovedinthe200mg/L

alka-linitytreatment,theconsiderablyhigherTICconcentrationinthis

treatmentmadetheremovalsignificant

Inconclusion,Atlanticsalmonsmoltproducersusingsoftwater

make-upsources,andwishingtokeeparelativelylowsteady-state

TANandCO2concentrationinlinewithsalmontolerances,should

aimfor70mg/Lalkalinityconsideringtherelativelylowlossof

car-boncomparedto200mg/Lalkalinity,andtheincreasedpHstability

aswellasreducedTANconcentration,compared towhenusing

10mg/Lalkalinity.Inthepresentstudy,theexperimentaldesign

precludedstudyingeffectsofalkalinityonsalmonsmolt

perfor-mance,physiology, andwelfare, andsuchinvestigationsshould

thereforebeundertakeninfuturestudies

4 Conclusions

Thisstudy wasconducted in semi-commercialscale RAS, at

typicalwaterqualitiesfoundinAtlanticsalmonsmoltproduction

facilities At these conditions, it was foundthat a low

alkalin-ity(10mg/LasCaCO3)ledtoasignificantly highersteady-state

TANconcentration,comparedwhen70or200mg/Lalkalinitywas

used.Themeanarealnitrificationratewashigheratthelowest

alkalinity;however,themeanTANremovalefficiencyacrossthe

MBBRwasnotsignificantlyaffectedbyalkalinitytreatment.The

CO2 strippingefficiencyshowedonlyatendencytowardshigher

efficiencyatthelowestalkalinity,butdifferenceswerenot signif-icant.Thus,dissolvedCO2strippingefficiencyacrossadegassing unitisindependentofalkalinityunderfreshwaterconditions,when alkalinityis≤200mg/LasCaCO3.Incontrast,therelativefractionof totalinorganiccarbonthatwasremovedfromtheRASduringCO2 strippingwasmuchhigheratalowalkalinity(10mg/L)compared

tothehigheralkalinities(70and200mg/LasCaCO3).However, whencalculatingthetotalabsolutelossofinorganiccarbonfrom RAS,itwasfoundthatthedailylosswasaboutequalat10,and

70mg/L,whereasitwashighestat200mg/Lalkalinity.pH recor-dingsdemonstratedthatthe10mg/Lalkalinitytreatmentresulted

inthelowestsystempH,thelargestincreasein[H+]acrossthefish culturetanks,aswellasgivinglittleresponsetimeincaseof alka-linitydosingmalfunction.RapidpHchangesundertherelatively acidicconditionsat10mg/Lalkalinitymayultimatelycreatefish healthissuesduetoCO2orifaluminiumorothermetalsarepresent

Inconclusion, Atlanticsalmonsmoltproducersusingsoftwater make-up sources should aimfor 70mg/Lalkalinity considering therelativelylowlossofinorganiccarboncomparedto200mg/L alkalinity,andtheincreasedpHstabilityaswellasreducedTAN concentration,comparedtowhenusing10mg/Lalkalinity

Acknowledgements

The authorswish toexpress special thanksto BrittSeljebø, KristinNerdal,andDagEgilBundgaardforwaterchemistry analy-sis.Wealsothanktworeviewersfortheirvaluablecomments.The authorsalsowishtothankthereviewers,whoprovided insight-fulcommentsandsuggestions.Thisresearchwassupportedbythe ResearchCouncilofNorwaythroughtheStrategicInstitute Pro-gram(projectno.186913/I30)“Fishwelfareandperformancein recirculatingaquaculturesystems”.Allexperimentalprotocolsand methodswereincompliancewiththeanimalwelfarerequirements

bytheNorwegianAnimalResearchAuthority.Useoftradenames doesnotimplyendorsementbyNofimaortheauthors

References

APHA, 2005 In: Eaton, A., Clesceri, L., Rice, E., Greenberg, A (Eds.), Standard methods for the examination of water and wastewater American Public Health Associa-tion, Washington, USA.

Bergheim, A., Drengstig, A., Ulgenes, Y., Fivelstad, S., 2009 Production of Atlantic salmon smolts in Europe—current characteristics and future trends Aquac Eng.

41, 46–52.

Biesterfeld, S., Farmer, G., Russell, P., Figueroa, L., 2003 Effect of alkalinity type and concentration on nitrifying biofilm activity Water Environ Res 75, 196–204.

Chen, S., Ling, J., Blancheton, J.-P., 2006 Nitrification kinetics of biofilm as affected

by water quality factors Aquac Eng 34, 179–197.

Clingerman, J., Bebak, J., Mazik, P.M., Summerfelt, S.T., 2007 Use of avoidance response by rainbow trout to carbon dioxide for fish self-transfer between tanks Aquac Eng 37, 234–251.

Colt, J., 2006 Water quality requirements for reuse systems Aquac Eng 34, 143–156.

Colt, J., Watten, B., Pfeiffer, T., 2012 Carbon dioxide stripping in aquaculture Part 1: terminology and reporting Aquac Eng 47, 27–37.

Dalsgaard, J., Lund, I., Thorarinsdottir, R., Drengstig, A., Arvonen, K., Pedersen, P.B.,

2013 Farming different species in RAS in Nordic countries: current status and future perspectives Aquac Eng 53, 2–13.

Danley, M.L., Kenney, P.B., Mazik, P.M., Kiser, R., Hankins, J.A., 2005 Effects of carbon dioxide exposure on intensively cultured rainbow trout Oncorhynchus mykiss: physiological responses and fillet attributes J World Aquac Soc 36, 249–261.

Davidson, J., Good, C., Welsh, C., Brazil, B., Summerfelt, S., 2009 Heavy metal and waste metabolite accumulation and their potential effect on rainbow trout per-formance in a replicated water reuse system operated at low or high system flushing rates Aquac Eng 41, 136–145.

Davidson, J., Good, C., Welsh, C., Summerfelt, S., 2011 The effects of ozone and water exchange rates on water quality and rainbow trout performance in replicated water recirculating systems Aquac Eng 44, 80–96.

Espmark, Å., Kolarevic, J., Åsgård, T., Willumsen, F., Lange, G., Alfredesen, J., Alver, M., Terjesen, B., 2013 Tank size in experimental design matters In: Aquaculture Europe 2013, Trondheim, Norway, p 130.

Fivelstad, S., 2013 Long-term carbon dioxide experiments with salmonids Aquac Eng 53, 40–48.

Trang 9

Fivelstad, S., Haavik, H., Løvik, G., Olsen, A.B., 1998 Sublethal effects and safe levels

of carbon dioxide in seawater for Atlantic salmon postsmolts (Salmo salar L.):

ion regulation and growth Aquaculture 160, 305–316.

Fivelstad, S., Olsen, A.B., Asgard, T., Bæverfjord, G., Rasmussen, T., Vindheim,

T., Stefansson, S., 2003a Long-term sublethal effects of carbon dioxide on

Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology,

ele-ment composition, nephrocalcinosis and growth parameters Aquaculture 215,

301–319.

Fivelstad, S., Olsen, A.B., Kløften, H., Ski, H., Stefansson, S., 1999 Effects of carbon

dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH in bicarbonate

rich freshwater Aquaculture 178, 171–187.

Fivelstad, S., Waagbø, R., Stefansson, S., Olsen, A.B., 2007 Impacts of elevated water

carbon dioxide partial pressure at two temperatures on Atlantic salmon (Salmo

salar L.) parr growth and haematology Aquaculture 269, 241–249.

Fivelstad, S., Waagbø, R., Zeitz, S.F., Hosfeld, A.C.D., Olsen, A.B., Stefansson, S., 2003b.

A major water quality problem in smolt farms: combined effects of carbon

dioxide, reduced pH and aluminium on Atlantic salmon (Salmo salar L.) smolts:

physiology and growth Aquaculture 215, 339–357.

Grace, G., Piedrahita, R., 1994 Carbon dioxide control In: Timmons, M.B., Losordo,

T.M (Eds.), Aquaculture Water Reuse Systems: Engineering Design and

Man-agement Elsevier Science, New York, NY, pp 209–234.

Grisdale-Helland, B., Helland, S.J., 1997 Replacement of protein by fat and

carbo-hydrate in diets for Atlantic salmon (Salmo salar) at the end of the freshwater

stage Aquaculture 152, 167–180.

Gutierrez, A., Kolarevic, J., Sæther, B., Bæverfjord, G., Takle, H., Medina, H., Terjesen,

B., 2011 Effects of sub-lethal nitrite exposure at high chloride background

dur-ing the parr stage of Atlantic salmon In: Aquaculture Europe 2011 Proceedings,

Rhodes, Greece, pp 1080–1081.

Hosfeld, C.D., Engevik, A., Mollan, T., Lunde, T.M., Waagbø, R., Olsen, A.B., Breck, O.,

Stefansson, S., Fivelstad, S., 2008 Long-term separate and combined effects of

environmental hypercapnia and hyperoxia in Atlantic salmon (Salmo salar L.)

smolts Aquaculture 280, 146–153.

Kern, D., 1960 The hydration of carbon dioxide J Chem Educ 37, 14–23.

Kolarevic, J., Baeverfjord, G., Takle, H., Ytteborg, E., Reiten, B.K.M., Nergård,

S., Terjesen, B.F., 2014 Performance and welfare of Atlantic salmon smolt

reared in recirculating or flow through aquaculture systems Aquaculture,

http://dx.doi.org/10.1016/j.aquaculture.2014.03.033 (in press).

Kolarevic, J., Bæverfjord, G., Åsgård, T., Oehme, M., Takle, H., Ytterborg, E.,

Grisdale-Helland, B., Helland, S., Terjesen, B., 2009 Effects of light intensity and period

on feed intake, growth and respiration in Atlantic salmon (Salmo salar) in

fresh-water In: Aquaculture Europe 2009, European Aquaculture Society, Trondheim,

Norway, pp 323–324.

Kolarevi ´c, J., Ciri ´c, M., Zühlke, A., Terjesen, B.F., 2011 On-line pH measurements in

recirculating aquaculture systems (RAS) In: Aquaculture Europe 2011, European

Aquaculture Society, Trondheim, Norway, pp 570–571.

Kolarevic, J., Selset, R., Felip, O., Good, C., Snekvik, K., Takle, H., Ytteborg, E.,

Bæver-fjord, G., Åsgård, T., Terjesen, B.F., 2013 Influence of long term ammonia

exposure on Atlantic salmon (Salmo salar L.) parr growth and welfare Aquac.

Res 44, 1649–1664.

Kristensen, T., Åtland, Å., Rosten, T., Urke, H., Rosseland, B.O., 2009 Important influent–water quality parameters at freshwater production sites in two salmon producing countires Aquac Eng 41, 53–59.

Landolt, M., 1975 Visceral granuloma and nephrocalcinosis in trout In: Ribelin, W., Migaki, G (Eds.), The Pathobiology of Fishes University of Wisconsin Press, Madison, pp 793–799.

Loyless, J.C., Malone, R.F., 1997 A sodium bicarbonate dosing methodology for ph management in freshwater-recirculating aquaculture systems Progressive Fish-Culturist, vol 59., pp 198–205.

Moran, D., 2010 Carbon dioxide degassing in fresh and saline water I: degassing performance of a cascade column Aquac Eng 43, 29–36.

Mydland, L., Rud, I., Rudi, K., Ulgenes, Y., Ibieta, P., Gutierrez, X., Reiten, B., Sum-merfelt, S., Terjesen, B., 2010 Water quality and microbial community shifts during start-up, disturbances and steady-state in a new moving bed bioreactor In: Aquaculture Europe 2010, Porto, Portugal.

Paz, J., 1984 The Effects of Borderline Alkalinity on Nitrification in Natural Water Systems Polytechnic Institute of New York, New York, pp 125.

Pfeiffer, T.J., Wills, P.S., 2011 Evaluation of three types of structured floating plastic media in moving bed biofilters for total ammonia nitrogen removal in a low salinity hatchery recirculating aquaculture system Aquac Eng 45, 51–59.

Rusten, B., Eikebrokk, B., Ulgenes, Y., Lygren, E., 2006 Design and operations of the Kaldnes moving bed biofilm reactors Aquac Eng 34, 322–331.

Skogheim, O., Rosseland, B., 1986 Mortality of smolt of Atlantic salmon, Salmo salar L., at low levels of aluminium in acidic softwater Bull Environ Contam Toxicol.

37, 258–265.

Suhr, K.I., Pedersen, P.B., 2010 Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS Aquac Eng 42, 31–37.

Summerfelt, S.T., Sharrer, M.J., 2004 Design implication of biofilter carbon diox-ide production within recirculating salmonid culture systems Aquac Eng 32, 171–182.

Summerfelt, S., Bebak-Williams, J., Tsukuda, S., 2001 Controlled systems: water reuse and recirculation In: Wedermeyer, G (Ed.), Second Edition of Fish Hatch-ery Management American Fisheries Society, Bethesda, pp 285–395.

Summerfelt, S.T., Vinci, B.J., Piedrahita, R.H., 2000 Oxygenation and carbon dioxide control in water reuse systems Aquac Eng 22, 87–108.

Tarre, S., Green, M., 2004 High-rate nitrification at low ph in suspended- and attached-biomass reactors Appl Envrion Microbiol 70, 6481–6487.

Terjesen, B.F., Summerfelt, S.T., Nerland, S., Ulgenes, Y., Fjæra, S.O., Megård Reiten, B.K., Selset, R., Kolarevic, J., Brunsvik, P., Bæverfjord, G., Takle, H., Kittelsen, A., Åsgård, T., 2013 Design, dimensioning, and performance of a research facility for studies on the requirements of fish in RAS environments Aquac Eng 54, 49–63.

U.S EPA, 1975 Process Design Manual for Nitrogen Control Office of Technology Transfer Environmental Protection Agency, Washington, DC, USA.

U.S EPA, 1983 Methods for chemical analysis of water and wastes Environmental Protection Agency, Cincinnati, OH, USA, pp 491.

Villaverde, S., García-Encina, P.A., Fdz-Polanco, F., 1997 Influence of pH over nitri-fying biofilm activity in submerged biofilters Water Res 31, 1180–1186.

Ngày đăng: 27/09/2019, 10:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm