THUỐC CHỐNG ĐÔNG MÁU, TAN HUYẾT KHỐI VÀ CHỐNG KẾT TẬP TIỂU CẦU GV: Nguyễn Thùy Dương Bộ môn Dược lực... Trình bày được cơ chế, tác dụng, chỉ định của các thuốc chống kết tập tiểu cầu: as
Trang 1THUỐC CHỐNG ĐÔNG MÁU,
TAN HUYẾT KHỐI VÀ CHỐNG KẾT TẬP TIỂU CẦU
GV: Nguyễn Thùy Dương
Bộ môn Dược lực
Trang 2Mục tiêu học tập
1 Trình bày được cơ chế, tác dụng, chỉ định của các
thuốc chống kết tập tiểu cầu: aspirin, clopidogrel
2 Trình bày được cơ chế tác dụng, chỉ định và các
tác dụng không mong muốn của heparin
3 Trình bày được đặc điểm dược động học, cơ chế
tác dụng, chỉ định, TDKMM và tương tác thuốc của đại diện nhóm thuốc chống đông kháng vitamin K: warfarin
4 So sánh giữa heparin và các heparin phân tử
lượng thấp (LMW) về cơ chế, tác dụng, chỉ định và các tác dụng không mong muốn
Trang 3ĐẠI CƯƠNG
CÁC GIAI ĐOẠN HÌNH THÀNH CỤC MÁU ĐÔNG
Co mạch Kết tập tiểu cầu
Trang 4Huyết khối động mạch
Huyết khối tĩnh mạch
Trang 5Giai đoạn thành mạch
Giai đoạn tiểu cầu
Giai đoạn đông máu
CÁC GIAI ĐOẠN HÌNH THÀNH CỤC MÁU ĐÔNG
Trang 63 giai đoạn của quá trình kết tập tiểu cầu:
kết dính - hoạt hóa – kết tập
GIAI ĐOẠN TIỂU CẦU
Trang 7GIAI ĐOẠN ĐÔNG MÁU
Trang 8Cục máu đông được ly giải, di chuyển theo dòng máu, đến tắc nghẽn ở các mạch máu nhỏ và trở thành huyết khối bệnh lý
GIAI ĐOẠN TAN CỤC MÁU ĐÔNG
Trang 9Phân biệt các khái niệm
- Cầm máu (hemostasis): ngừng chảy máu từ một mạch bị tổn thương (co mạch, bám dính và kết tập tiểu cầu, tạo fibrin)
- Huyết khối (thrombosis): hình thành cục máu đông ngay cả khi không có chảy máu Huyết khối động mạch hoặc tĩnh mạch Nguyên nhân
- Thay đổi lưu lượng dòng: rung nhĩ
- Tổn thương nội mạc: xơ vữa động mạch
- Tăng đông máu quá mức: di truyền hay mắc phải
- Thuyên tắc (embolus): vỡ cục máu đông, di chuyển, đọng lại trong lòng mạch Nguy hiểm khi đến tim, não, phổi
Trang 10Huyết khối
động mạch
suy tim, đau thắt ngực,
nhồi máu cơ tim
Đột quị
Biến chứng của huyết khối động mạch
Trang 11Huyết khối tĩnh mạch sâu và phù phổi tắc nghẽn
VTE= deep vein thrombosis (DVT) and pulmonary embolism (PE)
Trang 12Huyết khối tĩnh mạch
Cục máu đông giàu fibrin
Trang 13Thuốc tác dụng lên quá trình đông máu và tiêu fibrin
Thuốc ức chế kết tập tiểu cầu
Trang 14CÁC THUỐC TÁC ĐỘNG VÀO GIAI ĐOẠN TIỂU CẦU
Trang 15Tiểu cầu ở trạng thái nghỉ
Tiểu cầu ở trạng thái hoạt hóa
Trang 16Aspirin – Cơ chế tác dụng
Trên tiểu cầu : ức chế ưu tiên và không hồi phục
COX-1 à ngăn cản tổng hợp TXA 2 (tác nhân
acti-to prostaglandin H2 by COX-1 (Figure 20.5) Prostaglandin H2 is ther metabolized to thromboxane A2, which is released into plasma
fur-Thromboxane A2 produced by the aggregating platelets further motes the clumping process that is essential for the rapid formation of
pro-a hemostpro-atic plug Aspirin [AS-pir-in] inhibits thromboxpro-ane A2 synthesis from arachidonic acid in platelets by irreversible acetylation of a serine, preventing arachidonate from binding to the active site, thus, inhibi- tion of COX-1 (Figure 20.6) This shifts the balance of chemical mediators
to favor the antiaggregatory eff ects of prostacyclin, thereby impeding platelet aggregation The inhibitory eff ect is rapid, apparently occurring
in the portal circulation The aspirin-induced suppression of ane A2 synthetase and the resulting suppression of platelet aggregation last for the life of the anucleate platelet, which is approximately 7 to 10 days Repeated administration of aspirin has a cumulative eff ect on the function of platelets Aspirin is currently used in the prophylactic treat- ment of transient cerebral ischemia, to reduce the incidence of recurrent myocardial infarction, and to decrease mortality in pre- and post-myo- cardial infarct patients Complete inactivation of platelets occurs with
thrombox-160 mg of aspirin given daily The recommended dose of aspirin ranges from 50 to 325 mg, with side eff ects determining the dose chosen Higher doses of aspirin increase drug-related toxicities as well as the probability that aspirin may also inhibit prostacyclin production Formerly known
as “baby aspirin,” 81-mg aspirin is most commonly used in the United States Bleeding time is prolonged by aspirin treatment, causing com- plications that include an increased incidence of hemorrhagic stroke as well as gastrointestinal (GI) bleeding, especially at higher doses of the drug Aspirin is frequently used in combination with other drugs hav- ing anticlotting properties, such as heparin or clopidogrel Nonsteroidal anti-infl ammatory drugs (NSAIDs), such as ibuprofen, inhibit COX-1 by transiently competing at the catalytic site Ibuprofen, if taken concomi- tantly with, or 2 hours prior to aspirin can obstruct the access of aspirin
to the serine residue and, thereby, antagonize the platelet inhibition by aspirin Therefore, aspirin should be taken at least 30 minutes before ibu- profen or at least 8 hours after ibuprofen Although celecoxib (a selective COX-2 inhibitor, see Chapter 39) does not interfere with the antiaggre- gation activity of aspirin, there is some evidence that it may contribute
to cardiovascular events by shifting the balance of chemical mediators
in favor of thromboxane A2 Aspirin is the only NSAID that irreversibly exhibits antithrombotic effi cacy
B Ticlopidine, clopidogrel, and prasugrel
Ticlopidine [ti-KLOE-pi-deen], clopidogrel [kloh-PID-oh-grel], and grel [PRA-soo-grel] are closely related thienopyridines that also block platelet aggregation, but by a mechanism diff erent from that of aspirin
prasu-1 Mechanism of action: These drugs irreversibly inhibit the binding
of ADP to its receptors on platelets and, thereby, inhibit the vation of the GP IIb/IIIa receptors required for platelets to bind to
acti-fi brinogen and to each other (Figure 20.7).
2 Therapeutic use: Although ticlopidine and clopidogrel are similar
in both structure and mechanism of action, their therapeutic uses
Platelet cyclooxygenase-1
Aspirin
Salicylic acid
COOH OH
COOH
C O
O O
N CH H
Figure 20.6
Acetylation of cyclooxygenase-1
by aspirin.
Acetylated cyclooxygenase-1
Polypeptide of cyclooxygenase-1
Serine side chain
Damaged endothelial cells
Active
GP IIb/IIIa receptors
Ticlopidine Clopidogrel Prasugrel
Figure 20.7
Mechanism of action of ticlopidine, clopidogrel and prasugrel GP = glycoprotein.
Damaged endothelial cells
Active
GP IIb/IIIa receptors
Ticlopidine Clopidogrel
Ticlopidine Clopidogrel
Ticlopidine Prasugrel
Clopidogrel Prasugrel Clopidogrel
Ticlopidine, clopidogrel and prasugrel inhibit ADP-mediated platelet aggregation.
Ức chế nhanh, không hồi phục trong suốt chu kỳ sống của tiểu cầu
(7- 10 ngày) à Dùng liều lặp lại sẽ tạo tác dụng tích lũy trên tiểu cầu
Tác dụng ức chế tối đa ở liều 160 mg/ngày
Trang 17Đông máu - Dược lý 2
- Liều cao (500 mg – 2000 mg), giảm tổng hợp PGI2 Þ ¯ tác dụng chống kết tập
Trang 18Tương quan giữa liều aspirin và hiệu quả điều trị
FDA: Liều tấn công 160-325 mg/ngày;
Liều duy trì 75-100 mg/ngày
Liều cao không cải thiện hiệu quả điều trị nhưng làm tăng TDKMM
Aspirin – Cơ chế tác dụng
Trang 19Dự phòng huyết khối động mạch trong các trường hợp:
-Sau hội chứng mạch vành cấp: Nhồi máu cơ tim (có hoặc
không có đoạn ST chênh lên), đau thắt ngực không ổn định
-Sau can thiệp mạch vành: phẫu thuật bắc cầu, can thiệp mạch vành qua da
-Sau đột quỵ (thể nhồi máu), cơn thiếu máu cục bộ thoáng qua (TIA)
-Dự phòng tiên phát đột quỵ và nhồi máu cơ tim trên các bệnh nhân có nguy cơ cao (ví dụ, đau thắt ngực ổn định, bệnh động mạch ngoại vi, bệnh nhân có nguy cơ tim mạch cao)
Aspirin – Chỉ định
Trang 20– Coumarin: nguy cơ chảy máu, đặc biệt ở liều cao.
– Ibuprofen: ¯ tác dụng của aspirin
– Corticoid, rượu: tác dụng phụ trên tiêu hóa
– ACEI: giảm tác dụng của ACEI
ASPIRIN- TDKMM
Trang 21CÁC THUỐC CHỐNG KẾT TẬP TIỂU CẦU KHÁC
Trang 22- Chỉ định : Phối hợp với aspirin trong dự phòng tái phát nhồi máu
cơ tim, đột quỵ (thiếu máu), sau can thiệp mạch vành qua da
Clopidogrel: tiền thuốc, chuyển hóa qua CYP2C19 thành dạng có hoạt tính
Ticlodipin nhiều TDKMM hơn (giảm BC hạt, BC trung tính, giảm TC)
Trang 23CÁC THUỐC CHỐNG KẾT TẬP TIỂU CẦU KHÁC
Trang 24Thuốc ức chế receptor GP IIb/IIIa
- Cơ chế : Ức chế receptor GPIIb/IIIa
- Chỉ định : Kết hợp với aspirin (và clopidogrel) để dự phòng huyết khối trong can thiệp mạch vành qua da sau nhồi máu cơ tim/đau thắt ngực không ổn định
- Đặc điểm :
• Thời gian bán thải rất ngắn
• Chỉ dùng truyền tĩnh mạch
• Chỉ dùng ngắn hạn
Trang 25Thuốc ức chế receptor GP IIb/IIIa
be fatal Prasugrel has black box warnings for bleeding, stroke, and abrupt discontinuation in patients undergoing percutaneous coro-
nary intervention Because these drugs can inhibit CYP450, they may interfere with the metabolism of drugs such as phenytoin, warfarin,
fl uvastatin, and tamoxifen if taken concomitantly Indeed, phenytoin toxicity has been reported when taken with ticlopidine
IIIa complex By binding to GP IIb/IIIa, the antibody blocks the binding of
fi brinogen and von Willebrand factor, and, consequently, aggregation does not occur (Figure 20.8) Abciximab is given intravenously along with either heparin or aspirin as an adjunct to percutaneous coronary intervention for the prevention of cardiac ischemic complications It is also approved for unresponsive unstable angina and for prophylactic use in myocardial infarction After cessation of infusion, platelet func-
tion gradually returns to normal, with the antiplatelet eff ect persisting for 24 to 48 hours The major adverse eff ect of abciximab therapy is the potential for bleeding, especially if the drug is used with anticoagu-
lants or if the patient has a clinical hemorrhagic condition Abciximab is expensive, limiting its use in some settings.
D Eptifi batide and tirofi ban
These two antiplatelet drugs act similarly to abciximab, namely, by blocking the GP IIb/IIIa receptor (see Figure 20.8) Eptifi batide [ep-ti-
FIB-ih-tide] is a cyclic peptide that binds to GP IIb/IIIa at the site that interacts with the arginine-glycine-aspartic acid sequence of fi brino-
gen Tirofi ban [tye-roe-FYE-ban] is not a peptide, but it blocks the same site as eptifi batide These compounds, like abciximab, can decrease the incidence of thrombotic complications associated with acute coronary syndromes When intravenous (IV) infusion is stopped, these agents are rapidly cleared from the plasma, but their eff ect can persist for as long as 4 hours [Note: Only IV formulations are available, because oral preparations of these GP IIb/IIIa blockers are too toxic.] Eptifi batide and its metabolites are excreted by the kidney Tirofi ban is excreted largely unchanged by the kidney and in feces The major adverse eff ect of both drugs is bleeding Figure 20.9 summarizes the eff ects of the GP IIb/IIIa–
receptor antagonists on mortality and myocardial infarction
E Dipyridamole
Dipyridamole [dye-peer-ID-a-mole], a coronary vasodilator, is used phylactically to treat angina pectoris It is usually given in combination
pro-with aspirin or warfarin Dipyridamole increases intracellular levels of cAMP
by inhibiting cyclic nucleotide phosphodiesterase, resulting in decreased thromboxane A 2 synthesis It may potentiate the eff ect of prostacyclin to antagonize platelet stickiness and, therefore, decrease platelet adhesion
to thrombogenic surfaces (see Figure 20.2) The meager data available suggest that dipyridamole makes only a marginal contribution to the anti-
thrombotic action compare to that of aspirin In combination with farin, however, dipyridamole is eff ective for inhibiting embolization from
war-prosthetic heart valves It has been described as “inappropriate” for use in the elderly as a sole agent due to adverse GI and orthostasis problems.
Figure 20.9
Effects of glycoprotein (GP) IIb/IIIa–
receptor antagonists on the incidence of death or nonfatal myocardial infarction following percutaneous transluminal
coronary angioplasty [Note: Data are from several studies; thus,
reported incidence of complications with standard therapy, such as
heparin, is not the same for each drug.]
Tirofiban Key:
Eptifibatide Abciximab
Standard therapy plus GP IIb/IIIa antagonists Standard therapy
DEATH OR NONFATAL MYOCARDIAL INFARCTION
Abciximab Eptifibatide Tirofiban
Fibrinogen
Abciximab, eptifibatide and tirofiban block the GP IIb/IIIa receptor of platelets.
Lợi ích điều trị khi thêm các thuốc ức chế receptor GPIIb/IIIa vào phác đồ chống kết tập tiểu cầu trên bệnh nhân nhồi máu cơ tim
Trang 26Thuốc tác dụng lên quá trình đông máu và tiêu fibrin
Thuốc ức chế kết tập tiểu cầu
Trang 27Geerts WH et al Chest 2008;133:381S–453S
CÁC THUỐC CHỐNG ĐÔNG
Các thuốc chống đông đường tiêm
Heparin không phân đoạn Heparin phân tử lượng thấp Các chất ức chế gián tiếp yếu tố Xa (fondaparinux)
Các thuốc chống đông đường uống
Kháng Vitamin K Dabigatran (chất ức chế trực tiếp ytố IIa) Apixaban ( chất ức chế trực tiếp yếu tố Xa) Edoxaban, rivaroxaban
Trang 28(-) trực tiếp Yếu tố IIa, đưởng uống 2004
AT + Xa + IIa (Xa > IIa)
LMWHs 1980s
II, VII, IX, X (Protein C, S)
VKAs 1940s
Xa
(-) trực tiếp Yếu tố Xa, đường uống
2008
IIa
(-) trực tiếp Yếu tố IIa 1990s
Perzborn E et al Nat Rev Drug Discov 2011;10:61-75
LỊCH SỬ PHÁT TRIỂN THUỐC CHỐNG ĐÔNG
Trang 29Heparin không phân đoạn và heparin phân tử lượng thấp (LMWH)
LMWH » 15 monosaccarid
HEPARIN & HEPARIN PHÂN TỬ LƯỢNG THẤP
Các heparin phân tử lượng thấp
Trang 30HEPARIN - CƠ CHẾ
AT III = Antithrombin III
Trang 31HEPARIN - CƠ CHẾ
Heparin ức chế đông máu in vitro và in vivo thông qua hoạt hóa antithrombin III (AT III)
Heparin thay đổi cấu dạng không gian của ATIII, đẩy nhanh tốc
độ gắn của ATIII với các yếu tố đông máu
Heparin tách khỏi phức hợp và gắn với ATIII tiếp theo
Phức hợp
hoạt (T)
Trang 32HEPARIN - CƠ CHẾ
LMWH tăng cường lk của ATIII với ytố Xa
> IIa ( tỉ lệ 2:1 -4:1)
Fondaparinux: là chuỗi
pentasaccharid tổng hợp, có cấu trúc phân tử xác định, ức chế đặc hiệu yếu tố Xa
Trang 33Heparin: II, X (IX, XI, XII)
- Chống đông
- Tương tác với tiểu cầu
LMWH: X
HEPARIN - CƠ CHẾ
Trang 34v Heparin và heparin PTLT không qua được hang rào nhau thai =>
dự phòng và điều trị huyết khối trên PNCT
HEPARIN – CHỈ ĐỊNH
Trang 35HEPARIN – TDKMM
Chảy máu
- 1-5% BN huyết khối TM điều trị bằng UFH, it gặp hơn với LMWHs
- Theo dõi sát thời gian máu chảy, aPTT
- Cấp cứu: protamin sulfat, truyền TM chậm (1 mg protamin sulfat trung hòa 100 UI heparin)
à CCĐ: có tiền sử chảy máu, có nguy cơ chảy máu, đang có chảy máu bên trong hoặc bên ngoài cơ thể
Quá mẫn
- Heparin có nguồn gốc từ lợn
Tăng men gan
Loãng xương Þ gãy xương Ít gặp, chủ yếu ở liều cao (> 20 000 U/ngày), dùng dài ngày (3-6 tháng)
planted by the LMWHs, such as enoxaparin and dalteparin, because these agents can be conveniently injected subcutaneously on a patient weight–adjusted basis, have predictable therapeutic eff ects, and have a more predictable pharmacokinetic profi le (Figure 20.15)
Specifi cally, LMWHs do not require the same intense monitoring that heparin needs, subsequently saving laboratory costs as well as nurs-
ing time and costs Therefore, these advantages make LMWHs useful for inpatient and out patient therapy
3 Pharmacokinetics:
a Absorption: Whereas the anticoagulant eff ect with heparin
oc-curs within minutes of IV administration (or 1 to 2 hours after subcutaneous injection), the maximum anti–Factor Xa activity
of the LMWHs occurs about 4 hours after subcutaneous tion [Note: This is in comparison to the vitamin K–antagonist
injec-anticoagulants, such as warfarin, the activity of which requires 8
to 12 hours.] Heparin must be given parenterally, either in a deep subcutaneous site or intravenously, because the drug does not readily cross membranes (Figure 20.16) The LMWHsare admin-
istered subcutaneously [Note: Intramuscular administration of either agent is contraindicated because of hematoma formation.]
Heparin is often administered intravenously in a bolus to achieve immediate anticoagulation This is followed by lower doses or continuous infusion of heparin for 7 to 10 days, titrating the dose
so that the activated partial thromboplastin time (aPTT) is 1.5- to 2.5-fold that of the normal control It is usually not necessary to obtain such an index with the LMWHsbecause the plasma levels and pharmacokinetics of these drugs are predictable However, for those patients with renal impairment, the dose should be
reduced to account for decreased renal function
b Fate: In the blood, heparin binds to many proteins that neutralize
its activity, thereby causing resistance to the drug and able pharmacokinetics Heparin binding to plasma proteins is
unpredict-variable in patients with thromboembolic diseases Although generally restricted to the circulation, heparin is taken up by the monocyte/macrophage system, and it undergoes depolymeriza-
tion and desulfation to inactive products [Note: Heparin, fore, has a longer half-life in patients with hepatic cirrhosis.] The
there-inactive metabolites, as well as some of the parent heparin and LMWHs, are excreted into the urine Therefore, renal insuffi ciency also prolongs the half-life Neither heparin nor the LMWHscross the placental barrier The half-life of heparin is approximately 1.5 hours, whereas the half-life of the LMWHs is two to four times
longer than that of heparin, ranging from around 3 to 7 hours
4 Adverse eff ects: Despite early hopes of fewer side eff ects with
LMWHs,complications have proven to be similar to those seen with heparin However, exceptions are thromboembolic problems, which
are less common
a Bleeding complications: The chief complication of heparin
therapy is hemorrhage (Figure 20.17) Careful monitoring of the bleeding time is required to minimize this problem Excessive bleeding may be managed by ceasing administration of the drug
or by treating with protamine sulfate When infused slowly, the latter combines ionically with heparin to form a stable, 1:1 inac-
Heparin and LMWH are mostly confined to the vascular system
Heparin and LMWHs
Partially degraded heparin and LMWHs appear in the urine.
Figure 20.16
Administration and fate of heparin and low-molecular- weight heparins (LMWHs).
Heparin:
IV, deep SC LMWHs: SC
Figure 20.17
Adverse effects of heparin
Bleeding
A A A
Hypersensitivity
cytopenia
Thrombo-Pharm 5th 3-21-11.indb 253 3/21/11 2:24:54 PM
planted by the LMWHs, such as enoxaparin and dalteparin, because these agents can be conveniently injected subcutaneously on a patient weight–adjusted basis, have predictable therapeutic eff ects, and have a more predictable pharmacokinetic profi le (Figure 20.15)
Specifi cally, LMWHs do not require the same intense monitoring that heparin needs, subsequently saving laboratory costs as well as nurs-
ing time and costs Therefore, these advantages make LMWHs useful for inpatient and out patient therapy
3 Pharmacokinetics:
a Absorption: Whereas the anticoagulant eff ect with heparin
oc-curs within minutes of IV administration (or 1 to 2 hours after subcutaneous injection), the maximum anti–Factor Xa activity
of the LMWHs occurs about 4 hours after subcutaneous tion [Note: This is in comparison to the vitamin K–antagonist
injec-anticoagulants, such as warfarin, the activity of which requires 8
to 12 hours.] Heparin must be given parenterally, either in a deep subcutaneous site or intravenously, because the drug does not readily cross membranes (Figure 20.16) The LMWHsare admin-
istered subcutaneously [Note: Intramuscular administration of either agent is contraindicated because of hematoma formation.]
Heparin is often administered intravenously in a bolus to achieve immediate anticoagulation This is followed by lower doses or continuous infusion of heparin for 7 to 10 days, titrating the dose
so that the activated partial thromboplastin time (aPTT) is 1.5- to 2.5-fold that of the normal control It is usually not necessary to obtain such an index with the LMWHsbecause the plasma levels and pharmacokinetics of these drugs are predictable However, for those patients with renal impairment, the dose should be
reduced to account for decreased renal function
b Fate: In the blood, heparin binds to many proteins that neutralize
its activity, thereby causing resistance to the drug and able pharmacokinetics Heparin binding to plasma proteins is
unpredict-variable in patients with thromboembolic diseases Although generally restricted to the circulation, heparin is taken up by the monocyte/macrophage system, and it undergoes depolymeriza-
tion and desulfation to inactive products [Note: Heparin, fore, has a longer half-life in patients with hepatic cirrhosis.] The
there-inactive metabolites, as well as some of the parent heparin and LMWHs, are excreted into the urine Therefore, renal insuffi ciency also prolongs the half-life Neither heparin nor the LMWHscross the placental barrier The half-life of heparin is approximately 1.5 hours, whereas the half-life of the LMWHs is two to four times
longer than that of heparin, ranging from around 3 to 7 hours
4 Adverse eff ects: Despite early hopes of fewer side eff ects with
LMWHs,complications have proven to be similar to those seen with heparin However, exceptions are thromboembolic problems, which
are less common
a Bleeding complications: The chief complication of heparin
therapy is hemorrhage (Figure 20.17) Careful monitoring of the bleeding time is required to minimize this problem Excessive bleeding may be managed by ceasing administration of the drug
or by treating with protamine sulfate When infused slowly, the latter combines ionically with heparin to form a stable, 1:1 inac-
Heparin and LMWH are mostly confined to the vascular system
Heparin and LMWHs
Partially degraded heparin and LMWHs appear in the urine.
Figure 20.16
Administration and fate of heparin and low-molecular- weight heparins (LMWHs).
Heparin:
IV, deep SC LMWHs: SC
Figure 20.17
Adverse effects of heparin
Bleeding
A A A
Hypersensitivity
cytopenia
Thrombo-Pharm 5th 3-21-11.indb 253 3/21/11 2:24:54 PM
planted by the LMWHs, such as enoxaparin and dalteparin, because these agents can be conveniently injected subcutaneously on a patient weight–adjusted basis, have predictable therapeutic eff ects, and have a more predictable pharmacokinetic profi le (Figure 20.15)
Specifi cally, LMWHs do not require the same intense monitoring that heparin needs, subsequently saving laboratory costs as well as nurs-
ing time and costs Therefore, these advantages make LMWHs useful for inpatient and out patient therapy
3 Pharmacokinetics:
a Absorption: Whereas the anticoagulant eff ect with heparin
oc-curs within minutes of IV administration (or 1 to 2 hours after subcutaneous injection), the maximum anti–Factor Xa activity
of the LMWHs occurs about 4 hours after subcutaneous tion [Note: This is in comparison to the vitamin K–antagonist
injec-anticoagulants, such as warfarin, the activity of which requires 8
to 12 hours.] Heparin must be given parenterally, either in a deep subcutaneous site or intravenously, because the drug does not readily cross membranes (Figure 20.16) The LMWHsare admin-
istered subcutaneously [Note: Intramuscular administration of either agent is contraindicated because of hematoma formation.]
Heparin is often administered intravenously in a bolus to achieve immediate anticoagulation This is followed by lower doses or continuous infusion of heparin for 7 to 10 days, titrating the dose
so that the activated partial thromboplastin time (aPTT) is 1.5- to 2.5-fold that of the normal control It is usually not necessary to obtain such an index with the LMWHsbecause the plasma levels and pharmacokinetics of these drugs are predictable However, for those patients with renal impairment, the dose should be
reduced to account for decreased renal function
b Fate: In the blood, heparin binds to many proteins that neutralize
its activity, thereby causing resistance to the drug and able pharmacokinetics Heparin binding to plasma proteins is
unpredict-variable in patients with thromboembolic diseases Although generally restricted to the circulation, heparin is taken up by the monocyte/macrophage system, and it undergoes depolymeriza-
tion and desulfation to inactive products [Note: Heparin, fore, has a longer half-life in patients with hepatic cirrhosis.] The
there-inactive metabolites, as well as some of the parent heparin and LMWHs, are excreted into the urine Therefore, renal insuffi ciency also prolongs the half-life Neither heparin nor the LMWHscross the placental barrier The half-life of heparin is approximately 1.5 hours, whereas the half-life of the LMWHsis two to four times
longer than that of heparin, ranging from around 3 to 7 hours
4 Adverse eff ects: Despite early hopes of fewer side eff ects with
LMWHs,complications have proven to be similar to those seen with heparin However, exceptions are thromboembolic problems, which
are less common
a Bleeding complications: The chief complication of heparin
therapy is hemorrhage (Figure 20.17) Careful monitoring of the bleeding time is required to minimize this problem Excessive bleeding may be managed by ceasing administration of the drug
or by treating with protamine sulfate When infused slowly, the latter combines ionically with heparin to form a stable, 1:1 inac-
Heparin and LMWH are mostly confined to the vascular system
Heparin and LMWHs
Partially degraded heparin and LMWHs appear in the urine.
Figure 20.16
Administration and fate of heparin and low-molecular- weight heparins (LMWHs).
Heparin:
IV, deep SC LMWHs: SC
Figure 20.17
Adverse effects of heparin
Bleeding
A A A
Hypersensitivity
cytopenia
Thrombo-Pharm 5th 3-21-11.indb 253 3/21/11 2:24:54 PM
Giảm tiểu cầu do heparin (HIT) (1-4% BN dùng UFH)