Kiến thức : Biết các khái niệm đa thức niều biến, một biến, bậc của một đa thức.. đường vuông góc, đường xiên , hình chiếu của đường xiên, khoảng cách từ một điểm đến một đường thẳng.. K
Trang 1Ngày soạn: ……… Ngày dạy: ……… Lớp :………
ĐỀ 1
I MỤC ĐÍCH YÊU CẦU:
1 Kiến thức : Biết các khái niệm đa thức niều biến, một biến, bậc của một đa thức.
đường vuông góc, đường xiên , hình chiếu của đường xiên, khoảng cách từ một điểm đến một đường thẳng
2 Kỹ năng : Tính gía trị biểu thức đại số, thu gọn đa thức, xác dịnh bậc của đa thức,
tìm nghiệm của đa thức một biến, tính trung bình cộng, Tim một của dấu hiệu, biểu đồ… Vận dụng định lý Pitago vào tính toán, các trường hợp bằng nhau của tam giác vuông để chứng minnh các đoạn thẳng bằng nhau, các góc bằng nhau
II MA TRẬN ĐỀ:
Chủ đề kiến thức Nhận biết Thông hiểu Vận dụng TỔNG
Số câu Đ
Chủ đề 1:
Thống kê
Câu-Bài
Chủ đề 2:
Biểu thức đại số
Câu-Bài
bài2
a-bài4
bài1
b-bài4
Chủ đề 3:
Tam giác
Câu-Bài
a-bài5
Chủ đề 4:
Quan hệ các yếu
tố trong tam giác –
Các đường đồng
quy trong tam giác
Câu-Bài
d-bài5
3
2
Trang 2ĐỀ KIỂM TRA HỌC KỲ II Năm học 20… -20…
Môn: Toán − Lớp 7
Thời gian: 90 phút (không kể thời gian giao đề)
Bài 1 :
( 1 điểm ) Tính giá trị của biểu thức: 2x2 – 5x + 2 tại x = -1 và tại
1 2
x
Bài 2:
( 1 điểm )
Tính tích của các đơn thức sau rồi xác định hệ số và bậc của tích tìm được
2
1
2xy ; 3xyz ; 2x z2
Bài 3:
(2 điểm )
Kết quả bài thi môn toán HK1 của 20 học sinh lớp 7 được ghi lại như sau:
2 5 7 6 9 8 7 6 4 5
4 6 6 3 10 7 10 8 4 5 a/ Dấu hiệu cần tìm hiểu ở đây là gì? Tính số giá trị của dấu hiệu b/ Lập bảng “tần số” và tính số trung bình cộng của dấu hiệu
Bài 4 :
( 2 điểm )
Cho hai đa thức:
P(x)5x5 3x 4x4 2x3 6 4x2
Q(x)
4
a/ Sắp xếp mỗi hạng tử của đa thức theo luỹ thừa giảm cuả biến
b/ Tính: P(x) +Q(x); P(x) -Q(x) c/ Chứng tỏ rằng x = - 1 là nghệm của P(x) nhưng không là nghiệm của Q(x)
Bài 5 :
( 4 điểm ) Cho Δ ABC vuông tại A, có BC = 10cm ,AC = 8cm Kẻ đường phângiác BI (IAC) , kẻ ID vuông góc với BC (DBC)
a/ Tính AB
b/ Chứng minh Δ AIB = Δ DIB
c/ Chứng minh BI là đường trung trực của AD d/ Gọi E là giao điểm của BA và DI Chứng minh BI vuông góc với EC
ĐỀ ĐỀ NGHỊ
Trang 3-Hết -HƯỚNG DẪN CHẤM BÀI KIỂM TRA HỌC KÌ II LỚP 7 – NĂM HỌC 20 – 20
Bài 1: Tại x =-1 ta có: 2(-1)2 - 5(-1) + 2
= 2 + 5 + 2 = 9
0,25 0,25 Tại x = 1 2ta có: 2 2 1 1 5 2 2 2
= 2
1 5 2 4 2 = 0 0,25 0,25 Vậy giá trị của biểu thức trên tại x = -1 là 9 ; tại x = 1 2 là 0 Bài 2 : Ghi được : 2 2 1 3 2 2xy xyz x z
0,25 Thu gọn 3x y z4 3 2
3x y z4 3 2có hệ số là -5
có bậc 9
0,25 0,25 0,25 Bài 3 : a/ Dấu hiệu cần tìm hiểu là điểm bài thi môn toán HK1 của mỗi HS
Số các giá trị là 20
0,5 0,5 b/ Lập đúng bảng tần số
Tính đúng giá trị trung bình bằng 6,1
0,5 0,5 Bài 4 : a/ Sắp xếp : P(x) = 5x5 4x4 2x3 4x2 3x 6
Q(x) = 5 4 3 2 1 2 2 3 4 x x x x x
0,25 0,25 b/ Tính tổng : P(x) + Q(x) = 5 4 3 2 1 4 2 4 7 2 6 4 x x x x x
P(x) – Q(x) = 5 4 2 3 6 6 4 5 4 x x x x
0,5 0,5
Trang 4c/ Ta có P(-1) = ….= 0 Chứng tỏ -1 là nghiệm của P(x)
Q(-1) = …0 Chứng tỏ -1 không phải là nghiệm của Q(x)
0,25 0,25
Bài 5 Hình vẽ phục vụ câu a,b
phục vụ câu c,d
Câua(1điểm)Áp dụng định lý
Pytago
AB2 BC2 AC2 0,5
Tính đúng AB = 6cm 0,5
I A E
0,25 0,25
0,5 0,5
Câub (1điểm)
Ta có: BAI BDI 90 0
ABI DBI
BI cạnh chung
Vậy Δ AIB = Δ DIB(ch,gn)
( Thiếu một yếu tố -0,25, thiếu hai yếu tố không cho điểm cả câu, thiếu
kết luận tam giác bằng nhau -0,25 )
0,75 0,25
Câuc (1điểm)
Ta có : BA = BD và IA = ID ( các cạnh tương ứng của Δ AIB = Δ
DIB )
Suy ra B và I nằm trên trung trực của AD
Kết luận BI là đường trung trực của AD
0,5 0,25 0,25
Câud (0,5điểm)
Ta có : CA BE và ED BC hay CA và ED là đường cao Δ BEC
Suy ra I là trực tâm Δ BEC Vậy suy ra BI EC
0,25 0,25
Trang 5ĐỀ II
I MỤC ĐÍCH YÊU CẦU:
1 Kiến thức : Biết các khái niệm đa thức niều biến, một biến, bậc của một đa thức.
đường vuông góc, đường xiên , hình chiếu của đường xiên, khoảng cách từ một điểm đến một đường thẳng
2 Kỹ năng : Tính gía trị biểu thức đại số, thu gọn đa thức, xác dịnh bậc của đa thức,
tìm nghiệm của đa thức một biến, tính trung bình cộng, Tim một của dấu hiệu, biểu đồ… Vận dụng định lý Pitago vào tính toán, các trường hợp bằng nhau của tam giác vuông để chứng minnh các đoạn thẳng bằng nhau, các góc bằng nhau
II MA TRẬN ĐỀ BÀI:
Tên Chủ đề Nhận biết Thông hiểu
Vận dụng
Cộng
Cấp độ thấp Cấp độ
cao
1 Thống kê Biết
được dấu hiệu điều tra, cách tính số
Tb cộng của dấu hiệu
Sử dụng được công thức để tính số TB cộng của dấu hiệu, tìm được mốt
Số câu :
Số điểm:
TL %
2 ( 1a, 1b)
1 đ
1 ( 1c,1d)
1 đ
3
2 đ= 20%
2 Biểu thức
đại số
Hiểu được cách tính tích 2 đơn thức ,cộng trừ
đa thức
Biết tính giá trị của một BTĐS, biết cách thu gọn, sắp xếp, thu gọn đa thức Tìm nghiệm của
đa thức 1 bậc nhất
Số câu :
Số điểm: TL
%
1 (3a,3b) 1,5đ
( 2a, 2b) 2,5 đ
4
4 đ= 40%
3 Tam giác Hiểu được các Vận dụng định lý
Trang 6t/c của tam giác cân, tam giác vuông để chứng
tỏ sự vuông góc;
PyTa Go để tính
độ dài đoạn thẳng
Số câu :
Số điểm : TL
%
0,5 ( 4) 0,5 đ
0,5( 4)
1 đ
1 1,5 đ= 15%
4 Các đường
đồng qui trong
tam giác
Vận dụng t/c các đường trong tam giác để c/m sự vuông góc
Vận dụng tổng 3 góc tam giác để tính số đo góc
Số câu :
Số điểm:
1 ( 5a) 1,25 đ
1 ( 5b) 1,25đ
2 2,5 đ= 25%
Tổng số câu
Tổng điểm
TL %
2
1 đ
=10%
3 3,5 đ = 35%
4 1
5,5 đ = 55%
10 10đ=100
%
III ĐỀ BÀI:
Bài 1: (2 điểm)
Điểm kiểm tra 1 tiết môn Toán của các học sinh lớp 7/1 được tổ trưởng ghi lại như sau:
10 5 4 8
5 7 8 3
8 8 6 7
8 10 6 7
9 8 6 6
7 8 6 9
8 6 10 6
9 7 5 7
9 3 5 2
8 3 4 3
Trang 7a) Dấu hiệu cần tìm hiểu ở đây là gì ?
b) Lập bảng “tần số”
c) Tính số trung bình cộng của dấu hiệu
d) Tìm mốt của dấu hiệu
Bài 2: (2,5 điểm)
Cho đa thức: A(x) =6+ 3x3 – 2x +2 x 2 – 3x 3 – x 2 - 3x
a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm dần của biến
b) Tính A(-1) và A(2) và chỉ ra nghiệm của A(x)
Bài 3: (1,5 điểm)
a)Tính tích các đơn thức sau :
1
3 xy2 và – 6x3yz 2
b) Tìm đa thức M biết :
M + x2 – 3xy + y2 = 4x2 – 3xy – y2
Bài 4: (1,5 điểm)
Cho tam giác DEF cân tại D có đường trung tuyến DI (I thuộc EF)
Biết DE = 10 cm; EF = 12 cm
Tính DI ?
Bài 5: (2,5 điểm)
Cho tam giác ABC vuông tại A Đường phân giác BE, kẻ EH vuông góc với BC ( H thuộc BC ) Chứng minh :
a) Δ ABE=Δ HBE
b) BE là đường trung trực của AH
b) AE < EC
Trang 8ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM
ĐỀ KIỂM TRA HỌC KỲ II, NĂM 20 -20
MÔN TOÁN LỚP 7
M
Bài1
: a)
b)
c)
d)
Dấu hiệu là: Điểm kiểm tra 1 tiết môn Toán của học sinh lớp 7/1 0,5 đ
Bài
2: a)
b)
A(x) = 6+ 3x3– 3x3 +2x2- x2– 2x - 3x
A(–1) = (–1)2 - 5(–1) +6 = 12
A(2) = 22 - 5 2 +6 = 0
Vì A(2) = 0 nên x = 2 là nghiệm của đa thức A(x)
0,5 đ 0,5đ 0,5đ
Bài3
: a)
1
3 xy2 (– 6x3yz2) =
1
3 .(–6).( xy2).(x3yz2) = – 2x4y3z2
0,5 đ
b) M =.(4x
2 – 3xy – y2) - (x2 – 3xy + y2) = 4x2 – 3xy - y2 - x2 + 3xy - y2
= 3x2 – 2y2
0,25 đ 0,25 đ 0,5 đ
Bài
4
- Tam giác DEF cân tại D, nên trung tuyến DI cũng
là đường cao ⇒ DI ¿ EF
- Do đó Δ DEI vuông tại I, có:
DE = 10 cm và EI = EF : 2 = 6 cm Suy ra DI DE2 EI2 102 62 8 cm
0,5 đ
0,5 đ 0,5 đ
Bài
5: a)
D
I
Trang 9b)
Chứng minh : Δ ABE=Δ HBE ( Cạnh huyền –Góc nhọn) 0,75 đ
c/minh Δ ABH cân tại B
Suy ra được BE là đường trung trực của AH
0,5 đ 0,25đ
* Ghi chú: - Học sinh giải cách khác đúng vẫn chấm điểm tối đa.
- Đối với các bài hình học, có hình vẽ đúng mới chấm điểm bài làm
Đề 3
I MỤC ĐÍCH YÊU CẦU:
1 Kiến thức : Biết các khái niệm đa thức niều biến, một biến, bậc của một đa thức.
đường vuông góc, đường xiên , hình chiếu của đường xiên, khoảng cách từ một điểm đến một đường thẳng
2 Kỹ năng : Tính gía trị biểu thức đại số, thu gọn đa thức, xác dịnh bậc của đa thức,
tìm nghiệm của đa thức một biến, tính trung bình cộng, Tim một của dấu hiệu, biểu đồ… Vận dụng định lý Pitago vào tính toán, các trường hợp bằng nhau của tam giác vuông để chứng minnh các đoạn thẳng bằng nhau, các góc bằng nhau
I Ma trận đề
I Ma trận đề
Cấp độ
Chủ đề Nhận biết Thông hiểu
Vận dụng
Cộng Cấp độ
thấp
Cấp độ cao
1.Thống kê
Trang 10Số câu 1 1 2
Số điểm 1
B 1 - 1
1
B 1 - 2
2
2 Biểu thức
đại số
Số câu
Số điểm
1.5
B 3 - 1
1.5
B 2 - 2
3
3 Tam giác.
Quan hệ các
yếu tố trong
tam giác
Số câu
Số điểm
1
B4 - 1
1
B 3
2
B 4 - 2,3
1
B 4 - 3
5
Tổng số câu
Tổng số điểm
III Đề bài
Bài 1: (2đ)
Một giáo viên theo dõi thời gian làm một bài tập( tính bằng phút) của 30 học sinh(ai cũng làm được) và ghi lại bảng sau:
10 5 8 9 7 8 9 14 8 8
5 7 8 10 9 8 10 7 14 8
9 8 9 9 9 9 10 5 5 14
1) Dấu hiệu ở đây là gì ? Nêu các giá trị khác nhau của dấu hiệu
2) Lập bảng tần số Tính số trung bình cộng Tìm Mốt của dấu hiệu
Trang 11Bài 2: (3đ) Cho 2 đa thức:
P(y) = y3 + 4 - 3y - y2 + y
Q(y) = 2y 2 - y3 + 1 - 3y2
1) Thu gọn và sắp xếp các hạng tử của 2 đa thức theo lũy thừa giảm dần của biến rồi
tìm bậc của chúng
2) Tính M(y) = P(y) + Q(y) ; Tính giá trị của M(y) tại y = -1
Bài 3: (1đ)
Cho ABC có góc A = 800; góc B = 600 Hãy so sánh các cạnh của ABC
.Bài 4: (4đ)
Cho ABC vuông tại A, đường phân giác BD (D AC) Kẻ DE BC (E BC)
Gọi M là giao điểm của AB và DE CM:
1) BA = BE; AD = DE
2) BD là đường trung trực của AE
3) AE // CM
Trang 12Trang 12
1 1 Dấu hiệu là thời gian làm 1 bài tập của mỗi học sinh
Số các giá trị khác nhau của dấu hiệu là 6 đó là:
5;7;8;9;10;14
0.5 0.5
2 Bảng tần số:
Dấu hiệu (X)
Tần
số (n)
0
Tính số trung bình cộng: X 8.6
Mốt là 8 và 9
0.5
0.25 0.25
2 1 Thu gọn P(x)= y3 - y2 - 2y + 4 bậc 3
Q(x)= -y3 -y2 - +1 bậc 3
1.5
2 M(y)= - 2y2 - 2y + 5
Giá trị M(y)= 5 tại y = -1
0.75 0.75
3 Tính góc C = 400
Do: 400 < 600 < 800 góc C < góc B < góc A Suy ra: AB < AC < BC ( định lí )
0.25 0.25 0.25 0.25
4 Hình vẽ đúng
GT , KL đúng
B
E
A C
D M
0.5 0.5
1 ABD = EBD (ch- gn)
BA = BE ( 2 cạnh tương úng) AD =DE
1
2 AB = BE B thuộc trung trực của AE (1)
AD = DE D thuộc trung trực của AE (2)
Từ (1) và (2) BD là đường trung trực của AE
1
3 CM được BD MC
Mà: BD AE (cmt) Suy ra AE // CM
0.75 0.25