1. Trang chủ
  2. » Giáo án - Bài giảng

Chủ đề 5 phương trình đại số

24 54 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 626,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Một số dạng sau đây ta thường dùng đặt ẩn phụ... Phương trình tương đương:... Vậy phương trình có nghiệm duy nhất x 2.. Vậy phương trình có hai nghiệm... a Vì x 1 không là nghiệm của

Trang 1

Ta mong muốn vế phải có dạng: (AxB)2

Trang 4

x x

3 212

Trang 5

Một số dạng sau đây ta thường dùng đặt ẩn phụ

Dạng 1: Phương trình trùng phương: 4 2  

axbx  c a (1)

Trang 6

2 2

0

x x Phương trình tương đương:

Trang 7

Vậy phương trình có nghiệm duy nhất x 2

Chú ý: Với bài 2 ta có thể giải bằng cách khác như sau: Trước hết ta có BĐT:

Trang 8

* t  6 x23x  6 0 phương trình vô nghiệm

* t 4 x23x   4 0 x 1;x 4 Vậy phương trình có hai nghiệm

Trang 9

a) Vì x 1 không là nghiệm của phương trình nên chia cả hai vế cho

t   xx  phương trình vô nghiệm

b) Đây là phương trình bậc 6 và ta thấy các hệ số đối xứng do đó ta có thể

áp dụng cách giải mà ta đã giải đối với phương trình bậc bốn có hệ số đối xứng

Ta thấy x0 không là nghiệm của phương trình Chia 2 vế của phương trình cho 3

Trang 11

aba b  ab Ta viết lại phương trình thành:

2

25

115

x x

1

x

x x

Trang 12

    phương trình vô nghiệm

b) Để ý rằng nếu x là nghiệm thì x0 nên ta chia cả tử số và mẫu số

vế trái cho x thì thu được: 12 3 1

Trang 15

5) Do x0 không phải là nghiệm của phương trình, chia hai vế cho

Trang 16

7) Do x0 không là nghiệm của phương trình, chia hai vế của phương

Trang 17

k   nên phương trình (8) là phương trình

Trang 18

25 1454

Trang 19

Điều kiện x        7; 6; 5; 4; 3; 2; 1; 0 Biến đổi phương trình thành

uu  u   với mọi u Do đó phương trình (*)

vô nghiệm Vậy phương trình đã cho có nghiệm duy nhất 7

2

x 

13)

Lời giải:

Trang 20

Do x0 không là nghiệm của phương trình nên chia cả tử và mẫu của mỗi

phân thức ở vế trái của phương trình cho x, rồi đặt y 4x 7

Trang 22

t xt x

  ĐK: t5 ,x t  x Khử mẫu thức ta được PT tương đương

Trang 24

(thỏa mãn điều kiện)

Vậy tập nghiệm của PT(2) là 9 73 9; 73

Ngày đăng: 06/08/2019, 13:32

🧩 Sản phẩm bạn có thể quan tâm

w