Mệnh đề nào dưới đây đúng?. Mệnh đề nào dưới đây đúng?. Mệnh đề nào dưới đây đúng ?... Trong khoảng thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol
Trang 1SỞ GD-ĐT LONG AN ĐỀ KIỂM TRA 1 TIẾT – NĂM HỌC 2017-2018 TRƯỜNG THPT PHAN VĂN ĐẠT MÔN: TOÁN- Giải tích 12, CHƯƠNG 3
Thời gian: 45 phút (không kể thời gian phát đề)
Hình thức: trắc nghiệm
Lớp:………
MA TRẬN ĐỀ KIỂM TRA
Cấp độ
Chủ đề Nhận biết Thông hiểu
Vận dụng
Cộng
Cấp độ thấp Cấp độ cao
Nguyên hàm
Biết dựa vào định nghĩa,tính chất và bảng nguyên hàm để nhận biết nguyên hàm của các hàm số
Biết tìm nguyên hàm của một số hàm số đơn giản
Biết sử dụng các phương
nguyên hàm của các hàm số
Tìm một hàm
số cụ thể nhờ
nguyên hàm
Số câu:4
Số điểm:1.6
Số câu:2
Số điểm: 0.8
Số câu:2
Số điểm: 0.8
Số câu:1
Số điểm: 0.4
Số câu: 9
Số điểm: 3.6
Tích phân
Biết dựa vào định nghĩa, tính chất để tính các tích phân đơn giản
Biết tìm tích phân của một số hàm số đơn giản
Biết sử dụng các phương pháp tính tích phân để tính tích phân của một số hàm số
Biết sử dụng tích phân để giải quyết bài
toán thực tế
Số câu:2
Số điểm: 0.8
Số câu:3
Số điểm: 1.2
Số câu: 3
Số điểm: 1.2
Số câu:1
Số điểm:0.4
Số câu: 9
Số điểm: 3.6
Ứng dụng
Nhận biết được công thức tính diện tích, thể tích
Tính được diện tích, thể tích của một số hình giới hạn bởi các hàm số đơn giản
Tính được diện tích, thể tích một số hình phải xác định các cận
Tính được thể tích một số hình phải căn cứ vào hình vẽ để xác định
Số câu:2
Số điểm: 0.8
Số câu:2
Số điểm: 0.8
Số câu:2
Số điểm: 0.8
Số câu:1
Số điểm: 0.4
Số câu: 7
Số điểm: 2.8
Tổng
Số câu:8
Số điểm: 3.2
Số câu: 7
Số điểm: 2.8
Số câu: 7
Số điểm: 2.8
Số câu: 3
Số điểm: 1.2
Số câu:
25
Số điểm: 10
Trang 2Câu 1: [2D3-1.1-1] Tìm họ nguyên hàm F x của hàm số f x( ) 3sinx 2
x
A F x( ) 3cosx2ln x C B F x( ) 3cos x2 ln x C .
C F x( ) 3cosx2ln x C D F x( ) 3cos x2ln x C .
Câu 2: [2D3-1.1-1] Công thức nào sau đây sai?
A cos dx xsinx C B a x a xd xC
C 12dx 1 C x 0
cos x x xC C
Câu 3: [2D3-1.1-1] Trong các khẳng định sau, khẳng định nào là sai?
A Nếu f x , g x là các hàm số liên tục trên R thì f x g x dx f x dx g x dx
B Nếu F x và G x đều là nguyên hàm của hàm số f x thì F x G x (với C là C
hằng số)
C Nếu các hàm số u x ,v x liên tục và có đạo hàm trên R thì
( ) ( ) ( ) ( ) ( ) ( )
u x v x dx v x u x dx u x v x
D F x x2 là một nguyên hàm của f x 2x
Câu 4: [2D3-1.1-1] Tìm tất cả các nguyên hàm của hàm số f x cos 2x là
A 1s in2
2
F x x C B 1s in2
2
F x x C
C F x s in2x C D F x sin2 x
Câu 5: [2D3-2.1-1] Tìm nguyên hàm F x của hàm số f x e x1 3 e2x
A F x e x3e 3x C B F x e x3ex C
C F x e x3ex C D F x e x3e2x C
Câu 6: [2D3-2.1-1]Xétf x là một hàm số liên tục trên đoạn a b, , (với a b ) và F x là một
nguyên hàm của hàm sốf x trên đoạn a b, Mệnh đề nào dưới đây đúng?
A 3 5 d 3 5
b
b a a
f x x F x
b
b a a
f x x F x
C 2 d 2
b
a
f x x F b F a
b
a
f x x F b F a
Câu 7: [2D3-3.1-1]Cắt một vật thể T bởi hai mặt phẳng P và Q vuông góc với trục Ox lần
lượt tại x và 1 x Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm 2 x1 x 2 cắt
T theo thiết diện có diện tích là 6 x2 Tính thể tích V của phần vật thể T giới hạn bởi hai mặt phẳng P và Q
A V 28 B V 28 C V 14 D V 14
Trang 3Câu 8: [2D3-3.1-1]Cho hàm số y f x liên tục trên đoạn a b; Diện tích hình phẳng giới hạn bởi
đường cong y f x , trục hoành, các đường thẳng x a , x b là
A d
b
a
f x x
b
a
f x x
a
b
f x x
b
a
f x x
Câu 9: [2D3-1.4-2] Tìm 2 3 2
dx
x x
A ln 2
1
x C x
1 ln 2
x C x
C ln(x2)(x 1) C D ln 1 ln 1
x x
Câu 10: [2D3-1.6-2] Trong các hàm số f x dưới đây, hàm số nào thỏa mãn đẳng thức
.sin d .cos cos d
f x x x f x x x x x ?
A f x xln x B f x x.ln x C
ln
x
ln
x
f x
2
1 d ln 5 ln 3 ,
2x 1 x m n m n
2
2
P C P 1 D P1
Câu 12: [2D3-2.1-2] Tính tích phân
0
2 d 4
x bằng cách đặt x 2 sint Mệnh đề nào dưới đây đúng?
A 1
0
2 d
4
0
2 d
3
0
d
6
0
d
Câu 13: [2D3-2.6-2] Giá trị của tích phân
2 2 0 cos d
I x x x được biểu diễn dưới dạng
2
.
a ba b,
Khi đó tích a b bằng
32
16
64
Câu 14: [2D3-3.1-2] Gọi Slà hình phẳng giới hạn bởi đồ thị hàm số : 1
1
x
x
và các trục tọa độ Khi đó giá trị của S bằng
A Sln 2 1 đvdt B Sln 4 1 đvdt
C Sln 4 1 đvdt D Sln 2 1 đvdt
Câu 15: [2D3-3.3-2] Thể tích của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường có
phương trình
1
2 2
y x e , trục Ox, x1, x2 quay một vòng quanh trục Ox bằng:
Trang 4Câu 16: [2D3-1.1-3]Tìm hàm số F x , biết rằng 12
sin
F x
xvà đồ thị của hàm số F x đi qua
6
A F x cotx 3 B 1 3
sin
F x
x
C F x cotx 3 D F x tanx 3
Câu 17: [2D3-1.5-3] Nguyên hàm d
2 tan 1
x
x
5 5
x
x
5 5
5 5
x x x C
Câu 18: [2D3-2.1-3] Cho n là số tự nhiên sao cho 1 2
0
1
20
n
x x x
0 sinn xcos dx x
A 1
1
1
1
20
Câu 19: [2D3-2.4-3] Tìm tất cả các số thực dương m để
2
0
ln 2
m x x
Câu 20: [2D3-2.6-3] Biết xlnx1 d xax2bx c lnx 1 mx2nx p , với , , , , ,a b c m n p
Tính S a2b2 c2
2
4
S D S2
Câu 21: [2D3-3.1-3]Gọi S là diện tíchhình phẳng giới hạn bởi đồ thị : 2 1
1
x
C y
x
, tiệm cận ngang
của C , trục tung và đường thẳng x a a 0 Tìm ađể S ln 2017
A a32017 1 B 2017 1
3
a C a2016 D a 2017 1
Câu 22: [2D3-3.7-3] Một ô tô đang chuyển động đều với vận tốc 12m s thì người lái đạp phanh; từ
thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v t 2 12t m s (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh) Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Câu 23: [2D3-3.6-4] Cho hàm số y f x Đồ thị của hàm số y f x như hình bên Đặt
g x f x x Mệnh đề nào dưới đây đúng ?
Trang 5A. 0
2
g g g
2
g g g
C. 0
2
g g g
2
g g g
.
Câu 24: [2D3-3.7-4] Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t
(h) có đồ thị vận tốc như hình bên Trong khoảng thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh I 2;5 và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành Tính quãng đường mà vật di chuyển được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm)
A 33
3 km B 15 km C 12 km D 35
3 km
Câu 25: [2D3-3.2-4] Xét hình phẳng D giới hạn bởi các đường 2
3 , 0, 0
y x y x Gọi
0;9 , ;0
A B b 3 b 0 Tìm b để đoạn thẳng AB chia D thành hai phần có diện tích
bằng nhau
2
2
b
Trang 6BẢNG ĐÁP ÁN
HƯỚNG DẪN GIẢI CHI TIẾT Câu 26: [2D3-1.1-1] Tìm họ nguyên hàm F x của hàm số f x( ) 3sinx 2
x
A F x( ) 3cosx2ln x C B F x( ) 3cos x2 ln x C .
C F x( ) 3cosx2 ln x C D F x( ) 3cos x2 ln x C .
Hướng dẫn giải
Chọn A
3sin 2 3 sin 2 1d 3cos 2 ln
Câu 27: [2D3-1.1-1] Công thức nào sau đây sai?
A cos dx xsinx C B a x a xd xC
C 12dx 1 C x 0
cos x x xC C
Hướng dẫn giải
d
ln
x
a
Câu 28: [2D3-1.1-1] Trong các khẳng định sau, khẳng định nào là sai?
A Nếu f x , g x là các hàm số liên tục trên R thì f x g x dx f x dx g x dx
B Nếu F x và G x đều là nguyên hàm của hàm số f x thì F x G x (với C là C
hằng số)
C Nếu các hàm số u x ,v x liên tục và có đạo hàm trên R thì
( ) ( ) ( ) ( ) ( ) ( )
u x v x dx v x u x dx u x v x
D F x x2 là một nguyên hàm của f x 2x
Hướng dẫn giải
Ta
cóu x v x x( ) ( )d v x u x x( ) ( )d u x v x( ) ( ) v x u x( ) ( ) d x u x v x( ) ( ) d x u x v x ( ) ( )C
Câu 29: [2D3-1.1-1] Tìm tất cả các nguyên hàm của hàm số f x cos 2x là
A 1s in2
2
F x x C B 1s in2
2
F x x C
C F x s in2x C D F x sin2 x
Hướng dẫn giải
Trang 7Câu 30: [2D3-2.1-1] Tìm nguyên hàm F x của hàm số f x e x1 3 e2x
A F x e x3e 3x C B F x e x3ex C
C F x e x3ex C D F x e x3e2x C
Hướng dẫn giải
Chọn B
dx x1 3 2x dx x 3 xdx x 3 x
f x e e e e e e C
Câu 31: [2D3-2.1-1]Xétf x là một hàm số liên tục trên đoạn a b, , (với a b ) và F x là một nguyên hàm của hàm sốf x trên đoạn a b, Mệnh đề nào dưới đây đúng?
A 3 5 d 3 5
b
b a a
f x x F x
b
b a a
f x x F x
C 2 d 2
b
a
f x x F b F a
b
a
f x x F b F a
Lờigiải Chọn D
Theo định nghĩa Tích phân trong SGK trang 105 ta có: d
b
b a a
f x x F x F b F a
Câu 32: [2D3-3.1-1] Cắt một vật thể T bởi hai mặt phẳng P và Q vuông góc với trục
Oxlần lượt tại x và 1 x Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm 2 x1 x 2 cắt T theo thiết diện có diện tích là 6 x2 Tính thể tích V của phần vật thể T giới hạn bởi hai
mặt phẳng P và Q
A V 28 B V 28 C V 14 D V 14
Hướng dẫn giải Chọn C
Ta có:
2
2
1 1
V x dx x
Câu 33: [2D3-3.1-1]Cho hàm số y f x liên tục trên đoạn a b; Diện tích hình phẳng giới hạn bởi đường cong y f x , trục hoành, các đường thẳng x a , x b là
A d
b
a
f x x
b
a
f x x
a
b
f x x
b
a
f x x
Hướng dẫn giải Chọn A
Theo định nghĩa ta có d
b
a
S f x x
Câu 34: [2D3-1.4-2] Tìm 2 3 2
dx
x x
Trang 8A ln 2
1
x
C x
1 ln 2
x C x
C ln(x2)(x 1) C D ln 1 ln 1
Hướng dẫn giải
Chọn A
2
( 1) ( 2)
1
x C x
Câu 35: [2D3-1.6-2] Trong các hàm số f x dưới đây, hàm số nào thỏa mãn đẳng thức
.sin d .cos cos d
A f x xln x B f x x.ln x C
ln
x
ln
x
f x
Hướng dẫn giải
Chọn C
Khi đó f x .sin dx x f x .cosx f x .cos dx x
ln
2
1
d ln 5 ln 3 ,
2x 1 x m n m n
2
2
P C P 1 D P1
Hướng dẫn giải
2
Suy ra 1; 1
2
2
P m n
Câu 37: [2D3-2.1-2] Tính tích phân
0
2 d 4
x
bằng cách đặt x 2 sint Mệnh đề nào dưới đây đúng?
A 1
0
2 d
4
0
2 d
3
0
d
6
0
d
Hướng dẫn giải
Đặt: x 2 sint dx 2 cos dt t
Trang 90 0
1
6
0 2
2 cos d 2 cos d 2d 2
3
2 cos
4 4 sin
t t
Câu 38: [2D3-2.6-2] Giá trị của tích phân
2 2 0 cos d
I x x x được biểu diễn dưới dạng
2
.
a ba b,
Khi đó tích a b bằng
32
16
64
Hướng dẫn giải
Chọn D
2
u x
1 1sin 2
0
2
2
2
cos 2 2
1 1
2
16 4
Theo giả thiết I a.2b
1 16 1 4
a b
1 64
a b
Câu 39: [2D3-3.1-2] Gọi Slà hình phẳng giới hạn bởi đồ thị hàm số : 1
1
x
x
và các trục tọa
độ Khi đó giá trị của S bằng
A Sln 2 1 đvdt B Sln 4 1 đvdt
C Sln 4 1 đvdt D Sln 2 1 đvdt
Hướng dẫn giải
Chọn B
Trang 10Phương trình hoành độ giao điểm H và trục Ox là: 1 0 1
1
x
x x
Giao điểm H và trục Oy là: 0; 1
Vậy diện tích hình phẳng giới hạn bởi đồ thị hàm số : 1
1
x
x
và các trục tọa độ là:
1 0
x
Câu 40: [2D3-3.3-2] Thể tích của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường có phương trình
1
2 2
y x e , trục Ox, x1, x2 quay một vòng quanh trục Ox bằng:
Hướng dẫn giải
Chọn B
1
1
Câu 41: [2D3-1.1-3]Tìm hàm số F x , biết rằng 2
1 sin
F x
xvà đồ thị của hàm số F x đi qua
6
A F x cotx 3 B 1 3
sin
F x
x
C F x cotx 3 D F x tanx 3
Hướng dẫn giải
Chọn C
Theo giả thiết ta có 12 cot
sin
Mặt khác vì đồ thị hàm số F x đi qua điểm ;0
6
6
Vậy F x cotx 3
Câu 42: [2D3-1.5-3] Nguyên hàm d
2 tan 1
x
x
5 5
x
x
5 5
x
5 5
x
Hướng dẫn giải
Chọn A
Trang 11* Biến đổi d
2 tan 1
x I
x
2sin cos
x x
x x
x
J
ln 2sin cos
* Ta tính 2J I 1.dx x C , suy ra 1
2 x I C
* Thế kết quả trên trở lại đề: 1ln 2sin cos 1
I x x x I C
I x x xC
ln 2sin cos
Câu 43: [2D3-2.1-3] Cho n là số tự nhiên sao cho 1 2
0
1
20
n
x x x
2
0
sinn xcos dx x
A 1
1
1
1
20
Hướng dẫn giải Chọn A
0
2
1
n n
1
2
1
n
Từ (1) và (2) suy ra 2
0
1 sin cos d
10
n x x x
Câu 44: [2D3-2.4-3] Tìm tất cả các số thực dương m để
2 0
ln 2
m x x
Hướng dẫn giải
Chọn B
0
Theo giả thiết ln 2 1
2
2 ln 1 ln 2 1
m m m
1 2
m
m m
m 1
Trang 12Câu 45: [2D3-2.6-3] Biết xlnx1 d xax2bx c lnx 1 mx2nx p , với , , , , ,
a b c m n p Tính S a2b2 c2
2
4
S D S2
Hướng dẫn giải
Chọn B
Đặt ln 1
v x x
1
1 1 2
x
ln 1 d
x
x
a b c Vậy 2 2 2 1
2
a b c
Câu 46: [2D3-3.1-3]Gọi S là diện tíchhình phẳng giới hạn bởi đồ thị : 2 1
1
x
C y
x
, tiệm cận
ngang của C , trục tung và đường thẳng x a a 0 Tìm ađể Sln 2017
A a32017 1 B 2017 1
3
a C a2016 D a 2017 1
Hướng dẫn giải
Chọn A
Diện tíchhình phẳng giới hạn bởi đồ thị : 2 1
1
x
C y
x
, tiệm cận ngang: y , trục tung và 2
0
a
x
Để S ln 2017 thì 3lna 1 ln 2017 a 32017 1
Câu 47: [2D3-3.7-3] Một ô tô đang chuyển động đều với vận tốc 12m s thì người lái đạp phanh;
từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v t 2 12t m s (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh) Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Hướng dẫn giải
Chọn B
Xe dừng hẳn khi v t 2 12 0t t 6
Vậy trong 8 giây cuối (Tính đến khi xe dừng hẳn) thì 2 giây đầu xe vẫn chuyển động đều được quãng đường là s112.2 24 m
Trang 13Xe dừng hẳn trong 6 giây cuối với quãng đường 2 6 6
Vậy tổng quãng đường xe đi được là s60m
Câu 48: [2D3-3.7-4] Cho hàm số y f x Đồ thị của hàm số y f x như hình bên Đặt g x f x cosx Mệnh đề nào dưới đây đúng ?
A. 0
2
2
g g g
C. 0
2
g g g
2
g g g
.
Hướng dẫn giải
Chọn C
Ta có g x' f x' sinx
0
2
x
x
Từ đồ thị của hàm y f x' ta có bảng biến thiên (Chú ý là hàm g x và g x' )
Bảng biến thiên
2
y
0
g
2
g
g
Suy ra 0 ,
g g g g
Trang 14Kết hợp với đồ thị ta có: 2 2
sinx f x dx' f x' sinx dx g x dx' g x dx'
0
2
Vậy 0
2
g g g
Câu 49: [2D3-3.7-4] Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị vận tốc như hình bên Trong khoảng thời gian 1 giờ kể từ khi bắt đầu chuyển
động, đồ thị đó là một phần của đường parabol có đỉnh I 2;5 và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành Tính quãng đường mà vật di chuyển được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm)
A 33
3 km B 15 km C 12 km D 35
3 km
Hướng dẫn giải
Chọn A
Gọi v t at2 bt c
Khi đó đồ thị hàm số v v t là một parabol có đỉnh I 2;5 và đi qua điểm A 0;1 nên ta có
hệ phương trình sau: 2
2 2
1
b a
c
Vậy v t t2 4 1t Do đó phần parabol có phương trình v t t2 4 1t , còn phần
đường thẳng AB có phương trình là v t 4
Quãng đường mà vật đi được trong 3 h là: 1 2 3
32
3
S t t dt km