1. Trang chủ
  2. » Giáo án - Bài giảng

chuyên đề hàm số lượng giác và phương trình lượng giác trần văn tài

137 130 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 137
Dung lượng 6,44 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

http://www.tailieupro.com/http://www.tailieupro.com/ http://www.tailieupro.com/http://www.tailieupro.com/ http://www.tailieupro.com/http://www.tailieupro.com/ http://www.tailieupro.com/h

Trang 1

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

1 Phương trình lượng giác đưa về bậc hai và bậc cao cùng 1 hàm lượng giác

Quan sát và dùng các cơng thức biến đổi để đưa phương trình về cùng một hàm lượng giác (cùng sin

hoặc cùng cos hoặc cùng tan hoặc cùng cot) với cung gĩc giống nhau, chẳng hạn:

Nếu đặt t sin 2 X, cos 2 X hoặc t sin , cosX X thì điều kiện là 0  t 1

Ví dụ 1 Giải phương trình: 4cos 2x 4sinx  1 0.

4

x x

4 3

3 2

Trang 2

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

3 1 sin

2

x x

1 sin

4

x x

 Với cos2x 2 thì phương trình vô nghiệm

Ví dụ 6 Giải phương trình: 1tan2 2 5 0.

Trang 3

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

ÀI T V N ỤN

BT 1 [1D1-2] Giải các phương trình lượng giác sau:

a) 2sin 2x sinx  1 0 b) 4sin 2x 12sinx  7 0.

c) 2 2 sin 2x  (2 2)sinx  1 0 d)  2sin 3x sin 2x 2sinx  1 0.

e) 2cos 2x 3cosx  1 0 f) 2cos 2x 3cosx  2 0.

g) 2cos 2x ( 2 2)cos  x 2 h) 4cos 2x 2( 3  2)cosx 6.

i) tan 2x 2 3 tanx  3 0 j) 2tan 2x 2 3 tanx  3 0.

k) tan 2x  (1 3)tanx 3 0  l) 3cot 2x 2 3cotx  1 0.

m) 3cot 2x  (1 3)cotx  1 0 n) 3cot 2x  (1 3)cotx  1 0.

Lời giải

2 2 sin 1

Trang 4

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

3

x

k l x

cot

k l x

Trang 5

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

BT 2 [1D1-2] Giải các phương trình lượng giác sau:

a) 6cos 2x 5sinx  2 0 b) 2cos 2x 5sinx  4 0.

c) 3 4cos  2x sin (2sinx x 1) d)  sin 2x 3cosx  3 0.

e)  2sin 2x 3cosx  3 0 f) 2cos 2 2 x 5sin 2 1 0.x  g) 3sin 2x 2cos 4 x  2 0 h) 4sin 4x 12cos 2 x 7.

i) 4cos 4x 4sin 2x 1 j) 4sin 4x 5cos 2x  4 0.

Lời giải

a) 6cos 2x 5sinx   2 0 6 1 sin   2x  5sinx  2 0

2

1 sin

2 6sin 5sin 4 0

4 sin

x  Phương trình vô nghiệm

b) 2cos 2x 5sinx   4 0 2 1 sin   2x  5sinx  4 0

 Với sinx  2 Phương trình vô nghiệm.

c) 3 4cos  2x sin (2sinx x   1) 3 4 1 sin   2x  2sin 2x sinx

Trang 6

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

 Với cosx  2 Phương trình vô nghiệm.

e)  2sin 2 x 3cosx    3 0 2 1 cos   2x  3cosx  3 0

x  Phương trình vô nghiệm

g) 3sin 2x 2cos 4 x   2 0 3 1 cos   2x  2cos 4x  2 0

x

x x

Trang 7

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

1 cos2 0cos

x x

BT 3 [1D1-3] Giải các phương trình lượng giác sau:

a) 2cos2 8cosxx  5 0 b) 1 cos2  x 2cos x

c) 9sinx cos2x 8 d) 2 cos2  x 5sinx 0.

e) 3sinx cos2x 2 f) 2cos2x 8sinx  5 0.

g) 2cos2x 3sinx  1 0 h) 5cos 2sin 7 0.

Trang 8

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

2 4cos 8cos 3 0

1 cos

Trang 9

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

2 4sin 8sin 3 0

1 sin

4 1

Trang 10

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Ta có: cos2x cos 2x sinx    2 0 1 2sin 2x  1 sin 2x sinx  2 0

BT 4 [1D1-3] Giải các phương trình lượng giác sau:

a) 3cos 2x 2cos2x 3sinx 1 b) cos4 12sinx 2x  1 0.

c) cos4x 2cos 2 x  1 0 d) 16sin 2 cos2 15.

g) 1 cos4  x 2sin 2x 0 h) 8cos 2 x cos4x 1.

i) 6sin 3 2 x cos12x 4 j) 5(1 cos ) 2 sin  x   4x cos 4x

k) cos 4x sin 4x cos4x 0 l) 4(sin 4x cos ) cos4 sin 2 4xxx 0.

Trang 11

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 12

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 13

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

 cos 2x sin 2x cos 2x sin 2 x 2cos 2 1 0 2 x

    f) cos 2x 3 sin 2x 3 sinx  4 cos x

g) 3sin 2x 3sinx cos2x cosx 2 h) 2

Trang 14

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 15

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 16

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Xét phương trình cos2x 3sin 2x 3sinx  4 cos x

 cos2 3sin 2   cos 3sin  4 cos 2 cos 2

Xét phương trình 3sin 2x 3sinx cos2x cosx 2 biến đổi tương tự như câu f ta được:

Trang 17

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

t t

2

x

   hoặc cosx 4 (loại)

Với cos 1 cos 2 2 2 ,

Trang 18

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

5 2

Với sin 1 sin

Trang 19

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Vậy tập nghiệm của phương trình: S k2 ,  k 

BT 6 [1D1-2] Giải các phương trình lượng giác sau:

Trang 20

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 21

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

k x

BT 7 [1D1-3] Giải các phương trình lượng giác sau:

a) 8sin cosx x cos4x  3 0 b) 2sin 8 2 x 6sin 4 cos4x x 5.

h) 3cos4x 2cos 2x  3 8cos 6x k) 3cosx   2 3(1 cos ).cot  x 2x

l) sin3x cos2x  1 2sin cos2 x x m) 2cos5 cos3 sinx xx cos8 x

n) 4(sin 6x cos ) 4sin 2 6xx o) sin 4x  2 cos3x 4sinx cos x

Lời giải

Trang 22

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 23

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

2

x x

Trang 24

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

3 2

Điều kiện: sinx   0 x k k 

PT  3cos sinx 2 x 2sin 2x 3 1 cos cos   x 2x 0

3cos 1 cosx x 2 1 cos x 3 1 cos cosx x 0

Trang 25

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

3 6cos 5cos 3cos 2 0 cos 1

1 cos

2 3

Trang 26

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

2sin 2 cos2x x 2 2cos2 cosx x 4sinx 2sin cos cos2 1 cos2 cosx x x x x 2sinx

x x

c) (2tan 2x 1)cosx  2 cos2 x d) 2cos 2x 3cosx 2cos3x 4sin sin 2 x x

e) 4sinx  3 2(1 sin )tan  x 2 x f) 2sin 3x  3 (3sin 2 x 2sinx 3)tan x

g) 5sin 3(1 cos )cot 2 2.

Trang 27

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

x x x

Vậy phương trình (1) vô nghiệm

c) (2tan 2x 1)cosx  2 cos2 x

Lời giải

Điều kiện:

2

x  k

Trang 28

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

2

(2tan x 1)cosx  2 cos2x  (2tan 2x 1)cosx  3 2cos 2 x(1).

Khi đó pt(1)  2sin 2x cos 2x 3cosx 2cos 3x  2cos 3x 3cos 2x 3cosx  2 0

Trang 29

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

1 cos

2

x x x

x x

2

x x

1 cos

2

x x x

Trang 30

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

cos3 sin3 4cos 3cos 3sin 4sin

1 2sin 2 1 4sin cos

(thỏa mãn điều kiện).

k) 32 tan 2 3 sin 1 tan tan

3

x x

2 Phương trình lượng giác bậc nhất đối với sin và cosin (phương trình cổ điển)

Dạng tổng quát: asinx b cosxc ( ) , ,  a b \ 0    

Điều kiện cĩ nghiệm của phương trình: a2 b2 c2 , (kiểm tra trước khi giải)

Trang 31

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Lưu ý Hai công thức sử dụng nhiều nhất là: sin cos cos sin sin( )

cos cos sin sin cos( )

sin cos sin cos , ( )

1  3   3 nên phương trình luôn có nghiệm

Khi đó: pt 1sin 3cos 3 sin 3

Trang 32

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 33

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

cos cos7 sin sin 7 cos

k k x

Trang 34

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 35

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Trang 36

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

3cos x sin x 3cosx sinx

      3 cosx sinx 3 cosx sinx  1 0 

2 , 2

2 6

Trang 37

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

Phương trình tương đương với: 2sin 2x 3sinx  2 2sin cosx x cosx 0

 sinx 2 2sin  x 1 cos 2sin  xx 1 0 

        2sinx 1 sin  x cosx 2 0  

3sin 2x cos2x 4sinx 1

     2 3sin cosx x  1 2sin 2 x 4sinx 1

Trang 38

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

BT 10 Giải các phương trình lượng giác sau:

a) 3sin cos 2sin

b) cosx 2 sin 2x sin x

Phương trình tương đương với: sinx cosx 2 sin 2x 2 sin 2 sin 2

k k x

c) sin3x 3cos3x 2sin 2 x

Phương trình tương đương với: 1sin3 3cos3 sin 2

2 x 2 xx

Trang 39

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

d) sinx cosx 2 2 sin cos x x

Phương trình tương đương với: 2 sin 2 sin 2 sin sin 2

k k x

e) 2cos3x 3sinx cosx 0.

Phương trình tương đương với: 1cos 3sin cos3 cos cos  3 

f) (sinx cos )x 2  3cos2x  1 2cos x

Phương trình tương đương với: 1 sin 2  x 3cos2x  1 2cosx

1sin 2 3cos2x cosx

g) 2 cos2x sinx cosx 0.

Phương trình đã cho tương đương với: 2 cos2 cos sin 2 cos2x 2 cos

g) sin3x 3cos3 2sinxx 0.

Phương trình đã cho tương đương với: sin3 3 cos3 2sin 1sin3 3cos3 sin

Trang 40

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/

http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/http://www.tailieupro.com/

l) sinx 3cosx  2 4cos 2x

Phương trình tương đương với : sinx 3cosx 4cos 2x 2

sinx 3 cosx 2 2cos x 1

m) 4sin 2x sinx  2 3cosx

Phương trình tương đương với : sinx 3cosx  2 4sin 2x

sinx 3cosx 2 1 2sin x

     sinx 3cosx 2cos2x

Ngày đăng: 19/05/2019, 08:38

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w