1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG 2012 MÔN TOÁN ĐỀ SỐ 82

2 256 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi thử đại học cao đẳng 2012 môn toán đề số 82
Trường học Diemthi.24h.com.vn
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2012
Định dạng
Số trang 2
Dung lượng 104 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tài liệu tham khảo và tuyển tập đề thi thử đại học, cao đẳng môn toán giúp các bạn ôn thi tốt và đạt kết quả cao trong kỳ thi tốt nghiệp trung học phổ thông và tuyển sinh cao đẳng, đại học . Chúc các bạn thi tốt!

Trang 1

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG

Môn thi : TOÁN ( ĐỀ 82-k )

Câu 1 (2,0 điểm) Cho hàm số y =

1

2

x

x

1 Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số

2 Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( C ) tại hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất

Câu 2 (2,0 điểm).

1 Giải phương trình: sin3x(1 + cotx) + cos3x(1 + tanx) = 2 sinx cos. x

2 Giải bất phương trình: x 2  x  x2 – x – 2 – 2  x

Câu 3 (2,0 điểm).

1 Tính diện tích hình phẳng giới hạn bởi parabol (P): y = 4x – x2 và các tiếp tuyến được

kẻ từ điểm M (

2

1

; 2) đến (P)

2 Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a và

2

.

2

a SA SC SC SB SB

SA    Tính thể tích khối chóp S.ABC theo a

Câu 4 (2,0 điểm)

1 Viết về dạng lượng giác của số phức:

z = 1 – cos2 - isin2 , trong đó   2 

2

3

2 Giải hệ phương trình:

 1 3 2 2

1 3 2 2

1 2

1 2

x y

y y

y

x x x

( với x,y  R)

Câu 5 (2,0 điểm)

1 Trong mặt phẳng Oxy , cho hai đường thẳng d1: 2x + y + 5 = 0, d2: 3x + 2y – 1 = 0 và điểm G(1;3) Tìm tọa độ các điểm B thuộc d1 và C thuộc d2 sao cho tam giác ABC nhận điểm G làm trọng tâm Biết A là giao điểm của hai đường thẳng d1 và d2

2 Trong không gian Oxyz, hãy lập phương trình mặt phẳng ( ) đi qua điểm M(3;2;1)

và cắt ba tia Ox, Oy, Oz lần lượt tại ba điểm A, B, C sao cho thể tích khối tứ diện OABC có giá trị nhỏ nhất

……… Hết………

Trang 2

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 83-k )

PHẦN CHUNG CHO MỌI THÍ SINH

Câu I) Cho hàm số y x 32mx23(m1)x2 (Cm)

1) Khảo sát và vẽ đồ thị (Cm) khi m=0

2) Cho điểm M(3;1) và đường thẳng d:x+y-2=0 Tìm các giá trị của m để đường thẳng (d) cắt đồ thị tại 3 điểm A(0;2); B,C sao cho tam giác MBC có diện tích bằng 2 6

Câu II)

os

x

2) Tính tích phân sau: 2

0

os

4

4 3sin 2

x

   

Câu III)

1) Giải hệ phương trình sau:

2 2 2 2

1 2

1

2) Cho khối lăng trụ ABCA’B’C’ có đáy ABC làn tam giác đều Biết AA’=AB=a Tính thể tích khối lăng trụ biết các mặt bên (A’AB) và (A’AC) cùng hợp với đáy ABC một góc bằng 60 0

Câu IV)

Tìm m để bất phương trình x22 x2 1 m2lnxx21x nghiệm đúng với mọi x thuộc 1;1

PHẦN RIÊNG (THÍ SINH CHỈ ĐƯỢC CHỌN PHẦN A HOẶC PHẦN B)

PHẦN A)

Câu VI A)

1) Trong mặt phẳng Oxy cho đường tròn (C) có phương trình x62 y 62 50. Viết phương trình đường thẳng  cắt 2 trục toạ độ tại A,B tiếp xúc với đường tròn (C) tại M sao cho M là trung điểm của AB.

:

đỉnh và tính diện tích hình bình hành.

Câu VII A) Tìm số phức z biết :z z z  2 (z 2 ) 10 3z   i

PHẦN B)

Câu VI B)

1) Trong mặt phẳng Oxy cho hai đường tròn (C1):x12y12 1 và (C2):x22y2 9 và điểm M(1;0) Viết phương trình đường thẳng  qua M cắt (C1); (C2) tại A và B sao cho MA=2MB

M

qua M song song với , đồng thời khoảng cách giữa đường thẳng  và mặt phẳng (P) bằng 3.

Câu VII B) Tìm dạng lượng giác số phức z biết |z| =2010 và

1

z i

 có một gumen là 3

4

 Diemthi.24h.com.vn

Ngày đăng: 30/08/2013, 08:12

HÌNH ẢNH LIÊN QUAN

1. Tính diện tích hình phẳng giới hạn bởi parabol (P): y= 4x – x2 và các tiếp tuyến được kẻ từ điểm M (  - ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG 2012 MÔN TOÁN ĐỀ SỐ 82
1. Tính diện tích hình phẳng giới hạn bởi parabol (P): y= 4x – x2 và các tiếp tuyến được kẻ từ điểm M ( (Trang 1)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w