1. Trang chủ
  2. » Giáo án - Bài giảng

26 đề thi chính thức vào 10 môn toán hệ chung THPT chuyên lê qúy đôn bình định năm 2014 2015 (có lời giải chi tiết)

5 111 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 184,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tìm giá trị nhỏ nhất của A.. Kẻ hai tiếp tuyến PA, PB với đường tròn O A ,B là hai tiếp điểm.. Gọi D là điểm đối xứng của B qua O, C là giao điểm của PD và đường tròn O.. a.Chứng minh tứ

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO

BÌNH ĐỊNH

-ĐỀ CHÍNH THỨC

KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC

2014-2015 TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN

-Môn thi: TOÁN Ngày thi: 13/06/2014

Thời gian làm bài: 120 phút (không kể thời gian phát đề).

-Bài 1: (2,0 điểm) Cho biểu thức

1 1

A

  , với a > 0

a Rút gọn A

b Tìm giá trị của a để A = 2

c Tìm giá trị nhỏ nhất của A

Bài 2: (2,0 điểm)

Gọi đồ thị hàm số y=x2 là parabol (P), đồ thị hàm số y=(m+4)x-2m-5 là đường thẳng (d)

a Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt

b Khi (d) cắt (P) tại hai điểm phân biệt A và B có hoành độ lần lượt là x1;x2 Tìm các giá trị của m sao cho

Bài 3: (1,5 điểm )

Tìm x, y nguyên sao cho xy  18

Bài 4: ( 3,5 điểm )

Cho đường tròn (O) và một điểm P ở ngoài đường tròn Kẻ hai tiếp tuyến PA, PB với đường tròn (O) (A ,B là hai tiếp điểm) PO cắt đường tròn tại hai điểm K và I ( K nằm giữa P và O) và cắt AB tại H Gọi D là điểm đối xứng của B qua O, C là giao điểm của PD và đường tròn (O)

a.Chứng minh tứ giác BHCP nội tiếp

b.Chứng minh AC  CH.

c.Đường tròn ngoại tiếp tam giác ACH cắt IC tại M Tia AM cắt IB tại Q Chứng minh M là trung điểm của AQ

Bài 5: (1,0 điểm)

Tìm giá trị nhỏ nhất của hàm số: 2 1

1

y

 với 0<x<1

Trang 2

-HẾT -BÀI GIẢI Bài 1: (2,0 điểm)

a) Rút gọn A.

Ta có:

1 1

A

  (với a>0)

3

( 1) 2 1 1

A

 

b)Tìm giá trị của a để A = 2

Ta có: A a  a

Để A=2=>aa   2 a a 2 0

Đặt a t  có pt: 0

2

2 0

1( )

2( )

  



  

Với t = 2  a  2 a4(TM)

Vậy: a  4 là giá trị cần tìm

c)Tìm giá trị nhỏ nhất của A.

Dấu “=” khi 1 0 1( a>0)

a  aTMDK

Vậy 1 khi a=1

Min

Bài 2: (2,0 điểm)

a) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt

Ta có: (d): y(m4)x 2m 5; (P): y=x2

Trang 3

2 0

( 2)( 2) 0

2 0

2 0

m

m m

  

        

 

 

 

 Vậy: với m > 2 hoặc m < -2 thì (d) cắt (P) tại hai điểm phân biệt

b) Tìm các giá trị của m sao cho x13x23 0

Với m > 2 hoặc m < -2 Thì Pt: x2 (m4)x2m 5 0 (1) có hai nghiệm phân biệt x1, x2

Theo Viet ta có: 1 2

1 2

4

2 5

  

 

Ta có

2

( )[( ) 3 ] (m 4)[( 4) 3(2 m 5)]

( 4)( 1)

Để: 3 3

2 ( 4)( 1) 0

4( )

1( )



  

Vậy : m  4 là giá trị cần tìm

Bài 3: (1,5 điểm )

Ta có : xy  18(x 0; y 0) 

Pt viết: xy 3 2(1)(0 x 3 2;0 y 3 2)

Pt viết:

2 2

18 2

6

( 2y va a 0)

a 2

y x

 

       

Pt (1) viết: n 2m 2 3 2 m n 3( ;m n N )

Trang 4

0 0

   



   

 

 

   



Vậy Pt đã cho có 4 nghiệm 0

18

x y

8

x y

2

x y

0

x y

Bài 4: ( 3,5 điểm )

a) Chứng minh tứ giác BHCP nội tiếp

Xét  ABP có: PA = PB

và APO= OPB (tính giất hai tiếp tuyến cắt nhau)

=> ABP cân tại P có PO là phân giác

=> PO cũng là đường cao, trung tuyến ABP

Xét tứ giác BHCP ta có BHP  900 (Vì PO  AB)

BCP  90o

(Vì kề bù BCD  900 (nội tiếp nửa đường tròn (O))

BHP= BCP

=> Tứ giác BHCP nội tiếp (Qũi tích cung chứa góc)

b) Chứng minh ACCH

Xét ACH ta có

HAC= B1 (chắn cung BKC của đường tròn (O))

Mà B1 =H1 ( do BHCP nội tiếp)

=>HAC =H1

Mà H1+ AHC 90o ( Vì: PO  AB)

=> HAC+ AHC  900

=> AHC vuông tại C

Hay AC CH

c)Chứng minh M là trung điểm của AQ.

Xét tứ giác ACHM ta có M nằm trên đường tròn ngoại tiếp ACH )

=> tứ giác ACHM nội tiếp

Trang 5

Bài 5: (1,0 điểm)

Ta có:

0 1 =

1 0;

1

> x x 0

x

y

x

Ta có: 2 1 2 2 1 2 2

Dấu “=” xảy ra khi: 2 1 2 2 2 2 1 2 2 1 0 1 2( )

  

          

2 2 3

y

  

Dấu “=” xảy ra khi x  1 2

Vậy ymin 2 2 3 khi x= -1+ 2

Ngày đăng: 22/03/2019, 17:16

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w