DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU ADCS Attitude Determination and Control Subsystem - Phân hệ xác định và điều khiển tư thế vệ tinh DCM Direct Cosine Matrix – Ma trận quay EKF Extende
Trang 1BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
Trang 2VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
…… ….***…………
ƯỚC LƯỢNG TƯ THẾ VỆ TINH NHỎ QUAN SÁT TRÁI ĐẤT BẰNG VIỆC HỢP NHẤT HÓA DỮ LIỆU CỦA CẢM BIẾN TỐC ĐỘ GÓC VÀ CẢM BIẾN SAO
LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA
Chuyên ngành: Kỹ thuật điều khiển và tự động hóa
Mã sỗ: 62 52 02 16
Người hướng dẫn khoa học:
1 PGS.TS Thái Quang Vinh
2 TS Bùi Trọng Tuyên
Hà Nội – 2018
Trang 3LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, được hoàn thành dưới sự hướng dẫn của tập thể hướng dẫn Các kết quả nêu trong luận án là trung thực và chưa từng được công bố trong bất kỳ công trình nào khác
Tôi xin chịu trách nhiệm về những lời cam đoan của mình
Hà Nội , ngày tháng năm 2018
Nghiên cứu sinh
Ngô Duy Tân
Trang 4LỜI CẢM ƠN
Luận án này được hoàn thành tại Học viện Khoa học và Công nghệ - Viện
Hàn lâm Khoa học và Công nghệ Việt Nam Trong quá trình nghiên cứu, tác giả
đã nhận được nhiều sự giúp đỡ quý báu của các thầy cô, các nhà khoa học, các
đồng nghiệp, bạn bè và gia đình
Để hoàn thành luận án này, tôi xin chân thành cảm ơn PGS TS Thái
Quang Vinh và TS Bùi Trọng Tuyên đã định hướng, hướng dẫn, giúp đỡ và
mọi điều kiện thuận lợi trong suốt quá trình nghiên cứu của Luận án này
Tôi xin gửi lời cám ơn chân thành đến Ban Lãnh đạo, Phòng Đào tạo Sau
Đại học Viện Công nghệ Thông tin và Học viện Khoa học và Công nghệ -Viện
Hàn lâm khoa học và Công nghệ Việt Nam đã tạo mọi điều kiện tốt nhất trong
suốt thời gian học tập và nghiên cứu, để tôi hoàn thành luận án này
Tôi xin chân thành cảm ơn lãnh đạo Viện Công nghệ vũ trụ và các đồng
nghiệp đã tạo điều kiện, giúp đỡ tôi trong quá trình nghiên cứu, thử nghiệm và
hoàn thiện các nội dung nghiên cứu của luận án
Tôi xin bày tỏ lòng biết ơn đến gia đình, bạn bè và người thân đã luôn quan
tâm, động viên, khích lệ và giúp đỡ tôi trong quá trình học tập và nghiên cứu
Xin trân trọng cảm ơn
Hà Nội, ngày tháng năm 2018
Nghiên cứu sinh
Ngô Duy Tân
Trang 5MỤC LỤC
MỤC LỤC 0
DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU 6
DANH MỤC CÁC HÌNH VẼ 8
DANH MỤC BẢNG 10
MỞ ĐẦU 11
CHƯƠNG 1 - TỔNG QUAN 16
1.1 Tư thế vệ tinh 16
1.2 Các hệ tọa độ trong khảo sát chuyển động của vệ tinh 17
1.3 Biểu diễn tư thế vệ tinh 19
1.3.1 Biểu diễn tư thế vệ tinh bằng quaternion 20
1.3.2 Biểu diễn tư thế vệ tinh bằng các vec-tơ Pivot 22
1.3.3 Sai lệch tư thế vệ tinh 24
1.4 Các chỉ tiêu chính của phân hệ xác định và điều khiển tư thế vệ tinh 25
1.5 Thuật toán ước lượng tư thế và những ràng buộc trên vệ tinh 27
CHƯƠNG 2 - MÔ HÌNH VỆ TINH VÀ CẢM BIẾN TƯ THẾ TRONG BÀI TOÁN ƯỚC LƯỢNG TƯ THẾ VỆ TINH 31
2.1 Xây dựng mô hình động lực học của vệ tinh với các bánh xe động lượng và điều khiển tư thế vệ tinh 31
2.1.1 Xây dựng mô hình động lực học của vệ tinh với các bánh xe động lượng 31
2.1.2 Luật điều khiển tư thế vệ tinh 36
2.2 Cảm biến tư thế vệ tinh 38
2.2.1 Cảm biến tốc độ góc 38
2.2.2 Cảm biến sao 41
CHƯƠNG 3 - ƯỚC LƯỢNG TƯ THẾ VỆ TINH BẰNG HỢP NHẤT DỮ LIỆU ĐA CẢM BIẾN 45 3.1 Sơ đồ khối bộ ước lượng tư thế 45
3.2 Ước lượng tư thế bằng cảm biến sao và cảm biến tốc độ góc sử dụng phương pháp trọng số 47
Trang 63.4 Các phương pháp ước lượng dựa trên thuật toán QUEST (Quaternion
Estimation) 49
3.5 Ứng dụng phương pháp Pivot trong bài toán ước lượng tư thế vệ tinh 50
3.6 Phương pháp thích nghi 54
CHƯƠNG 4 - ĐỀ XUẤT PHƯƠNG PHÁP ƯỚC LƯỢNG TƯ THẾ BÙ ĐỘ TRƯỢT CỦA CẢM BIẾN TỐC ĐỘ GÓC 56
4.1 Xây dựng bộ ước lượng tư thế có bù độ trượt 56
4.2 Mô phỏng 59
4.2.1 Kết quả mô phỏng phương pháp ước lượng bằng trọng số 60
4.2.2 Kết quả mô phỏng phương pháp ước lượng bằng bô lọc Kalman mở rộng 62
CHƯƠNG 5 - ĐỀ XUẤT THUẬT TOÁN ƯỚC LƯỢNG TƯ THẾ KHÁNG LỖI TRÊN VỆ TINH QUAN SÁT TRÁI ĐẤT 65
5.1 Thiết kế bộ ước lượng tư thế vệ tinh sử dụng bộ lọc Kalman 65
5.1.1 Nguyên tắc hoạt động: 66
5.1.2 Điều chỉnh hệ số lọc 70
5.2 Sử dụng thuật toán fuzzy để điều chỉnh bộ lọc hợp nhất dữ liệu 71
5.3 Đề xuất cơ chế kháng lỗi cho ước lượng tư thế trên vệ tinh quan sát Trái đất 74 5.4 Mô phỏng 75
5.4.1 Mô phỏng vệ tinh ở chế độ tiêu chuẩn 75
5.4.2 Mô phỏng vệ tinh ở chế độ chụp ảnh 78
5.5 Kết luận 83
KẾT LUẬN 84
KIẾN NGHỊ 85
NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN 86
DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ 87
TÀI LIỆU THAM KHẢO 88
Trang 7DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU
ADCS Attitude Determination and Control Subsystem - Phân hệ xác định
và điều khiển tư thế vệ tinh DCM Direct Cosine Matrix – Ma trận quay
EKF Extended Kalman Filter - Bộ lọc Kalman mở rộng
FPGA Field-programmable gate array- Mảng logic khả trình
KF Kalman Filter - Bộ lọc Kalman
MRP Modified Rodrigues Parameters- Các tham số MRP
PID Proportional Integral Derivative -Bộ điều khiển vi tích phân tỷ lệ QUEST Quaternioin Estimator - Bộ dự đoán quarternion
SEU Single Event Upset- Hiện tượng đảo bit dữ liệu do ảnh hưởng của
bức xạ vũ trụ
SoC System on Chip – Một loại mạch tích hợp các chức năng như một
máy tính (bao gồm bộ vi xử lý, bộ nhớ, giao tiếp,…) SSO Sun Synchronous Orbit – Quỹ đạo đồng bộ mặt trời
SST Star tracker - Cảm biến sao
VNREDSat-1
Vietnam Natural Resources, Environment and Disaster Monitoring Satellite-Vệ tinh nhỏ Việt Nam giám sát tài nguyên thiên nhiên môi trường và thiên tai
Trang 8v Véc tơ 3 thành phần mô tả trong hệ tọa độ i
b
v Véc tơ 3 thành phần mô tả trong hệ tọa độ b
x y zˆ ˆ ˆa, a, a 3 véc tơ đơn vị của hệ tọa độ quy chiếua
h h Mô men động lượng của vệ tinh tính trong hệ toạ độ b
H Mô men động lượng của vệ tinh tính trong hệ toạ độ i
Tốc độ quay của quỹ đạo vệ tinh
δ Véc tơ sai lệch về tốc độ quay tính trong hệ toạ độ b
Trang 9DANH MỤC CÁC HÌNH VẼ
Hình 1.1 Chế độ hướng Trái đất và chế độ chụp ảnh của vệ tinh 16
Hình 1.2 Các hệ trục tọa độ trong khảo sát chuyển động của vệ tinh 17
Hình 1.3 Minh họa hệ tọa độ vệ tinh (ảnh mô hình vệ tinh VNREDSat-1) 18
Hình 1.4 Phép quay Pivot 22
Hình 1.5 Biến đổi của Pivot Vec-tơ biểu diễn bằng các phép quay quanh trục cố định 23
Hình 1.6 Tam giác cầu mô tả tổng hợp các phép quay 24
Hình 1.7 Vùng cần chụp và ảnh hưởng của độ chính xác của phân hệ ADCS 26
Hình 1.8.Máy tính OBC750 của SST 28
Hình 2.1 Sơ đồ khối phân hệ ADCS trên vệ tinh 31
Hình 2.2 Mô hình vệ tinh 33
Hình 2.3 Mô hình bánh xe động lượng 33
Hình 2.4 Mô hình vệ tinh với các bánh xe động lượng 34
Hình 2.5 Sơ đồ khối bộ điều khiển tư thế vệ tinh 36
Hình 2.6 Bám theo tốc độ góc ở chế độ chụp ảnh 37
Hình 2.7 Sơ đồ cấu tạo của một cảm biến tốc độ góc cơ học 39
Hình 2.8 Cảm biến tốc độ góc sợi quang 40
Hình 2.9 Cấu tạo của một cảm biến sao 42
Hình 3.1 Sơ đồ khối cơ bản của bộ ước lượng tư thế trên vệ tinh (Tác giả tổng hợp từ nhiều nguồn) 45
Hình 3.2 Ví dụ kết quả hợp nhất bằng phương pháp trọng số (nguồn: kết quả mô phỏng trong tài liệu kỹ thuật của VNREDSat-1) 48
Hình 3.3 Biểu diễn hình học của phép quay X-Y-X bằng cặp vec-tơ Pivot a’ và b’ 51
Hình 4.1 Kết quả ước lượng tư thế vệ tinh (Roll, Pitch, Yaw) bằng phương pháp trọng số 60
Hình 4.2 Sai số trỏ hướng của vệ tinh phương pháp ước lượng tư thế bằng phương pháp trọng số 61
Hình 4.3 Kết quả ước lượng tư thế (Roll, Pitch, Yaw) có bù độ trượt cảm biến tốc độ góc bằng bộ lọc Kalman mở rộng 62
Hình 4.4 Sai số trỏ hướng của vệ tinh khi dùng bộ lọc Kalman mở rộng có bù độ trượt cảm biến tốc độ góc 63
Hình 5.1 Sơ đồ bộ hiệu chỉnh fuzzy 72
Hình 5.2 Hàm đánh giá đầu vào trung bình 73
Hình 5.3 Hàm đánh giá đầu ra 73
Hình 5.4 Kết quả mô phỏng bằng bộ lọc EKF 76
Trang 10Hình 5.5 Kết quả mô phỏng bằng EKF khi bị nhiễu 76
Hình 5.6 Kết quả mô phỏng khi có bù bằng thuật toán fuzzy 77
Hình 5.7 Tư thế vệ tinh khi chụp ảnh 78
Hình 5.8 Tốc độ góc của vệ tinh khi chụp ảnh 79
Hình 5.9 Sai số xác định tư thế vệ tinh 79
Hình 5.10 Tư thế vệ tinh khi chụp ảnh 80
Hình 5.11 Tốc độ góc của vệ tinh khi chụp ảnh 81
Hình 5.12 Sai số xác định tư thế vệ tinh 81
Hình 5.13 Tư thế vệ tinh khi áp dụng thuật toán kháng lỗi 82
Hình 5.14 Tốc độ góc của vệ tinh khi áp dụng thuật toán kháng lỗi 83
Trang 11DANH MỤC BẢNG
Bảng 2.1 Ưu điểm và nhược điểm của các loại cảm biến tư thế vệ tinh 43Bảng 3.1 Chuyển đổi từ phép quay Euler sang các vec-tơ Pivot 51Bảng 4.1 Bộ lọc EKF hợp nhất tư thế vệ tinh có bù độ trượt cảm biến tốc độ góc 59Bảng 4.2 Bảng xác định độ chính xác trỏ hướng của vệ tinh khi sử dụng phương pháp ước lượng tư thế bằng trọng số 61Bảng 4.3 Bảng xác định độ chính xác trỏ hướng của vệ tinh khi sử dụng phương pháp ước lượng tư thế có bù độ trượt của cảm biến tốc độ góc 63Bảng 5.1 Nhiễu đầu ra của hệ thống 70Bảng 5.2 Bảng các quy luật của bộ hiệu chỉnh fuzzy 73
Trang 12MỞ ĐẦU
1 TÍNH CẤP THIẾT CỦA ĐỀ TÀI
Hiện nay, tại Việt Nam công nghệ vệ tinh nói chung và công nghệ vệ tinh nhỏ quan sát Trái đất nói riêng là lĩnh vực tương đối mới mẻ Tuy nhiên, công nghệ vệ tinh nhỏ quan sát Trái đất đang ngày càng thu hút được sự quan tâm của nhiều nhà khoa học,
kỹ sư do những ứng dụng ngày thực tiễn và đóng góp nhiều vào sự phát triển bền vững kinh tế xã hội Cụ thể là, vệ tinh nhỏ quan sát Trái đất cung cấp những dữ liệu ảnh chụp
bề mặt Trái đất trên lãnh thổ Việt Nam và đây là nguồn dữ liệu rất quý giá và quan trọng cho các ứng dụng giám sát tài nguyên, thiên nhiên, môi trường và thiên tai
Vệ tinh nhỏ là phân loại các quả vệ tinh có khối lượng từ 500 kg trở xuống Ngày này, công nghệ vệ tinh nhỏ quan sát Trái đất đã và đang được ứng dụng hiệu quả và rộng rãi trong các nghành giám sát tài nguyên, thiên nhiên và môi trường, nghiên cứu khoa học, công nghiệp và dịch vụ Một hệ thống vệ tinh nhỏ có các ưu điểm nổi trội như chi phí thấp, thời gian thiết kế và triển khai ngắn, dễ dàng chuyển giao công nghệ, tuổi thọ hợp lý Nhiệm vụ quan sát Trái đất là nhiệm vụ có tính ứng dụng cao và rộng rãi trong nhiều mặt của đời sống Vệ tinh nhỏ quan sát Trái đất thường là hoạt động ở quỹ đạo thấp (dưới 1000km), đáp ứng các ràng buộc khắt khe về kích thước, năng lực xử lý và chi phí Đây là những lý do chính khiến cho vệ tinh nhỏ quan sát Trái đất trở thành đối tượng để nghiên cứu, phát triển của các nước có nên công nghiệp vũ trụ non trẻ
Tiếp cận và làm chủ công nghệ vũ trụ, trong đó có công nghệ vệ tinh quan sát Trái đất là một trong những định hướng ưu tiên của Việt Nam Điều này được thể hiện
rõ nét bằng việc thực hiện thành công dự án “Vệ tinh nhỏ Việt Nam giám sát tài nguyên thiên nhiên môi trường và thiên tai” (VNREDSat-1) Đây là hệ thống vệ tinh quan sát Trái đất đầu tiên của Việt Nam, góp phần không nhỏ vào đào tạo và nâng cao chất lượng nguồn nhân lực về lĩnh vực này Để tiếp tục kế thừa, phát huy và chuẩn bị cho các dự
án tương tự trong tương lai thì việc tiếp tục nghiên cứu chuyên sâu về các phân hệ trên
vệ tinh thuộc chủng loại này là nhiệm vụ và xu hướng nghiên cứu của cán bộ, nhà khoa học liên quan, nhằm củng cố và xây dựng hướng đi về đạo tào và chuyển giao công nghệ
vệ tinh nhỏ quan sát Trái đất
Trên vệ tinh, phân hệ xác định và điều khiển tư thế vệ tinh được coi là phân hệ phức tạp và tinh vi nhất của quả vệ tinh Phân hệ này đảm bảo tính định hướng chính
Trang 13xác, tin cậy và linh hoạt của vệ tinh trong đặc biệt ở chế độ chụp ảnh bề mặt Trái đất và phản ứng với các sự cố trên vệ tinh
Một trong những bộ phận chịu ảnh hưởng nhiều nhất của các ảnh hưởng từ môi trường vũ trụ (nhiễu, nhiệt độ, bức xạ vũ trụ) hay các yếu tố không mong muốn (hỏng hóc, chất lượng biến động theo thời gian) chính là các cảm biến để xác định hướng trỏ
và tốc độ quay của vệ tinh Chất lượng của các giá trị đo này có ý nghĩa quan trọng đối với bộ điều khiển các cơ cấu chấp hành (như bánh xe động lượng) để điều chỉnh vệ tinh theo các kịch bản mong muốn
Các dữ liệu từ các cảm biến đo tư thế trên vệ tinh (cảm biến đo hướng, đo tốc độ góc) cần phải được hợp nhất lại với nhau để thành một số liệu tin cậy cung cấp cho bộ điều khiển, đây chính là nhiệm vụ của bộ ước lượng tư thế vệ tinh
Đến nay, việc triển khai các phần mềm trên vệ tinh để tăng tính tự động của hệ thống đang gặp phải một số thách thức và ràng buộc như sau:
- Hạn chế về nguồn năng lượng: do hạn chế về kích thước và hiệu suất của các tấm pin mặt trời trên vệ tinh nên nguồn năng lượng cung cấp cho các thiết bị điện tử trên vệ tinh rất hạn chế Do vậy, dẫn đến ràng buộc về thiết kế tối ưu giữa công năng và tiêu thụ năng lượng
- Năng lực xử lý: các bộ phận xử lý trên vệ tinh chủ yếu sử dụng các chip FPGA (mảng logic khả trình) hoặc SoC (System on Chip) để lập trình thực hiện các chức năng mong muốn Các chip FPGA được lựa chọn do đảm bảo tính ổn định
và tốc độ xử lý Hiện nay các chip vi xử lý tốc độ cao vẫn chưa phổ biến trên các
vệ tinh do chưa trải qua thử nghiệm trên môi trường vũ trụ
- Ảnh hưởng của các môi trường và bức xạ vũ trụ: đây là đặc thù của môi trường
vũ trụ ảnh hưởng rất lớn đến thiết kế và lựa chọn linh kiện điện tử cho vệ tinh Các yếu tố này bao gồm: ảnh hưởng của quá trình phóng vệ tinh, thay đổi nhiệt
độ, ảnh hưởng của các bức xạ vũ trụ gây ra hiện tượng lật bit (SEU) là sai dữ liệu trong các bộ nhớ
- Thông tin liên lạc giữa vệ tinh và trạm mặt đất: các vệ tinh quan sát Trái đất có thời gian liên lạc với vệ tinh rất hạn chế do đó rủi ro về xử lý sự cố cao hơn rất nhiều so với các hệ thống có sự giám sát liên tục
Trang 14- Tính thời gian thực: các thuật toán xử lý (xác định tư thế) và điều khiển cơ cấu chấp hành (điều khiển tư thế) phải đảm bảo tính thời gian thực nhằm đáp ứng các yêu cầu của vệ tinh trên quỹ đạo, đặc biệt ở chế độ chụp ảnh mặt đất
- Phức tạp trong các phép chuyển đổi hệ tọa độ hoặc phép quay trong các hệ quy chiếu: để giải quyết các nhiệm vụ trên vệ tinh, các thuật toán thường sử dụng nhiều hệ quy chiếu khác nhau với các thiết bị và tham số khác nhau Điều này làm tăng tính phức tạp của các phép tính toán dẫn đến đòi hỏi phải sử dụng các phép biểu diễn hay biến đổi hệ tọa độ đơn giản, hiệu quả về mặt tính toán Không nằm ngoài các ràng buộc trên, các thuật toán/phần mềm dự đoán tư thế vệ tinh thường được thực hiện bởi các chip FPGA Đây cũng là lý do quan trọng để lựa chọn các thuật toán đơn giản, hiệu quả và tối ưu về phần cứng trên vệ tinh
Các thuật toán hay phương pháp của bộ xác định tư thế vệ tinh phải đảm bảo các yêu cầu sau đây:
- Tính ổn định về hoạt động
- Độ tin cậy về kết quả đầu ra
- Có cơ chế phản ứng với các tình huống đặc biệt trên quỹ đạo như nhiễu hay lỗi cảm biến
- Tối ưu về hiệu năng và tài nguyên hạn chế trên vệ tinh (nguồn năng lượng, dung lượng bộ nhớ, năng lực xử lý)
Như vậy, việc nghiên cứu và đề xuất các phương pháp ước lượng tư thế nói riêng
và điều khiển tư thế vệ tinh nói chung có khả năng thích nghi cao với môi trường làm việc đặc thù và yêu cầu chặt chẽ là định hướng quan trọng trong công nghệ vệ tinh Tuy nhiên, như đã phân tích ở trên, việc triển khai các thuật toán thích nghi đòi hỏi phải cân nhắc về độ ổn định và tính đơn giản về mặt tính toán để phù phù hợp với nguồn tài nguyên hữu hạn Do vậy, các cơ chế thích nghi đơn giản nhưng tối ưu về mặt tính toán cần phải được lựa chọn Đây cũng là ưu điểm của cơ chế thích nghi bằng thuật toán logic
mờ
Từ những phân tích trên, tác giả đã lựa chọn nghiên cứu luận án: “Ước lượng tư thế vệ tinh nhỏ quan sát Trái đất bằng việc hợp nhất hóa dữ liệu của cảm biến tốc
độ góc và cảm biến sao” Đây là chủ đề có tính chuyên môn sâu, có giá trị khoa học và
thực tiễn, đặc biệt khi các nhà khoa học, kỹ sư Việt Nam ngày càng quan tâm đến lĩnh vực công nghệ vệ tinh
Trang 152 MỤC TIÊU CỦA ĐỀ TÀI LUẬN ÁN
Luận án được thực hiện với mục tiêu tổng quát là: nghiên cứu và đề xuất một phương pháp ước lượng tư thế vệ tinh bằng việc hợp nhất hóa dữ liệu các cảm biến sao
và cảm biến tốc độ góc trên vệ tinh nhỏ quan sát Trái đất có khả năng thỏa mãn các ràng buộc về phần cứng và môi trường hoạt động của các phần cứng chuyên dụng trên vệ tinh
Để đạt được mục tiêu chung trên và trong khuôn khổ của Luận án này, tác giá luận án tập trung vào các vấn đề sau đây:
- Đối tượng nghiên cứu: biểu diễn tư thế và phương pháp dự đoán tư thế cho vệ tinh quan sát Trái đất cỡ nhỏ (khoảng 100kg) với 02 cảm biến tư thế phổ biến là cảm biến tốc độ góc (gyroscope) và cảm biến sao (star tracker, viết tắt là SST)
- Phương pháp biểu diễn tư thế: sử dụng phương pháp biểu diễn quaternion để tính toán và ba góc Euler để hiển thị nhằm tăng tính trực quan
- Nghiên cứu, đề xuất và mô phỏng cơ chế thích nghi sử dụng logic mờ (fuzzy logic) cho bộ ước lượng tư thế sử dụng bộ lọc Kalman và Kalman mở rộng
- Đề xuất và mô phỏng phương pháp ước lượng tư thế kháng lỗi cho vệ tinh nhỏ quan sát Trái đất
Tuy nhiên, do bộ phận điều khiển tư thế vệ tinh là một phần không thể tách rời của phân hệ xác định và điều khiển tư thế vệ tinh, nên trong quá trình nghiên cứu, tác giả phải thực hiện bổ sung các nhiệm vụ khác như sau:
- Xây dựng mô hình động học và động lực học cho vệ tinh
- Xây dựng vòng điều khiển tư thế vệ tinh khép kín sử dụng luật điều khiển PID
- Tích hợp các phương pháp ước lượng tư thế vệ tinh vào vòng ADCS khép kín để
mô phỏng và đánh giá các kịch bản cũng như hiệu quả của các thuật toán
3 Ý NGHĨA KHOA HỌC CỦA ĐỀ TÀI LUẬN ÁN
Luận án góp phần tiếp cận và làm chủ phân hệ ước lượng tư thế cho vệ tinh nhỏ quan sát Trái đất cụ thể là các phương pháp biểu diễn tư thế và các thuật toán ước lượng
có khả năng triển khai trên các phần cứng xử lý chuyên dụng trên vệ tinh
4 NHỮNG ĐÓNG GÓP CHÍNH CỦA LUẬN ÁN
- Trên cơ sở chức năng, hoạt động và đặc tính kỹ thuật của các cảm biến sao và
Trang 16vệ tinh nhỏ quan sát Trái đất một cách chính xác và tin cậy, với các thuật toán đơn giản dễ triển khai trên các thiết bị trên vệ tinh (với nhiều ràng buộc về năng lượng, dung lượng bộ nhớ và năng lực xử lý)
- Đề xuất phương pháp kháng lỗi cho hợp nhất dữ liệu, cơ chế thích nghi sử dụng fuzzy logic nhằm đảm bảo bộ ước lượng tư thế hoạt động hiệu quả và tin cậy trong các trường hợp chất lượng đo của các cảm biến bị suy giảm, không đủ tin cậy như độ trượt của cảm biến tốc độ, mất tín hiệu của cảm biến sao
5 BỐ CỤC CỦA LUẬN ÁN
Ngoài các phần mở đầu, kết luận, kiến nghị và những điểm mới của luận án, luận
án bao gồm các chương chính sau đây:
Trang 17CHƯƠNG 1 - TỔNG QUAN 1.1 Tư thế vệ tinh
Thuật ngữ “tư thế vệ tinh” được sử dụng để nói về hướng trỏ của vệ tinh trong
một hệ quy chiếu đã cho và vận tốc góc của vệ tinh quanh các trục trong hệ quy chiếu
đó Đây là hai bộ thông số làm việc quan trọng trong quá trình vệ tinh thực hiện nhiệm
vụ của mình Một vệ tinh làm việc trên quỹ đạo cần phải đáp ứng được nhiều yêu cầu
về hướng trỏ trong không gian, chẳng hạn như hướng ăng-ten của vệ tinh về phía trạm điều khiển trên mặt đất, hướng các tấm pin Mặt Trời về phía Mặt Trời để nạp ắc-quy và đặc biệt quan trọng là định hướng thiết bị chụp ảnh và đảm bảo độ chính xác khi chụp ảnh trên mặt đất Do vậy, độ chính xác và linh hoạt của các thiết bị cũng như thuật toán xác định và điều khiển tư thế vệ tinh có ý nghĩa quan trọng đến chất lượng và hiệu năng của hệ thống vệ tinh nhỏ quan sát Trái đất
Hình 1.1 Chế độ hướng Trái đất và chế độ chụp ảnh của vệ tinh
Một vệ tinh quan sát Trái đất thông thường khi hoạt động trên quỹ đạo có rất nhiều chế độ hoạt động khác nhau phụ thuộc vào vị trí của vệ tinh trên quỹ đạo và nhiệm
vụ cụ thể của vệ tinh đó, chẳng hạn như: chế độ hướng camera về phía Trái đất để chụp ảnh, chế độ hướng cánh pin mặt trời về phía mặt trời để thu nhận năng lượng, hoặc chế
độ an toàn,… Mỗi chế độ này sẽ tương ứng với một tư thế vệ tinh khác nhau Để có thể
dự đoán và điều khiển được tư thế của vệ tinh theo nhiệm vụ cụ thể lập trình sẵn thì phân
hệ xác định và điều khiển tư thế vệ tinh (ADCS) cần phải có thông tin chính xác, tin cậy
từ nhiều loại cảm biến tư thế khác nhau như: cảm biến hướng mặt trời, cảm biến sao,
Trang 18này có rất nhiều đặc trưng khác nhau như tần số lấy mẫu, độ chính xác, độ tin cậy, phép
đo phụ thuộc và vị trí hiện tại của vệ tinh Do đó nhiệm vụ của quá trình ước lượng tư thế vệ tinh là thu thập các số liệu này và sử dụng một thuật toán tối ưu phù hợp với các yêu cầu về độ ổn định, độ tin cậy, tính thời gian thực và đặc biệt phù hợp với nguồn tài nguyên hạn chế trên vệ tinh (bộ nhớ, tốc độ xử lý,…) để lọc hay ước lượng tư thế hiện thời của vệ tinh Quá trình này được gọi là hợp nhất dữ liệu đa cảm biến
Định nghĩa: Hợp nhất dữ liệu đa cảm biến là quá trình kết hợp dữ liệu từ nhiều
cảm biến khác nhau với mục đích cho ra kết quả cuối cùng tốt hơn khi sử dụng từng cảm biến độc lập
1.2 Các hệ tọa độ trong khảo sát chuyển động của vệ tinh
Để phân tích chuyển động của vệ tinh, ta cần xác định các hệ trục toạ độ mô tả chuyển động của vệ tinh Các hệ tọa độ này bao gồm hệ tọa độ quán tính i, hệ toạ độ quỹ đạo o và hệ tọa độ vệ tinh b như trong hình 1.1 Các hệ toạ độ có các trục , ,x y z
tương ứng
Hình 1.2 Các hệ trục tọa độ trong khảo sát chuyển động của vệ tinh
Trong luận án này, tác giả giả thiết vệ tinh là một vật rắn (khối cứng) và bay quanh quỹ đạo hình tròn xung quanh Trái đất Trong thực tế, các vệ tinh là một hệ phức tạp có nhiều phân hệ chuyển động cục bộ và không hoàn toàn là một khối cứng Ví dụ các tấm pin mặt trời là các tấm dẻo có độ dao động nhất định, nhiên liệu cho các ống phụt là các chất lỏng tiêu hao Tuy nhiên, việc giả thiết vệ tinh là một vật rắn là bước đầu tiên cho việc phân tích và xác định các đặc tính chuyển động cơ bản của vệ tinh
Trang 19Để khảo sát chuyển động của vật rắn, thông thường người ta sử dụng hai hệ trục tọa độ quy chiếu Một là hệ toạ độ quán tính và hai hệ tọa độ gắn trên vật rắn (vệ tinh)
Hệ tọa độ quán tính là hệ tọa độ đứng yên không chuyển động trong đó các định luật chuyển động của cơ học Newton được định nghĩa Ngược lại, hệ tọa độ gắn cố định trên
vệ tinh và chuyển động dưới sự tác động của ngoại lực và mô men lên vệ tinh Ta cần phải xác định chính xác tư thế (độ nghiêng) của hệ tọa độ này so với môi trường xung quanh để tính toán và điều khiển vệ tinh
Hệ tọa độ quán tính ECI (Earth Centered Intertial Frame) i được đặt ở tâm Trái đất, với các hướng x y zi, ,i itrong đó i
z trùng với trục quay của Trái đất Hệ tọa độ này được định nghĩa như sau:
- Trục x i trùng với hướng xuân phân
- Trục y i nằm về phía bên phải trục x i, là giao của mặt phẳng xích đạo với mặt phẳng quĩ đạo Trái đất quay quanh mặt trời
- Trục 𝑧𝑖 = 𝑥𝑖× 𝑦𝑖 hướng về cực Bắc của Trái đất
Hệ tọa độ vệ tinh b (body frame) có gốc tọa độ nằm ở tâm khối vệ tinh và các
trục thường được chọn trùng với các hướng chính của ma trận mô men quán tính của vệ tinh Hệ b được gắn cố định trên vệ tinh Với việc chọn x y zb, b, b như trên, phép quay xung quanh các trục x y zb, b, bđược gọi là các phép quay nghiêng (roll), chúc ngóc
(pitch), và lái (yaw)
Hình 1.3 Minh họa hệ tọa độ vệ tinh (ảnh mô hình vệ tinh VNREDSat-1)
Trang 20Hệ tọa độ quỹ đạo vệ tinh: (o ) có gốc trùng với gốc tọa độ của hệ tọa độ vệ tinh b và:
- Trục zo trùng với hướng xuyên tâm Trái đất (nadir)
- Trục xo trùng với hướng tốc độ của vệ tinh
- Trục yo là hướng vuông góc với mặt phẳng quỹ đạo
1.3 Biểu diễn tư thế vệ tinh
Lý thuyết về biểu diễn tư thế vệ tinh đã có từ rất lâu và thông qua các phương pháp biểu diễn phương hướng của vật rắn trong một hệ quy chiếu cho trước và có nguồn gốc từ ngành cơ học cổ điển Phương pháp cổ điển nhất là biểu diễn phép quay khung tọa độ gắn với vật rắn thành khung tọa độ quy chiếu bằng một ma trận cosine chỉ hướng với 9 phần tử Tuy nhiên, trong các bài toán thực tế, phương pháp ma trận cosine chỉ hướng có nhược điểm là có quá nhiều ẩn số, gây phức tạp trong việc tính toán và xử lý Đây là cơ sở để nhà toán học và vật lý học Leonhard Euler cho ra đời phương pháp góc Euler Việc sử dụng Góc Euler để biểu diễn phương hướng có nhiều ưu điểm to lớn trong các lĩnh vực hàng không – vũ trụ Bộ 3 góc Euler không chỉ làm đơn giản hóa bài toán động học (3 ẩn số hay vì 9 ẩn số) Phương pháp này còn có ưu điểm nổi bật là tính trực quan do biểu diễn tư thế vệ tinh bằng 3 góc chúc (pitch), nghiêng (roll) và hướng (yaw) Tuy nhiên, nhược điểm của phương pháp biểu diễn tư thế bằng các góc Euler là gây ra hiện tượng “gimbal lock” do những xuất hiện điểm kỳ dị (khi một mặt phẳng tọa
độ bất kỳ của khung vật rắn và mặt phẳng tọa độ khung quy chiếu trùng nhau) khiến không thể tìm được nghiệm duy nhất Đến năm 1980, phương pháp quaternion bắt đầu
Trang 21được trở thành phương pháp ứng dụng chủ đạo trong các lĩnh vực hàng không – vũ trụ
do những ưu điểm về tính toán [1]
Gần đây, Russell P Patera đã công bố kết quả nghiên cứu về cơ sở toán học cho biểu diễn tư thế vệ tinh [58] Đây là một phương pháp biểu diễn tư thế vệ tinh hoàn toàn mới, có khả năng cải thiện đáng kể tốc độ tính toán và biểu diễn hình học, hứa hẹn mở
ra nhiều hướng nghiên cứu đặc biệt là thử nghiệm các thuật toán ước lượng và điều khiển tư thế vệ tinh
Dưới đây là mô tả của phương pháp biểu diễn tư thế phố biến nhất (quaternion)
và phương pháp mới nhất (Pivot), các phương pháp biễu diễn khác được trình bày trong [1]
1.3.1 Biểu diễn tư thế vệ tinh bằng quaternion
Quaternion là một phương pháp mô tả tư thế thông dụng nhất trong kỹ thuật vệ
tinh hiện nay do không bị suy biến và có thể mô tả góc quay lớn Quaternion gồm 4
thành phần bao gồm một véc tơ 31 v và một biến vô hướng q 4 như sau:
q q q
cos 2
Với 4 tham số, quaternion không có các điểm suy biến, tuy nhiên nó luôn cần
thoả mãn ràng buộc đơn vị sau:
Trang 22q q
Phép quay của điểm p trong không gian xung quanh trục ˆa một góc được mô
tả theo quaternion bằng biểu thức:
Trang 231.3.2 Biểu diễn tư thế vệ tinh bằng các vec-tơ Pivot
Đây là một phương pháp biểu diễn tư thế vệ tinh hoàn toàn mới đã được Russell
P Patera công bố tại [58] Nền tảng hình học của phép biểu diễn Pivot là biểu diễn phép quay như một cung trên đường tròn lớn của một mặt cầu đơn vị Cho một phép
quay một khung tọa độ bất kỳ quanh trục Euler e với góc quay ( e là Vec-tơ đơn vị
đi qua gốc tọa độ), phép quay Pivot tương ứng được xác định như sau:
Hình 1.4 Phép quay Pivot
Trên mặt phẳng quay (mặt phẳng đi qua gốc tọa độ, vuông góc Vec-tơ trục quay
e ), xác định hai Vec-tơ p1 và p2 là hai Vec-tơ đơn vị, đi qua gốc tọa độ và có góc giữa chúng là 2
Trang 24Hình 1.5 Biến đổi của Pivot Vec-tơ biểu diễn bằng các phép quay quanh trục cố định
1 Thực hiện phép quay R1 một góc 180 độ quanh p1, từ p2 ta có p 2
2 Thực hiện phép quay R2 một góc 180 độ quanh p 2, từ p1 ta có p 1
3 Dễ dàng thấy rằng p 1 và p 2 chính là p1 và p2 sau khi thực hiện phép quay ( , )
R e Như vậy bằng cách thực hiện liên tiếp hai phép quay R1 và R2 , ta thu được kết quả của phép quay R( , )e Nói cách khác, phép quay R( , )e còn có thể được biểu diễn bởi hai Vec-tơ p1 và p2
Với cách biểu diễn Pivot này, ta có thể thấy rằng hai Vec-tơ p1 và p2 không cần thiết phải được xác định cụ thể: ta có thể chọn một cặp Vec-tơ bất kỳ trên mặt phẳng quay sao cho góc giữa chúng là 2
Điểm mạnh của phép quay Pivot là khả năng tổng hợp các phép quay rất dễ dàng bằng cách lựa chọn sao cho Vec-tơ Pivot thứ hai của phép quay thứ nhất trùng với Vec-
tơ Pivot thứ nhất của phép quay thứ hai Tức là:
p' 1
Trang 25Hình 1.6 Tam giác cầu mô tả tổng hợp các phép quay
Về bản chất hình học, các Vec-tơ Pivot chính là giao tuyến của các mặt phẳng quay Với hình thức biểu diễn bằng hai Vec-tơ, một bộ tham số Pivot sẽ có 6 phần tử Tuy nhiên, do hai Vec-tơ Pivot luôn nằm trên cùng một mặt phẳng, nên thực tế chỉ có 4 phần tử là độc lập
Tuy nhiên, đến nay vẫn chưa có công trình công bố nào về các kết quả nghiên cứu và ứng dụng phương pháp Pivot Đây hứa hẹn sẽ mở ra các hướng nghiên cứu mới nhằm đánh giá tiềm năng ứng dụng của cách biểu diễn trong ước lượng và điều khiển tư thế vệ tinh
1.3.3 Sai lệch tư thế vệ tinh
Khi sai lệch tư thế bằng 0 lúc đó ta có R1
Tính sai lệch tư thế với quaternion q
Khi sử dụng quaternion ta xác định sai lệch tư thế q có dạng:
p3
p2
p1
Trang 264 d
4 4
a
u u u
Do những ưu điểm của phương pháp biểu diễn tư thế bằng quaternion, nên đây
là phương pháp phổ biến và hiệu quả cho các thuật toán xác định và tư thế trên vệ tinh nhỏ Trong khuôn khổ của luận án này, tác giả cũng chọn quaternion là phương pháp biểu diễn tư thế để phục vụ cho các phân tích, tính toán và mô phỏng Ngoài ra, phương pháp biểu diễn tư thế bằng các vec-tơ Pivot cũng được nghiên cứu và đề xuất phương
án xác định tư thế vệ tinh nhằm đặt nền tảng cho các thuật toán dự đoán tư thế sau này
sử dụng phép biểu diễn này [58]
1.4 Các chỉ tiêu chính của phân hệ xác định và điều khiển tư thế vệ tinh
Như chúng ta đã biết, phân hệ ADCS là phân hệ phức tạp đảm bảo độ chính xác
về điều khiển hướng của vệ tinh và ảnh hưởng trực tiếp đến chất lượng hình học của ảnh thu được Do vậy, các chỉ số về độ chính xác và ổn định của phân hệ này luôn là các yêu cầu kỹ thuật quan trọng của bất kỳ hệ thống quan sát Trái đất nào
Cơ quan JAXA (Jaxa Aerospace and Exploration Agency) của Nhật Bản và ESA (European Space Agency) tại Châu Âu có xây dựng các tài liệu kỹ thuật về thiết kế hệ thống quan sát Trái đất, trong đó có các tài liệu liên quan đến các chỉ tiêu của phân hệ
Trang 27ADCS Các tổ chức đã chuẩn hóa một số chỉ tiêu về xác định và điều khiển tư thế vệ tinh, cụ thể như sau [34] :
- Các tham số về độ chính xác tư thế vệ tinh, bao gồm sai số về xác định và sai số về điều khiển tư thế:
o Sai số chỉ hướng: là sai lệch góc trên từng trục giữa tư thế thực của vệ tinh và tư thế mong muốn Tham số này được xác định bằng công thức: (θrealθcmd)
o Sai số ước lượng: là sai lệch trên từng trục giữa tư thế ước lượng được và tư thế thực Tham số này được xác định bằng công thức: (θfltθcmd)
o Sai số tốc độ góc: là sai lệch về tốc độ góc giữa tốc độ góc thực của vệ tinh và tốc
độ góc mong muốn Tham số này được xác định bằng công thức: (ωreal ωtarget)
- Độ ổn định về tư thế: bao gồm độ ổn định và độ tin cậy của thuật toán xác định tư thế và thuật toán điều khiển tư thế
- Tốc độ đáp ứng: bao gồm tốc độ chuyển tiếp và tốc độ hội tụ
- Khả năng thích nghi và kháng lỗi: bao gồm các cơ chế và thuật toán để đảm bảo các chức năng về phát hiện, cảnh báo và ứng phó khi có các sự cố đột xuất, cụ thể là về
độ tin cậy của các phép đo hoặc của các cơ cấu chấp hành
Để mô phỏng, tính toán và đánh giá được các chỉ tiêu trên thì cần phải xác định hoặc giả định được môi trường hoạt động của hệ thống (vệ tinh), cụ thể là các nguồn nhiễu động, các nguồn gây nhiễu, các kịch bản
Hình 1.7 Vùng cần chụp và ảnh hưởng của độ chính xác của phân hệ ADCS
Như chúng ta thấy trong hình vẽ trên, sai số về điều khiển tư thế ảnh hưởng đến
độ chính xác về vị trí chụp ảnh trên mặt đất và chất lượng hình học của ảnh thu được
Trang 28Do vậy, các yêu cầu về sai số và độ ổn định về hướng và điều khiển tư thế vệ tinh luôn
là chỉ tiêu quan trọng hàng đầu của các nhiệm vụ quan sát Trái đất
1.5 Thuật toán ước lượng tư thế và những ràng buộc trên vệ tinh
Về các phương pháp dự đoán tư thế cho vệ tinh, có rất nhiều phương pháp cổ điển như sử dụng bộ lọc Kalman, phương pháp QUEST (Quarternion Estimator), hay các phương pháp thích nghi [37] Tuy nhiên, mỗi phương pháp đếu có các ưu và nhược điểm riêng và một một nguyên tắc rất cổ điển của các thuật toán trên vệ tinh là “Nếu không lỗi thì không sửa” Do vậy, bộ lọc Kalman vẫn là bộ dự đoán tư thế phổ biến
Thuật toán ước lượng tư thế trên vệ tinh sử dụng hai nguồn dữ liệu đầu vào là cảm biến tốc độ góc và cảm biến sao Do vậy, để xây dựng và thiết kế được bộ ước lượng hiệu quả có khả năng thích nghi hay kháng lỗi thì việc nghiên cứu tác động của từng loại cảm biến này lên bộ dự đoán là công việc quan trọng để xây dựng các kịch bản
mô phỏng sát với thực tế Các trường hợp điển hình sau đây được nghiên cứu đánh giá tác động lên bộ hợp nhất dữ liệu cảm biến:
- Đối với cảm biến tốc độ góc: tác động của độ trượt của cảm biến và hỏng cảm biến
- Đối với cảm biến sao: tác động của nhiễu và không đo được tư thế (do ảnh hưởng bởi các vật sáng)
Các tình huống trên sẽ là các đầu vào cho các kịch bản mô phỏng chức năng xác định và điều khiển tư thế vệ tinh
Theo [5], các thuật toán dự đoán tư thế sử dụng các bộ lọc Kalman như EKF hoặc UKF có nhược điểm là các phương pháp này không có tính bền vững khi xuất hiện các
sự cố đối với các cảm biến đầu vào Các lỗi cảm biến này sẽ ảnh hưởng rất lớn đến sai
số dự đoán của bộ dự đoán và sai số điều khiển của cả phân hệ ADCS Do đó, các thuật toán sử dụng bộ lọc Kalman filter cần phải có cơ chế thích nghi để có khả năng kháng lỗi
Một trong những đặc điểm và cũng là ràng buộc quan trọng của thiết kế các hệ thống xác định và điều khiển tư thế của vệ tinh đó là tối ưu với phần cứng có năng lực
xử lý hạn chế Cụ thể là nhà thiết kế chỉ được lựa chọn một số chủng loại máy tính trên
vệ tinh do đã kiểm chứng hoạt động trong môi trường vũ trụ, và các loại thiết bị xử lý này thường có năng lực xử lý không cao nhưng các đòi hỏi về độ thời gian thực rất cao
Trang 29(do yêu cầu về thời gian chụp ảnh) Đây cũng là đặc điểm khác biệt quan trọng và là yếu
tố quyết định việc lựa chọn các thuật toán ước lượng và điều khiển tư thế vệ tinh
Surrey Satellite Technology (SST) là một trong những đơn vị nghiên cứu và ứng dụng về công nghệ vệ tinh nhỏ hàng đầu thế giới Đơn vị này đã thiết kế và thương mại hóa các máy tính trên vệ tinh cho các nhiệm vụ quan sát Trái đất quỹ đạo thấp Máy tính OBC750 là một trong những sản phẩm điển hình của SST Các đặc trưng sơ bộ như sau [67] :
Bộ vi xử lý : IBM PPC750FL, 2 MIPS
Hệ điều hành : RTEM (hệ điều hành thời gian thực)
Bộ nhớ trong : 256MB
Công suất : 10W
Hình 1.8.Máy tính OBC750 của SST
Như vậy, chúng ta có thể thấy rằng, các máy tính trên vệ tinh có cấu hình và năng lực không cao, thậm chí là rất thấp so với các thiết bị xư lý sử dụng cho chức năng tương tự trên mặt đất Do vậy, bài toán thiết kế và lựa chọn thuật toán cho ước lượng và điều khiển tư thế vệ tinh phải tối ưu được nguồn lực xử lý (tốc độ xử lý, sử dụng bộ nhớ, công suất) nhưng vẫn phải đảm bảo tính thời gian thực (real-time) của các thao tác xử
lý và điều khiển
M.A Si Mohammed và một số tác giả khác đã có những tổng kết và đánh giá các giải thuật ước lượng tư thế vệ tinh trên máy tính OBC750 [44] cho dòng vệ tinh nhỏ quan sát Trái đất Nghiên cứu này đã tiến hành so sánh, đánh giá các chỉ tiêu của các bộ ước lượng tư thế thực hiện trên OBC750 Các chỉ tiêu đánh giá gồm có:
- Sai số theo 3 trục Euler của các thuật toán ước lượng tư thế
- Dung lượng bộ nhớ sử dụng
- Thời gian hội tụ
- Thời gian tính toán
Kết quả nghiên cứu trên chỉ ra rằng, bộ lọc Kalman (cụ thể là bộ lọc EKF) có ưu điểm vượt trội so với các phương pháp truyền thống như TRIAD hay QUEST về tối ưu
Trang 30Các phương pháp thích nghi có khả năng áp dụng với điều kiện các thông số kỹ thuật của vệ tinh biến động hoặc trong trường hợp các cảm biến lỗi Tuy nhiên, do các yêu cầu đặc thù của vệ tinh hoạt động trên quỹ đạo với nhiều ràng buộc về độ tin cậy,
độ chính xác và nguồn tài nguyên tính toán hạn chế nên các phương pháp thích nghi vẫn chưa được áp dụng phổ biến [22] , [37] Hơn thế nữa, một trong những vấn đề của các
bộ lọc Kalman phi tuyến như bộ lọc Kalman mở rộng (Extended Kalman Filter-EKF) hoặc Unscented Kalman Filter (UKF) là tính bền vững hay kháng lỗi (các lỗi cảm biến)
Do vậy, các cơ chế thích nghi thường áp dụng cho bộ lọc Kalman thông thường [22]
Theo nghiên cứu của Mokhtar Aboelaze và nnk [47] về thực hiện các thuật toán xác định và điều khiển tư thế trên vệ tinh, thì các thuật toán hoàn toàn được thực hiện trên các chip FPGA chuyên dụng nhằm đảm bảo tốc độ, độ ổn định và tính thời gian thực Ngoài ra, nghiên cứu này cũng chỉ ra rằng, giải thuật logic mờ cũng có khả năng được tích hợp và các thuật toán trên để tăng tính kháng lỗi
Nghiên cứu gần đây nhất của Geogr Grillmayer [19] về kiến trúc hệ thống xác định và điều khiển tư thế vệ tinh dựa trên nền chip FPGA cho thấy xu hướng các chip FPGA có khả năng thay thế các chip ASIC trên vệ tinh cỡ nhỏ
Theo nghiên cứu [54] , trong các hệ thống điều khiển thì phương pháp logic mờ được sử dụng rất phổ biến để thực hiện các cơ chế thích nghi Logic mờ được lựa chọn
do những ưu điểm sau đây:
- Tính linh hoạt, dễ hiều
- Giao diện dễ sử dụng
- Tính toán đơn giản Đây là một trong những ưu điểm nổi bật của logic mờ rất phù hợp cho vệ tinh trên quỹ đạo do sử dụng ít tài nguyên (bộ nhớ, năng lực tính toán)
Trang 31Bên cạnh đó, Muhammad Yasir và cộng sự đã phát triển thành công hệ thống thử nghiệm máy tính trên vệ tinh dựa trên nền chip FPGA [49] Kết quả nghiên cứu cho thấy các các phần mềm trên vệ tinh, đặc biệt là phần mềm ADCS có thể được triển khai trên các chip FPGA cho các vệ tinh quan sát Trái đất cỡ nhỏ
Kết luận chương: Chương này tác giả trình bày tổng quan về tư thế, biểu diễn
tư thế và ước lượng tư thế trên vệ tinh Hiệu năng của chức năng ước lượng tư thế nói riêng hay phân hệ xác định và điều khiển tư thế nói chung phụ thuộc vào các yếu tố chính sau đây:
- Phương pháp biểu diễn tư thế: ảnh hưởng đến tốc độ và độ tinh cậy của các phép tính toán Đến nay quaternion vẫn là phương pháp biểu diễn tư thế được dùng phổ biến Tuy nhiên, phương pháp biểu diễn bằng các véc-tơ Pivot cũng mở ra các hướng nghiên cứu và ứng dụng mới
- Ràng buộc trên vệ tinh: chủ yếu là năng lực của thiết bị phần cứng trên vệ tinh Đây là yếu tố quan trọng ảnh hưởng đến lựa chọn các thuật toán nhằm tối ưu với phần ứng nhưng vẫn đảm bảo các yêu cầu kỹ thuật của hệ thống
- Các thuật toán ước lượng tư thế: Bộ lọc Kalman vẫn là phương pháp phổ biến Các giải thuật thích nghi cần dựa trên các bộ lọc cơ bản này nhưng vẫn phải đàm bảo các ràng buộc nêu trên Do vậy, giải thuật lozic mờ để hiệu chỉnh bộ lọc Kalman là hướng nghiên cứu phù hợp đảm bảo tối ưu với phần cứng hiện có và các chỉ tiêu của phân hệ xác định và điều khiển tư thế vệ tinh
Trang 32
CHƯƠNG 2 - MÔ HÌNH VỆ TINH VÀ CẢM BIẾN TƯ THẾ
TRONG BÀI TOÁN ƯỚC LƯỢNG TƯ THẾ VỆ TINH
Do phân hệ dự đoán tư thế vệ tinh là một bộ phận của phân hệ xác định và điều khiển tư thế Và để mô phỏng được chức năng và hiệu quả của các thuật toán xác định
tư thế phải đặt bộ phận này trong vòng lặp khép kín của phân hệ ADCS Do đó, cần phải
mô hình hóa được quả vệ tinh với cơ cấu điều khiển xác định Trong khuôn khổ của Luận án này, quả vệ tinh lựa chọn được coi là vật rắn không có các cấu trúc nhiên liệu lỏng bên trong và bỏ qua tác động của ảnh hưởng của các cơ cấu cơ khí thay đổi như tấm pin mặt trời Luật điều khiển vệ tinh được lựa chọn là luật điều khiển PID, đây cũng
là thuật điều khiển vệ tinh phổ biến trên các vệ tinh nhỏ quan sát Trái đất
2.1 Xây dựng mô hình động lực học của vệ tinh với các bánh xe động lượng và điều khiển tư thế vệ tinh
Sơ đồ tổng quát của phân hệ xác định và điều khiển tư thế vệ tinh được mô tả trong hình dưới đây:
Hình 2.1 Sơ đồ khối phân hệ ADCS trên vệ tinh
2.1.1 Xây dựng mô hình động lực học của vệ tinh với các bánh xe động lượng
Phương trình động lực học của vệ tinh như sau [10] :
Trang 33I s là ma trận quán tính của vệ tinh
Phương trình động lực học của vệ tinh như sau:
Tách q gT q4với q 4 là thành phần vô hướng của quaternion và g là vec-tơ chứa ba
thành phần còn lại (còn gọi là vec-tơ Gibbs)
1
2
3
q q q
d
q q
g
Kết hợp phương trình động học và phương trình động lực học, ta có mô hình của
vệ tinh như sau:
e
q d
q dt
g
ω g h
N
( 2.4)
Các kết hợp các phương trình động học và động lực học vệ tinh ta có sơ đồ mô hình vệ tinh như sau [10] :
Trang 34Hình 2.2 Mô hình vệ tinh
Trong đó: h w là mô men động lượng của các bánh xe trên hệ quy chiếu vệ tinh
Ne là lực tác động từ bên ngoài
Nc là lực điều khiển
I s là ma trận quán tính của vệ tinh
Cơ cấu chấp hành điều khiển tư thế vệ tinh là bánh xe động lượng được mô hình bằng sơ đồ sau [17]:
Hình 2.3 Mô hình bánh xe động lượng
Trong đó A w là ma trận xác định hướng của các con quay động lượng theo ba
trục (khi trục của các bánh xe động lượng không trùng với trục của vệ tinh)
Trang 35Moment động lượng của các bánh xe động lượng được tính như sau:
Trong đó: A w là ma trận có kích thước 3x4
Như vậy, mô hình vệ tinh với điều khiển tư thế bằng bánh xe động lượng được
mô hình hóa tổng quát như sau:
Hình 2.4 Mô hình vệ tinh với các bánh xe động lượng
Mô hình vệ tinh được mô tả bằng hệ phương trình trạng thái như sau:
Vec tơ trạng thái của mô hình trên được lựa chọn như sau:
Trang 36Với lực điều khiển đầu vào là u=N c Phương trình trạng thái tuyến tính của vệ tinh như sau:
( )t ( )t u c( )t d dist( )t
Với ngoại lực nhiễu N dist có giá trị trung bình là 0
Các ma trận của phương trình trạng thái được xác định như sau:
U
3x3 -1 s
000
Trang 372.1.2 Luật điều khiển tư thế vệ tinh
Để đơn giản trong quá trình nghiên cứu và mô phỏng, luật điều khiển tư thế vệ tinh sau đây được lựa chọn:
Trong đó: q s , q r là các ma trận tư thế tức thời và tư thế mong muốn
ω e và ω r là các ma trận tốc độ góc tức thời và tốc độ góc mong muốn
Hình 2.5 Sơ đồ khối bộ điều khiển tư thế vệ tinh
Đối với vệ tinh quan sát Trái đất, chiến lược điều khiển tư thế khác nhau theo
Trang 38nhiệm vụ của bộ xác định và điều khiển tư thế vệ tinh là điều khiển và duy trì tốc độ quay của vệ tinh theo trục pitch để quả vệ tinh luôn luốn hướng về Trái đất Tốc độ góc duy trì này phụ thuộc vào chu kỳ quay quanh Trái đất của vệ tinh và được tính bằng công thức:
Với: ω0 là tốc độ góc hướng Trái đất
Và T olà chu kỳ quay của vệ tinh quanh Trái đất
Đối với vệ tinh quat sát Trái đất có quỹ đạo đồng bộ mặt trời thì chu kỳ T o có thời gian khoảng 90 phút
Như vậy, véc tơ tốc độ góc mong muốn khi tư thế vệ tinh duy trì hướng Trái đất theo ba trục là:
Như vậy, chúng ta có thể thấy, bám theo tốc độ góc được chia thành ba giai đoạn:
- Giai đoạn tăng gia tốc để đạt tốc độ cực đại
- Duy trì tốc độ
- Giảm dần tốc độ góc về tốc độ mong muốn
Trang 39Trong phạm vi của Luận án, thì kịch bản chụp ảnh chỉ được lựa chọn là điều khiều tư thế vệ tinh đến một tốc độ góc mong muốn
Do vệ tinh là một hệ phi tuyến nên để phục vụ cho mục đích phân tích và mô
phỏng, mô hình vệ tinh được tuyến tính hóa quanh tốc độ góc hướng Trái đất [0, -ω o, 0]
(ωo=2*pi/To) Như vậy, mô hình vệ tinh được mô tả bằng phương trình trạng thái như sau:
Trong đó: x(t) là ma trận trạng thái và được xác định là [ω q h]
h mô men động lượng góc của các bánh xe động lượng
N c lực yêu cầu
N dist các lựa nhiễu động bên ngoài
A, B là các ma trận trạng thái
2.2 Cảm biến tư thế vệ tinh
Các cảm biến tư thế phổ biến sử dụng trên các vệ tinh quan sát Trái đất có thể được chia thành hai loại:
- Cảm biến quán tính: cảm biến gia tốc, cảm biến tốc độ góc
- Cảm biến tham chiếu: cảm biến mặt trời, cảm biến Trái đất, cảm biến từ trường, cảm biến sao
Mặc dù trên vệ tinh nhỏ quan sát Trái đất được trang bị nhiều loại cảm biến như cảm biến tốc độ góc, cảm biến hướng mặt trời, cảm biến từ trường, cảm biến sao,… Tuy nhiên các cảm biến này được sử dụng khác nhau ở mỗi chế độ hoạt động của vệ tinh
Cụ thể là ở chế độ hoạt động thông thường hoặc chụp ảnh bề mặt Trái đất thì vệ tinh thông thường chỉ sử dụng cảm biến tốc độ góc (gyroscope) để đo tốc độ góc và cảm biến hướng (cảm biến sao) để xác định hướng của vệ tinh Các cảm biến khác được sử dụng
ở các chế độ như chế độ điều khiển tư thế sau khi phóng, điều khiển quỹ đạo,… Do khuôn khổ của Luận án tập trung vào nghiên cứu vệ tinh ở chế độ thông thường và chụp ảnh nên chỉ sử dụng hai loại cảm biến: cảm biến tốc độ góc và cảm biến sao
2.2.1 Cảm biến tốc độ góc
Cảm biến tốc độ góc hay con quay hồi chuyển (gyroscope) là loại cảm biến gia tốc Cảm biến tốc độ góc là loại cảm biến đo chuyển động quay trong hệ tọa độ quán
Trang 40khác là nó hoàn toàn không phụ thuộc vào các yếu tố bên ngoài Kết quả đo từ cảm biến được cung cấp liên tục, không bị ngắt và có độ chính xác tốt Vì thế mà cảm biến tốc độ góc rất hữu dụng trong những trường hợp cần ổn định chuyển động quay của vệ tinh
Dữ liệu đầu ra của cảm biến tốc độ góc là vận tốc góc của chuyển động tự quay của vệ tinh Để xác định tư thế, giá trị đo của cảm biến tốc độ góc cần được tích phân,
do đó con quay cần một giá trị ban đầu Giá trị này sau đó được lan truyền, kết hợp với kết quả phép đo Các cảm biến tốc độ góc phổ biến gồm có: con quay cơ học (mechanical gyros), con quay sợi quang (fiber optic gyros)
Cảm biến tốc độ góc cơ học [57] :
Hình 2.7 Sơ đồ cấu tạo của một cảm biến tốc độ góc cơ học
Thiết bị cảm biến tốc độ góc một trục có thành phần chính là một phần quay (rotor) đặt trên khung đỡ (gymbal) Khung đỡ có thể quay được Khi con quay chịu tác động của ngoại lực theo hướng vuông góc với trục quay (trục đầu vào – input axis) thì xuất hiện hiện tượng tiến động Như vậy, dưới tác động của ngoại lực thì trục quay (spin axis) sẽ quay xung quanh một trục vuông góc với trục đầu và và trục quay, đây chính là trục đầu ra (output axis) Góc nghiêng này tỉ lệ thuận với vận tốc góc
Với giả định cảm biến vận tốc góc theo một trục, lực tác động vào trục x, phép
đo vận tốc góc thực hiện trên trục y thì vận tốc góc trên con quay cơ học được tính bằng phương trình sau [57] :
_
_
y rotor x y control yy y