Tổng kết và hướng dẫn học tập: - Nhấn mạnh: Mối liên quan giữa đạo hàm và tính đơn điệu của hàm số... Hoạt động 2: Hình thành kiến thức mới Hoạt động của GV và HS Nội dung ghi bảng Năn
Trang 1Ngày soạn: Ngày dạy:
− Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó
3 Tư duy, thái độ:
− Rèn luyện tính cẩn thận, chính xác Tư duy các vấn đề toán học một cách lôgic và hệ thống
II CHUẨN BỊ:
Giáo viên: Giáo án Hình vẽ minh hoạ
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về đạo hàm ở lớp 11
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
Hoạt động 2: Hình thành kiến thức mới
Trang 2Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
• Dựa vào KTBC, cho HS nhận xét dựa
H1 Hãy chỉ ra các khoảng đồng biến,
nghịch biến của các hàm số đã cho?
H3 Nhắc lại phương pháp xét tính đơn
điệu của hàm số đã biết?
H4 Nhận xét mối liên hệ giữa đồ thị
của hàm số và tính đơn điệu của hàm
- Năng lực ngôn ngữ
- Năng lực tính toán
• Dựa vào nhận xét trên, GV nêu định lí 2 Tính đơn điệu và dấu của đạo hàm: - Năng lực phát
Trang 3• Nếu f '(x) < 0, x K thì y = f(x) nghịch biến trên K
- Năng lực sáng tạo
- Năng lực hợp tác
-Năng lực ngôn ngữ
- Năng lực giao tiếp
- Năng lực tính toán
- Năng lực sáng tạo
Trang 4( )2 2
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
A Hàm số đồng biến trên khoảng (−;0) và
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Mối liên quan giữa đạo hàm và tính đơn điệu của hàm số
- GV: yêu cầu HS làm Bài 1,2 SGK và chuẩn bị phần lí thuyết còn lại
Trang 6Ngày soạn: Ngày dạy:
− Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó
3 Tư duy Thái độ:
− Rèn luyện tính cẩn thận, chính xác Tư duy các vấn đề toán học một cách lôgic và hệ thống
II CHUẨN BỊ:
Giáo viên: Giáo án Hình vẽ minh hoạ
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về đạo hàm ở lớp 11
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
IV HOẠT ĐỘNG DẠY HỌC:
1 Ổn định tổ chức: Kiểm tra sĩ số lớp
2 Kiểm tra bài cũ: (3')
H Tìm các khoảng đơn điệu của hàm số y=2x4+ ? 1
Đ Hàm số đồng biến trong khoảng (0; +∞), nghịch biến trong khoảng (–∞; 0)
3 Giảng bài mới:
Hoạt động 1: Khởi động
Bài học hôm nay, chúng ta sẽ đi tìm hiểu về quy tắc xét tính đơn điệu của hàm số
Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
• GV: Hướng dẫn HS rút ra qui tắc xét
tính đơn điệu của hàm số
• HS: Ghi nhớ quy tắc xét tính đơn điệu
- Năng lực phát hiện và giải quyết vấn đề
Trang 73 câu trong VD1 và yêu cầu HS cử đại
diện lên bảng trình bày lời giải
• HS: Trình bày lời giải
- Năng lực tự học
- Năng lực hợp tác
- Năng lực tính toán
- Năng lực sáng tạo
Trang 8Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
+
=
− nghịch biến trên các - Năng lực tự học
Trang 9sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Mối liên quan giữa đạo hàm và tính đơn điệu của hàm số Qui tắc xét tính đơn điệu của
hàm số Ứng dụng việc xét tính đơn điệu để chứng minh bất đẳng thức
- GV: yêu cầu HS làm các bài tập còn lại trong SGK chuẩn bị cho tiết luyện tập
Trang 10Ngày soạn: Ngày dạy:
− Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạo hàm của nó
3 Tư duy Thái độ:
− Rèn luyện tính cẩn thận, chính xác Tư duy các vấn đề toán học một cách lôgic và hệ thống
II CHUẨN BỊ:
Giáo viên: Giáo án Hệ thống bài tập
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về tính đơn điệu của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
IV HOẠT ĐỘNG DẠY HỌC:
1 Ổn định tổ chức: Kiểm tra sĩ số lớp
2 Kiểm tra bài cũ: (Lồng vào quá trình chữa bài tập)
3 Giảng bài mới:
Hoạt động 1: Khởi động
Bài học hôm nay, chúng ta sẽ chữa một số dạng bài tập về sự đồng biến, nghịch biến của hàm số
Hoạt động 2: Hình thành kiến thức mới
- Năng lực tính toán
Trang 11nghịch biến trên khoảng 3
c) Đồng biến trên khoảng (−1 0; ) và
(1; +) Nghịch biến trên khoảng
GV: Hướng dẫn HS làm BT2
+) Tính đạo hàm
+) Dựa vào quy tắc xét tính đơn điệu
của hàm số
HS: Trình bày lời giải
Bài 2/ 10 Xét sự đồng biến, nghịch biến của
x b)
2
21
=
−
x y x
Bài làm
14
01
2 2
1
01
- Năng lực tính toán
- Năng lực sáng tạo
Trang 1209
11
x y
x
'= −+y = 0 x = 1
b) D = [0; 2] Ta có:
2
12
x y
x x
=
−y = 0 x = 1
Bài 3, 4/10 Chứng minh hàm số đồng biến,
nghịch biến trên khoảng được chỉ ra:
a)
2
1
x y x
=+Đồng biến trên khoảng (−1 1; ), Nghịch biến trên khoảng (− −; 1 1),( ;+)
b) y= 2x x− 2Đồng biến trên khoảng ( ; )0 1 , Nghịch biến trên khoảng( ; )1 2
• HS: Trình bày lời giải
Bài 5/10 Chứng minh các bất đẳng thức sau:
Trang 13sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
−
=+
Câu 2 Giá trị của m để hàm số y mx 4
+
=+
nghịch biến trên mỗi khoảng xác định là:
A 2− m 2 B − − 2 m 1
C − 2 m 2 D − 2 m 1
- Năng lực tự học
- Năng lực phát hiện và giải quyết vấn đề
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
Trang 14- Nhấn mạnh: Qui tắc xét tính đơn điệu của hàm số Ứng dụng việc xét tính đơn điệu để chứng minh
bất đẳng thức
- GV: Chuẩn bị bài mới “Cực trị hàm số”
Tuần
Tiết 4 Bài 2 CỰC TRỊ CỦA HÀM SỐ
I MỤC TIÊU:
Kiến thức:
− Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số
− Mô tả được các điều kiện đủ để hàm số có điểm cực trị
Trang 15Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về tính đơn điệu của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
IV HOẠT ĐỘNG DẠY HỌC:
1 Ổn định tổ chức: Kiểm tra sĩ số lớp
2 Kiểm tra bài cũ: (3')
H Xét tính đơn điệu của hàm số: ( 3)2
Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
• Dựa vào KTBC, GV giới thiệu khái
niệm CĐ, CT của hàm số
• Nhấn mạnh: khái niệm cực trị mang
tính chất "địa phương"
H1 Xét tính đơn điệu của hàm số trên
các khoảng bên trái, bên phải điểm CĐ?
- Năng lực ngôn ngữ
- Năng lực tính toán
Trang 16Từ đó cho HS nhận xét mối liên hệ giữa
dấu của đạo hàm và sự tồn tại cực trị
- Năng lực hợp tác
- Năng lực sáng tạo
Hoạt động 3: Luyện tập
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
• GV hướng dẫn các bước thực hiện
- Năng lực hợp tác
-Năng lực ngôn ngữ
- Năng lực giao
Trang 17- Năng lực sáng tạo
Hoạt động 4: Vận dụng
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt GV: Phát phiếu học tập, treo bảng phụ
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
HS:
Câu 1: A
Câu 2: B
Câu 1 Cho hàm số y = –x3 + 3x2 – 3x + 1, mệnh đề nào sau đây là đúng?
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
Trang 184.Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Khái niệm cực trị của hàm số Điều kiện cần và điều kiện đủ để hàm số có cực trị
- GV: yêu cầu HS làm Bài 1,3 SGK và chuẩn bị phần lí thuyết còn lại
Trang 19Ngày soạn: Ngày dạy:
Tuần
Tiết 5 Bài 2 CỰC TRỊ CỦA HÀM SỐ (tiếp)
I MỤC TIÊU:
Kiến thức:
− Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số
− Mô tả được các điều kiện đủ để hàm số có điểm cực trị
Giáo viên: Giáo án Hình vẽ minh hoạ
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về tính đơn điệu của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
IV HOẠT ĐỘNG DẠY HỌC:
1 Ổn định tổ chức: Kiểm tra sĩ số lớp
2 Kiểm tra bài cũ: (3')
H Tìm điểm cực trị của hàm số: y=x3−3x+1? Đ Điểm CĐ: (–1; 3); Điểm CT: (1; –1)
3 Giảng bài mới:
Trang 20Hoạt động 1: Khởi động
Bài học hôm nay, chúng ta sẽ tìm hiểu về quy tắc tìm cực trị của hàm số
Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
• Dựa vào KTBC, GV cho HS nhận xét,
nêu lên qui tắc tìm cực trị của hàm số
1) Tìm tập xác định
2) Tính f(x) Tìm các điểm tại đó f(x) = 0 hoặc f(x) không xác định
x y
x d)
2
11
+ +
=+
x x y
x
- Năng lực nhận biết
- Năng lực ngôn ngữ
- Năng lực tính toán
b) Nếu f(x0) = 0, f(x0) < 0 thì x0 là điểm cực đại
Qui tắc 2:
1) Tìm tập xác định
2) Tính f(x) Giải phương trình f(x) = 0 và kí hiệu xi là nghiệm
3) Tìm f(x) và tính f(xi)
4) Dựa vào dấu của f(xi) suy ra tính chất cực trị của xi
- Năng lực phát hiện và giải quyết vấn đề
- Năng lực hợp tác
- Năng lực sáng tạo
Hoạt động 3: Luyện tập
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
• Cho các nhóm thực hiện VD2 Tìm cực trị của hàm số: - Năng lực tự học
Trang 21• Các nhóm thảo luận và trình bày
• Đối với các hàm đa thức bậc cao, hàm
lượng giác, … nên dùng qui tắc 2
• Đối với các hàm không có đạo hàm
không thể sử dụng qui tắc 2
a)
4 2
- Năng lực tính toán
- Năng lực sáng tạo
Hoạt động 4: Vận dụng
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt GV: Phát phiếu học tập, treo bảng phụ
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
- Năng lực tính toán
Trang 22- GV: yêu cầu HS làm các bài tập còn lại, chuẩn bị cho tiết luyện tập
Tuần
Tiết 6 LUYỆN TẬP: “ CỰC TRỊ CỦA HÀM SỐ”
I MỤC TIÊU:
Kiến thức:
− Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số
− Mô tả được các điều kiện đủ để hàm số có điểm cực trị
Kĩ năng:
− Sử dụng thành thạo các điều kiện đủ để tìm cực trị
Thái độ:
Trang 23− Rèn luyện tính cẩn thận, chính xác Tư duy các vấn đề toán học một cách lôgic và hệ thống
II CHUẨN BỊ:
Giáo viên: Giáo án Hệ thống bài tập
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về tính đơn điệu và cực trị của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
IV HOẠT ĐỘNG DẠY HỌC:
1 Ổn định tổ chức: Kiểm tra sĩ số lớp
2 Kiểm tra bài cũ: (Lồng vào quá trình chữa bài tập)
3 Giảng bài mới:
Hoạt động 1: Khởi động
Bài học hôm nay, chúng ta sẽ chữa một số dạng bài tập về cực trị của hàm số
Hoạt động 2: Hình thành kiến thức mới
- Năng lực tính toán
- Năng lực sáng tạo
GV: Hướng dẫn HS làm BT2
+) Tính đạo hàm
+) Dựa vào quy tắc 2 tìm cực trị của
hàm số
HS: Trình bày lời giải
Bài 2/18 Tìm các điểm cực trị của hàm số:
- Năng lực tính toán
Trang 24H1 Nêu điều kiện để hàm số luôn có
H2 Nếu x = 2 là điểm CĐ thì y(2) phải
thoả mãn điều kiện gì?
H3 Kiểm tra với các giá trị m vừa tìm
x mx y
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
Câu 1 Hàm số y=x3−mx+1 có 2 cực trị khi :
A m B 0 m 0
- Năng lực tự học
- Năng lực phát hiện và giải quyết
Trang 25A m B 0 m = 0
C m D 0 m 0
vấn đề
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Điều kiện cần, điều kiện đủ để hàm số có cực trị Các qui tắc tìm cực trị của hàm số
- GV: Chuẩn bị bài mới “Giá trị lớn nhất và giá trị nhỏ nhất của hàm số”
Ngày soạn: Ngày dạy:
Tuần
Trang 26
Tiết 7 Bài 3: GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ
I MỤC TIÊU:
Kiến thức:
− Biết các khái niệm GTLN, GTNN của hàm số trên một tập hợp số
− Nắm được qui tắc tìm GTLN, GTNN của hàm số
Kĩ năng:
− Biết cách tìm GTLN, GTNN của hàm số trên một đoạn, một khoảng
− Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số
Thái độ:
− Rèn luyện tính cẩn thận, chính xác Tư duy các vấn đề toán học một cách lôgic và hệ thống
II CHUẨN BỊ:
Giáo viên: Giáo án Hình vẽ minh hoạ
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về tính đơn điệu và cực trị của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
IV HOẠT ĐỘNG DẠY HỌC:
1 Ổn định tổ chức: Kiểm tra sĩ số lớp
2 Kiểm tra bài cũ: (3')
H Cho hàm số y=x3−x2− + Hãy tìm cực trị của hàm số So sánh giá trị cực trị với x 1
Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
- Năng lực ngôn
Trang 27Dựa vào bảng biến thiên để xác định GTLN, GTNN của hàm số liên tục trên một khoảng
- Năng lực hợp tác
- Năng lực sáng tạo
Hoạt động 3: Luyện tập
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
• GV hướng dẫn cách giải quyết bài
H2 Nêu yêu cầu bài toán ?
VD3 Cho một tấm nhôm hình vuông cạnh a
Người ta cắt ở bốn góc bốn hình vuông bằng nhau, rồi gập tấm nhôm lại thành một cái hộp không nắp Tính cạnh của các hình vuông bị cắt sao cho thể tích của khối hộp là lớn nhất
- Năng lực tự học
- Năng lực hợp tác
- Năng lực tính toán
- Năng lực sáng tạo
Trang 28a max V x
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
4
y =
- Năng lực tự học
- Năng lực phát hiện và giải quyết vấn đề
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Cách tìm GTLN, GTNN của hàm số liên tục trên một khoảng
- GV: yêu cầu HS học bài cũ và chuẩn bị tiếp phần lí thuyết còn lại
Trang 29− Biết các khái niệm GTLN, GTNN của hàm số trên một tập hợp số
− Nắm được qui tắc tìm GTLN, GTNN của hàm số
Kĩ năng:
− Biết cách tìm GTLN, GTNN của hàm số trên một đoạn, một khoảng
− Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số
Thái độ:
− Rèn luyện tính cẩn thận, chính xác Tư duy các vấn đề toán học một cách lôgic và hệ thống
II CHUẨN BỊ:
Giáo viên: Giáo án Hình vẽ minh hoạ
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về cực trị và GTLN, GTNN của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
1 Định lí
Mọi hàm số liên tục trên một đoạn đều có
- Năng lực nhận biết
- Năng lực ngôn ngữ
Trang 30• Tìm các điểm x 1 , x 2 , …, x n trên khoảng (a;
b), tại đó f(x) bằng 0 hoặc không xác định
• Tính f(a), f(x 1 ), …, f(x n ), f(b)
• Tìm số lớn nhất M và số nhỏ nhất m trong các số trên
- Năng lực tính toán
- Năng lực sáng tạo
Trang 31sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Cách tìm GTLN, GTNN của hàm số liên tục trên một đoạn So sánh với cách tìm
GTLN, GTNN của hàm số liên tục trên một khoảng
- GV: yêu cầu HS làm các b.ài tập trong SGK chuẩn bị cho tiết luyện tập
Trang 32Ngày soạn: Ngày dạy:
− Tìm được GTLN, GTNN của hàm số trên một đoạn, một khoảng
− Phân biệt việc tìm GTLN, GTNN với tìm cực trị của hàm số
Thái độ:
− Rèn luyện tính cẩn thận, chính xác Tư duy các vấn đề toán học một cách lôgic và hệ thống
II CHUẨN BỊ:
Giáo viên: Giáo án Hệ thống bài tập
Học sinh: SGK, vở ghi Ôn tập các kiến thức đã học về cực trị và GTLN, GTNN của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
IV HOẠT ĐỘNG DẠY HỌC:
1 Ổn định tổ chức: Kiểm tra sĩ số lớp
2 Kiểm tra bài cũ: (Lồng vào quá trình chữa bài tập)
3 Giảng bài mới:
Trang 33+) Tính đạo hàm
+) Dựa vào quy tắc tìm GTLN, GTNN
của hàm số trên một đoạn liên tục sau
20
b) y=x4−3x2+ 2trên các đoạn [0; 3], [2; 5]
c) 21
x y
x
−
=
−trên các đoạn [2; 4], [–3; –2]
d) y= 5 4− x trên [–1; 1]
- Năng lực hợp tác
- Năng lực tính toán
- Năng lực sáng tạo
- Năng lực tự học
- Năng lực hợp tác
- Năng lực tính toán
- Năng lực sáng tạo
y x
=+ b)
Trang 34HS: Trình bày lời giải Bài làm
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt GV: Phát phiếu học tập, treo bảng phụ
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
−
=+ đạt giá trị lớn
nhất trên đoạn 0;1 bằng 1 khi
A m=1 B m=0
C m=-1 D m= 2
- Năng lực tự học
- Năng lực phát hiện và giải quyết vấn đề
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Các cách tìm GTLN, GTNN của hàm số So sánh với cách tìm GTLN, GTNN của hàm
số liên tục trên một khoảng Cách vận dụng GTLN, GTNN để giải toán
- GV: Chuẩn bị bài mới “Đường tiệm cận”
Trang 35Ngày soạn : Ngày dạy:
− Tìm được đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số
− Củng cố cách tìm giới hạn, giới hạn một bên của hàm số
Thái độ: nghiêm túc, tích cực, tự giác
Năng lực cần đạt:
− Tư duy các vấn đề toán học một cách lôgic và hệ thống
− Tự học, sáng tạo, phát hiện và giải quyết vấn đề, tính toán cẩn thận và chính xác
II CHUẨN BỊ CỦA GV VÀ HS:
Giáo viên: Giáo án Hình vẽ minh hoạ
Học sinh: SGK, vở ghi Ôn tập cách tính giới hạn của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
Trang 36Hoạt động 1: Khởi động
Bài học hôm nay, chúng ta sẽ tìm hiểu về khái niệm đường tiệm cận ngang của đồ thị hàm số và cách tìm TCN của một đồ thị hàm số
Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
x
−
=
− (C) Nhận xét khoảng cách từ điểm M(x; y) (C)
• Các nhóm thảo luận và trình bày
I ĐƯỜNG TIỆM CẬN NGANG
1 Định nghĩa
Cho hàm số y = f(x) xác định trên một khoảng
vô hạn Đường thẳng y = y 0 là tiệm cận ngang của đồ thị hàm số y = f(x) nếu ít nhất
một trong các điều kiện sau được thoả mãn:
- Năng lực nhận biết
- Năng lực ngôn ngữ
- Năng lực tính toán
Trang 37=+ b) 2
11
x y x
−
=+c)
2 2
17
y x
=+
VD2 Tìm tiệm cận ngang cuẩ đồ thị hàm số:
a)
2
13
x y
+
=
−c)
2 2
=+
tác
- Năng lực tính toán
- Năng lực sáng tạo
Hoạt động 4: Vận dụng
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt GV: Phát phiếu học tập, treo bảng phụ
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
x x y
- Năng lực tính toán
Hoạt động 5: Tìm tòi, sáng tạo
4 Tổng kết và hướng dẫn học tập:
- Nhấn mạnh: Cách tìm tiệm cận ngang của đồ thị hàm số
- GV: yêu cầu HS học bài cũ và chuẩn bị phần lí thuyết còn lại
Trang 38Ngày soạn : Ngày dạy:
− Tìm được đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số
− Củng cố cách tìm giới hạn, giới hạn một bên của hàm số
Thái độ: nghiêm túc, tích cực, tự giác
Năng lực cần đạt:
− Tư duy các vấn đề toán học một cách lôgic và hệ thống
− Tự học, sáng tạo, phát hiện và giải quyết vấn đề, tính toán cẩn thận và chính xác
II CHUẨN BỊ CỦA GV VÀ HS:
Giáo viên: Giáo án Hình vẽ minh hoạ
Học sinh: SGK, vở ghi Ôn tập cách tính giới hạn của hàm số
III PHƯƠNG PHÁP DẠY HỌC: Hướng dẫn HS tự học, phát hiện và giải quyết vấn đề, thảo luận và
hoạt động nhóm
Trang 39IV HOẠT ĐỘNG DẠY HỌC:
Hoạt động 2: Hình thành kiến thức mới
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt
x
−
=
− có đồ thị (C) Nhận xét về khoảng cách từ điểm
• Các nhóm thảo luận và trình bày
II ĐƯỜNG TIỆM CẬN ĐỨNG
1 Định nghĩa
Đường thẳng x = x 0 đgl tiệm cận đứng của
đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thoả mãn:
- Năng lực ngôn ngữ
- Năng lực tính toán
Trang 40VD1 Tìm tiệm cận đứng của đồ thị hàm số:
3
x y x
y x
x y
y x
=+
x y
−
=+ −
x y x
+
=
− d)
2 2
32
- Năng lực tự học
- Năng lực hợp tác
- Năng lực tính toán
- Năng lực sáng tạo
Hoạt động 4: Vận dụng
Hoạt động của GV và HS Nội dung ghi bảng Năng lực cần đạt GV: Phát phiếu học tập, treo bảng phụ
sau đó yêu cầu HS thảo luận nhóm trả
lời các câu hỏi trắc nghiệm
- Năng lực tính toán